Ultrafast spray pyrolysis for synthesizing uniform Mg-doped LiNi0.9Co0.05Mn0.05O2
-
* Corresponding author.
E-mail address: wangjiexikeen@csu.edu.cn (J. Wang).
Citation:
Junhao Dai, Zhu He, Xinhai Li, Guochun Yan, Hui Duan, Guangchao Li, Zhixing Wang, Huajun Guo, Wenjie Peng, Jiexi Wang. Ultrafast spray pyrolysis for synthesizing uniform Mg-doped LiNi0.9Co0.05Mn0.05O2[J]. Chinese Chemical Letters,
;2025, 36(6): 110063.
doi:
10.1016/j.cclet.2024.110063
M. Li, J. Lu, Z. Chen, et al., Adv. Mater. 30 (2018) 1800561.
doi: 10.1002/adma.201800561
Z. Jiang, S. Chen, C. Wei, et al., Chin. Chem. Lett. 35 (2024) 108561.
doi: 10.1016/j.cclet.2023.108561
S. Yang, B. Wang, Q. Lv, et al., Chin. Chem. Lett. 34 (2023) 107783.
doi: 10.1016/j.cclet.2022.107783
A. Aishova, G.T. Park, C.S. Yoon, et al., Adv. Energy Mater. 10 (2019) 1903179.
W. Liu, P. Oh, X. Liu, et al., Angew. Chem. Int. Ed. 54 (2015) 4440–4457.
doi: 10.1002/anie.201409262
H.H. Ryu, K.J. Park, C.S. Yoon, et al., Chem. Mater. 30 (2018) 1155–1163.
doi: 10.1021/acs.chemmater.7b05269
R. Yue, F. Xia, R. Qi, et al., Chin. Chem. Lett. 32 (2021) 849–853.
doi: 10.1016/j.cclet.2020.05.025
J. Zheng, Y. Ye, T. Liu, et al., Acc. Chem. Res. 52 (2019) 2201–2209.
doi: 10.1021/acs.accounts.9b00033
X. Wang, B. Zhang, Z. Xiao, et al., Chin. Chem. Lett. 34 (2023) 107772.
doi: 10.1016/j.cclet.2022.107772
C. Wang, L. Shao, X. Guo, et al., ACS Appl. Mater. Interfaces 11 (2019) 44036–44045.
doi: 10.1021/acsami.9b11452
Z. Wang, H. Zhu, H. Yu, et al., Chin. Chem. Lett. 34 (2023) 107718.
doi: 10.1016/j.cclet.2022.07.061
A.O. Kondrakov, H. Geßwein, K. Galdina, et al., J. Phys. Chem. C 121 (2017) 24381–24388.
doi: 10.1021/acs.jpcc.7b06598
L. Mu, R. Lin, R. Xu, et al., Nano Lett. 18 (2018) 3241–3249.
doi: 10.1021/acs.nanolett.8b01036
P. Yan, J. Zheng, J. Liu, et al., Nat. Energy 3 (2018) 600–605.
doi: 10.1038/s41560-018-0191-3
C. Lv, J. Yang, Y. Peng, et al., Electrochim. Acta 297 (2019) 258–266.
doi: 10.1016/j.electacta.2018.11.172
J. Kim, H. Cho, H.Y. Jeong, et al., Adv. Energy Mater. 7 (2017) 1602559.
doi: 10.1002/aenm.201602559
X. Fan, G. Hu, B. Zhang, et al., Nano Energy 70 (2020) 104450.
doi: 10.1016/j.nanoen.2020.104450
Y.Y. Wang, X. Song, S. Liu, et al., ACS Appl. Mater. Interfaces 13 (2021) 56233–56241.
doi: 10.1021/acsami.1c17991
Q. Xie, W. Li, A. Manthiram, Chem. Mater. 31 (2019) 938–946.
doi: 10.1021/acs.chemmater.8b03900
B. You, Z. Wang, F. Shen, et al., Small Methods 5 (2021) 2100234.
doi: 10.1002/smtd.202100234
J.N. Zhang, S.Q. Xu, K.I. Hamad, et al., Powder Technol. 363 (2020) 1–6.
doi: 10.1016/j.powtec.2019.12.057
B.Z. You, J.P. Sun, Y. Jing, et al., ACS Appl. Mater. Interfaces 15 (2023) 14587–14595.
J. Li, S. Xiong, Y. Liu, et al., Nano Energy 2 (2013) 1249–1260.
doi: 10.1016/j.nanoen.2013.06.003
M. Oljaca, B. Blizanac, A. Du Pasquier, et al., J. Power Sources 248 (2014) 729–738.
doi: 10.1016/j.jpowsour.2013.09.102
Y. Wang, J. Roller, R. Maric, ACS Omega 3 (2018) 3966–3973.
doi: 10.1021/acsomega.8b00380
S.H. Choi, J.H. Kim, Y.N. Ko, et al., J. Power Sources 244 (2013) 129–135.
doi: 10.7746/jkros.2013.8.2.129
S.H. Kim, C.S. Kim, J. Electroceram. 23 (2008) 254–257.
doi: 10.5021/ad.2008.20.4.254
B. Pi ¸ skin, C. Sava ¸ s Uygur, M.K. Aydınol, Int. J. Energ. Res. 42 (2018) 3888–3898.
doi: 10.1002/er.4121
Y. Li, X. Li, Z. Wang, et al., J. Alloys Compd. 696 (2017) 836–843.
doi: 10.1016/j.jallcom.2016.12.038
J. Leng, Z. Wang, J. Wang, et al., Chem. Soc. Rev. 48 (2019) 3015–3072.
doi: 10.1039/c8cs00904j
J. Zhang, G. Singh, S. Xu, et al., J. Clean. Prod. 271 (2020) 122518.
doi: 10.1016/j.jclepro.2020.122518
B. Zhang, L. Cheng, P. Deng, et al., J. Alloys Compd. 872 (2021) 159619.
doi: 10.1016/j.jallcom.2021.159619
A.K. Arof, J. Alloys Compd. 449 (2008) 288–291.
doi: 10.1016/j.jallcom.2005.12.129
F. Peng, Y.Q. Chu, Y. Li, et al., J. Energy Chem. 71 (2022) 434–444.
doi: 10.1016/j.jechem.2022.03.053
A. Liu, N. Zhang, H. Li, et al., J. Electrochem. Soc. 166 (2019) A4025–A4033.
doi: 10.1149/2.1101915jes
L. Li, Z. Zhang, S. Fu, et al., Appl. Surf. Sci. 476 (2019) 1061–1071.
doi: 10.1016/j.apsusc.2019.01.160
M.H. Chu, Z.Y. Huang, T.E. Zhang, et al., ACS Appl. Mater. Interfaces 13 (2021) 19950–19958.
doi: 10.1021/acsami.1c00755
L. Cheng, Y.A. Zhou, B. Zhang, et al., Chem. Eng. J. 452 (2023) 139336.
doi: 10.1016/j.cej.2022.139336
H. Kim, D. Byun, W. Chang, et al., J. Mater. Chem. A 5 (2017) 25077–25089.
doi: 10.1039/C7TA07898F
Q.Q. Tao, L.G. Wang, C.H. Shi, et al., Mater. Chem. Front. 5 (2021) 2607–2622.
doi: 10.1039/d1qm00052g
S. Jamil, G. Wang, L. Yang, et al., J. Mater. Chem. A 8 (2020) 21306–21316.
doi: 10.1039/d0ta07965k
T. Yoshida, K. Hongo, R. Maezono, J. Phys. Chem. C 123 (2019) 14126–14131.
doi: 10.1021/acs.jpcc.8b12556
Wenxuan Yang , Long Shang , Xiaomeng Liu , Sihan Zhang , Haixia Li , Zhenhua Yan , Jun Chen . Ultrafast synthesis of nanocrystalline spinel oxides by Joule-heating method. Chinese Chemical Letters, 2024, 35(11): 109501-. doi: 10.1016/j.cclet.2024.109501
Hongyu Tang , Dongming Liu , Jinfu Huang , Liang Zhang , Yang Tang , Bin Huang , Yanwei Li , Shunhua Xiao , Yiling Sun , Renheng Wang . Excellent structural stability and electrochemical properties of LiNi0.9Co0.05Mn0.05O2 material by surface Ni2+ anchoring and Cs+ doping. Chinese Chemical Letters, 2025, 36(6): 109987-. doi: 10.1016/j.cclet.2024.109987
Xingang Kong , Yabei Su , Cuijuan Xing , Weijie Cheng , Jianfeng Huang , Lifeng Zhang , Haibo Ouyang , Qi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428
Ruofan Yin , Zhaoxin Guo , Rui Liu , Xian-Sen Tao . Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109643-. doi: 10.1016/j.cclet.2024.109643
Hengyi ZHU , Liyun JU , Haoyue ZHANG , Jiaxin DU , Yutong XIE , Li SONG , Yachao JIN , Mingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358
Xinyu Hou , Xuelian Yu , Meng Liu , Hengxing Peng , Lijuan Wu , Libing Liao , Guocheng Lv . Ultrafast synthesis of Mo2N with highly dispersed Ru for efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2025, 36(4): 109845-. doi: 10.1016/j.cclet.2024.109845
Haixia Wu , Kailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550
Caili Yang , Tao Long , Ruotong Li , Chunyang Wu , Yuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675
Yue Qian , Zhoujia Liu , Haixin Song , Ruize Yin , Hanni Yang , Siyang Li , Weiwei Xiong , Saisai Yuan , Junhao Zhang , Huan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785
Bin Feng , Tao Long , Ruotong Li , Yuan-Li Ding . Rationally constructing metallic Sn-ZnO heterostructure via in-situ Mn doping for high-rate Na-ion batteries. Chinese Chemical Letters, 2025, 36(2): 110273-. doi: 10.1016/j.cclet.2024.110273
Zhuangzhuang Zhang , Yaru Qiao , Jun Zhao , Dai-Huo Liu , Mengmin Jia , Hongwei Tang , Liang Wang , Dongmei Dai , Bao Li . Fluorine-doped K0.39Mn0.77Ni0.23O1.9F0.1 microspheres with highly reversible oxygen redox reaction for potassium-ion battery cathode. Chinese Chemical Letters, 2025, 36(3): 109907-. doi: 10.1016/j.cclet.2024.109907
Yiwen Xu , Chaozheng He , Chenxu Zhao , Ling Fu . Single-atom Ti doping on S-vacancy two-dimensional CrS2 as a catalyst for ammonia synthesis: A DFT study. Chinese Chemical Letters, 2025, 36(4): 109797-. doi: 10.1016/j.cclet.2024.109797
Feng Cao , Chunxiang Xian , Tianqi Yang , Yue Zhang , Haifeng Chen , Xinping He , Xukun Qian , Shenghui Shen , Yang Xia , Wenkui Zhang , Xinhui Xia . Gelation-pyrolysis strategy for fabrication of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110575-. doi: 10.1016/j.cclet.2024.110575
Huanyan Liu , Jiajun Long , Hua Yu , Shichao Zhang , Wenbo Liu . Rational design of highly conductive and stable 3D flexible composite current collector for high performance lithium-ion battery electrodes. Chinese Chemical Letters, 2025, 36(3): 109712-. doi: 10.1016/j.cclet.2024.109712
Jiaojiao Liang , Youming Peng , Zhichao Xu , Yufei Wang , Menglong Liu , Xin Liu , Di Huang , Yuehua Wei , Zengxi Wei . Boron/phosphorus co-doped nitrogen-rich carbon nanofiber with flexible anode for robust sodium-ion battery. Chinese Chemical Letters, 2025, 36(1): 110452-. doi: 10.1016/j.cclet.2024.110452
Mianying Huang , Zhiguang Xu , Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2024.100309
Junqi Wang , Shuai Zhang , Jingjing Ma , Xiangjun Liu , Yayun Ma , Zhimin Fan , Jingfeng Wang . Augmenting levoglucosan production through catalytic pyrolysis of biomass exploiting Ti3C2Tx MXene. Chinese Chemical Letters, 2024, 35(12): 109725-. doi: 10.1016/j.cclet.2024.109725
Hongyi LI , Aimin WU , Liuyang ZHAO , Xinpeng LIU , Fengqin CHEN , Aikui LI , Hao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480
Mingjiao Lu , Zhixing Wang , Gui Luo , Huajun Guo , Xinhai Li , Guochun Yan , Qihou Li , Xianglin Li , Ding Wang , Jiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638
Fabrice Nelly Habarugira , Ducheng Yao , Wei Miao , Chengcheng Chu , Zhong Chen , Shun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886