Citation:
Yanxue Wu, Xijun Xu, Shanshan Shi, Fangkun Li, Shaomin Ji, Jingwei Zhao, Jun Liu, Yanping Huo. Facile construction of Cu2-xSe@C nanobelts as anode for superior sodium-ion storage[J]. Chinese Chemical Letters,
;2025, 36(6): 110062.
doi:
10.1016/j.cclet.2024.110062
-
Transition metal selenides are considered promising electrochemical energy storage materials due to their excellent rate properties and high capacity based on multi-step conversion reactions. However, its practical applications are hampered by poor conductivity and large volume variation for Na+ storage, which resulting fast capacity decay. Herein, a facile metal-organic framework (MOF) derived method is explored to embed Cu2-xSe@C particles into a carbon nanobelts matrix. Such carbon encapsulated nanobelts' structural moderate integral electronic conductivity and maintained the structure from collapsing during Na+ insertion/extraction. Furthermore, the porous structure of these nanobelts endows enough void space to mitigate volume stress and provide more diffusion channels for Na+/electrons transporting. Due to the unique structure, these Cu2-xSe@C nanobelts achieved ultra-stable cycling performance (170.7 mAh/g at 1.0 A/g after 1000 cycles) and superior rate capability (94.6 mAh/g at 8 A/g) for sodium-ion batteries. The kinetic analysis reveals that these Cu2-xSe@C nanobelts with considerable pesoudecapactive contribution benefit the rapid sodiation/desodiation. This rational design strategy broadens an avenue for the development of metal selenide materials for energy storage devices.
-
Keywords:
- Cu2-xSe@C,
- Nanobelts,
- Metal-organic framework (MOF),
- Anode,
- Sodium-ion batteries
-
-
-
[1]
F. Wu, J. Maier, Y. Yu, Chem. Soc. Rev. 49 (2020) 1569-1614. doi: 10.1039/c7cs00863e
-
[2]
M. Li, J. Lu, Z. Chen, K. Amine, Adv. Mater. 30 (2018) 1800561. doi: 10.1002/adma.201800561
-
[3]
F. Li, Z. Liu, C. Liao, et al., ACS Energy Lett. 8 (2023) 4903-4914. doi: 10.1021/acsenergylett.3c02072
-
[4]
Z. Zhuang, F. Zhang, D. Gandla, et al., ACS Appl. Mater. Interfaces 15 (2023) 38530-38539. doi: 10.1021/acsami.3c08766
-
[5]
V.V. Jadhav, Z. Zhuang, S.N. Banitaba, et al., Dalton Trans. 52 (2023) 14564-14572. doi: 10.1039/d3dt02865h
-
[6]
Z. Zhuang, F. Zhang, Y. Zhou, et al., Mater. Today Energy 30 (2022) 101192. doi: 10.1016/j.mtener.2022.101192
-
[7]
Z. Zhuang, C. Liu, Y. Yan, P. Ma, D.Q. Tan, J. Mater. Chem. A 9 (2021) 27095-27101. doi: 10.1039/d1ta09070d
-
[8]
P.K. Nayak, L. Yang, W. Brehm, P. Adelhelm, Angew. Chem. Int. Ed. 57 (2018) 102-120. doi: 10.1002/anie.201703772
-
[9]
H.S. Hirsh, Y. Li, D.H. Tan, et al., Adv. Energy Mater. 10 (2020) 2001274. doi: 10.1002/aenm.202001274
-
[10]
P. Ma, Z. Zhuang, J. Cao, B. Ju, X. Xi, ACS Appl. Energy Mater. 5 (2022) 6417-6422. doi: 10.1021/acsaem.2c00860
-
[11]
Z. Zhuang, L. Yang, B. Ju, et al., Chem. Select. 5 (2020) 2291-2299. doi: 10.1002/slct.201904868
-
[12]
A. Yin, L. Yang, Z. Zhuang, et al., Energy Storage 2 (2020) e132. doi: 10.1002/est2.132
-
[13]
Z. Zhuang, L. Yang, B. Ju, et al., Energy Storage 2 (2020) e109. doi: 10.1002/est2.109
-
[14]
D. Gandla, Z. Zhuang, V.V. Jadhav, D.Q. Tan, Energy Storage Mater. 63 (2023) 102977. doi: 10.1016/j.ensm.2023.102977
-
[15]
Z. Zhuang, B. Ju, P. Ma, L. Yang, F. Tu, Ionics 27 (2021) 1069-1079. doi: 10.1007/s11581-020-03897-8
-
[16]
Y. Zhao, Y. Kang, J. Wozny, et al., Nat. Rev. Mater. 8 (2023) 623-634. doi: 10.1038/s41578-023-00574-w
-
[17]
C. Yang, S. Xin, L. Mai, Y. You, Adv. Energy Mater. 11 (2021) 2000974. doi: 10.1002/aenm.202000974
-
[18]
C. Vaalma, D. Buchholz, M. Weil, S. Passerini, Nat. Rev. Mater. 3 (2018) 1-11. doi: 10.1038/s41578-018-0013-z
-
[19]
J. Deng, W.B. Luo, S.L. Chou, H.K. Liu, S.X. Dou, Adv. Energy Mater. 8 (2018) 1701428. doi: 10.1002/aenm.201701428
-
[20]
J.E. Zhou, R.C.K. Reddy, A. Zhong, et al., Adv. Mater. 36 (2024) 2312471. doi: 10.1002/adma.202312471
-
[21]
Y. Chen, X. Shi, B. Lu, J. Zhou, Adv. Energy Mater. 12 (2022) 2202851. doi: 10.1002/aenm.202202851
-
[22]
Z. Wang, X. Feng, Y. Bai, et al., Adv. Energy Mater. 11 (2021) 2003854. doi: 10.1002/aenm.202003854
-
[23]
M. Zhang, Y. Li, F. Wu, Y. Bai, C. Wu, Nano Energy 82 (2021) 105738. doi: 10.1016/j.nanoen.2020.105738
-
[24]
L. Wang, Z. Wei, M. Mao, et al., Energy Storage Mater. 16 (2019) 434-454. doi: 10.1016/j.ensm.2018.06.027
-
[25]
T. Wang, J. Qu, D. Legut, et al., Nano Lett. 19 (2019) 3122-3130. doi: 10.1021/acs.nanolett.9b00544
-
[26]
X. Xu, Z. Liu, S. Ji, et al., Chem. Eng. J. 359 (2019) 765-774. doi: 10.1016/j.cej.2018.11.191
-
[27]
X. Xu, F. Li, D. Zhang, et al., Adv. Sci. 9 (2022) 2200247. doi: 10.1002/advs.202200247
-
[28]
M. Hu, Z. Ju, Z. Bai, et al., Small Methods 4 (2020) 1900673. doi: 10.1002/smtd.201900673
-
[29]
B. Guo, L. Zhang, Y. Tang, J. Huang, Battery Energy 3 (2024) 20230041. doi: 10.1002/bte2.20230041
-
[30]
X.X. Jia, X.Z. Yu, B. A. Lu, Rare Metals 40 (2021) 2455-2463. doi: 10.1007/s12598-021-01738-9
-
[31]
J. Ge, L. Fan, J. Wang, et al., Adv. Energy Mater. 8 (2018) 1801477. doi: 10.1002/aenm.201801477
-
[32]
C. Wang, J. Yan, T. Li, et al., Angew. Chem. Int. Ed. 60 (2021) 25013–25019. doi: 10.1002/anie.202110177
-
[33]
X. Xu, J. Liu, Z. Liu, et al., Small 14 (2018) 1800793. doi: 10.1002/smll.201800793
-
[34]
H. Zhang, Y. Gao, X.H. Liu, et al., Adv. Funct. Mater. 32 (2022) 2107718. doi: 10.1002/adfm.202107718
-
[35]
Q. Zhao, Y. Lu, J. Chen, Adv. Energy Mater. 7 (2017) 1601792. doi: 10.1002/aenm.201601792
-
[36]
W. Deng, J. Chen, L. Yang, et al., Small 17 (2021) 2101058. doi: 10.1002/smll.202101058
-
[37]
F. Wang, F. Han, Y. He, et al., Adv. Funct. Mater. 31 (2021) 2007266. doi: 10.1002/adfm.202007266
-
[38]
P. Ge, S. Li, L. Xu, et al., Adv. Energy Mater. 9 (2019) 1803035. doi: 10.1002/aenm.201803035
-
[39]
Y. Qi, Y. Yang, Q. Hou, et al., Chin. Chem. Lett. 32 (2021) 1117-1120. doi: 10.1016/j.cclet.2020.08.030
-
[40]
Y. Xiao, Y. Miao, S. Wan, Y.K. Sun, S. Chen, Small 18 (2022) 2202582. doi: 10.1002/smll.202202582
-
[41]
X. Xu, B. Mai, Z. Liu, et al., Chem. Eng. J. 387 (2020) 124061. doi: 10.1016/j.cej.2020.124061
-
[42]
H. Li, H. Zhang, F. Wu, et al., Adv. Energy Mater. 12 (2022) 2202293. doi: 10.1002/aenm.202202293
-
[43]
Y. Gong, Y. Li, Y. Li, et al., Small 19 (2023) 2206194. doi: 10.1002/smll.202206194
-
[44]
Y. Xiao, X. Zhao, X. Wang, et al., Adv. Energy Mater. 10 (2020) 2000666. doi: 10.1002/aenm.202000666
-
[45]
J. Yuan, Y. Gan, X. Xu, et al., J. Colloid Interf. Sci. 626 (2022) 355-363. doi: 10.1016/j.jcis.2022.06.139
-
[46]
Y. Fang, X.Y. Yu, X.W. Lou, Adv. Mater. 30 (2018) 1706668. doi: 10.1002/adma.201706668
-
[47]
K. Zhu, S. Wei, Q. Zhou, et al., Nano Res. 16 (2023) 2421-2427. doi: 10.1007/s12274-022-4953-7
-
[48]
X. Zhu, J. Gao, J. Li, et al., Sustain. Energy Fuels 4 (2020) 2453-2461. doi: 10.1039/d0se00160k
-
[49]
L. Yue, D. Wang, Z. Wu, et al., Chem. Eng. J. 433 (2022) 134477. doi: 10.1016/j.cej.2021.134477
-
[50]
X. Ma, Y. Li, X. Long, et al., J. Energy Chem. 77 (2023) 227-238. doi: 10.1016/j.jechem.2022.10.046
-
[51]
W. Chen, M. Wu, H. Chen, L. Mo, Y. Zhu, Chin. Chem. Lett. 35 (2024) 108698. doi: 10.1016/j.cclet.2023.108698
-
[52]
R. Jin, X. Liu, L. Yang, G. Li, S. Gao, Electrochim. Acta 259 (2018) 841-849. doi: 10.1016/j.electacta.2017.11.044
-
[53]
Q. Zhu, A. Xu, H. Chen, et al., ACS Appl. Mater. Interfaces 15 (2023) 12976-12985. doi: 10.1021/acsami.2c20655
-
[54]
H. Li, H. Zhang, M. Zarrabeitia, et al., Adv. Sustain. Syst. 6 (2022) 2200109. doi: 10.1002/adsu.202200109
-
[55]
X. Xu, J. Liu, J. Liu, et al., Adv. Funct. Mater. 28 (2018) 1707573. doi: 10.1002/adfm.201707573
-
[56]
H. Liu, D. Li, H. Liu, et al., Appl. Surf. Sci. 612 (2023) 155725. doi: 10.1016/j.apsusc.2022.155725
-
[57]
Y. Li, X. Sun, Z. Cheng, et al., Energy Storage Mater. 22 (2019) 275-283. doi: 10.1016/j.ensm.2019.02.009
-
[58]
L. Shao, S. Wang, J. Qi, et al., Mater. Today Phys. 19 (2021) 100422. doi: 10.1016/j.mtphys.2021.100422
-
[59]
Y. Xiao, K. Zhang, X. Zhao, et al., J. Alloy Compd. 879 (2021) 160485. doi: 10.1016/j.jallcom.2021.160485
-
[60]
D. Chao, C. Zhu, P. Yang, et al., Nat. Commun. 7 (2016) 12122. doi: 10.1038/ncomms12122
-
[61]
X. Xu, J. Liu, Z. Liu, et al., ACS Nano 11 (2017) 9033-9040. doi: 10.1021/acsnano.7b03530
-
[62]
X. Pu, D. Zhao, C. Fu, et al., Angew. Chem. Int. Ed. 60 (2021) 21310-21318. doi: 10.1002/anie.202104167
-
[1]
-
-
-
[1]
Huixin Chen , Chen Zhao , Hongjun Yue , Guiming Zhong , Xiang Han , Liang Yin , Ding Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650
-
[2]
Li Lin , Song-Lin Tian , Zhen-Yu Hu , Yu Zhang , Li-Min Chang , Jia-Jun Wang , Wan-Qiang Liu , Qing-Shuang Wang , Fang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802
-
[3]
Haohao Sun , Wenxuan Wang , Yuli Xiong , Zelang Jian , Wen Chen . Boosting the electrochromic properties by large V2O5 nanobelts interlayer spacing tuned via PEDOT. Chinese Chemical Letters, 2024, 35(9): 109213-. doi: 10.1016/j.cclet.2023.109213
-
[4]
Xiping Dong , Xuan Wang , Zhixiu Lu , Qinhao Shi , Zhengyi Yang , Xuan Yu , Wuliang Feng , Xingli Zou , Yang Liu , Yufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605
-
[5]
Xuan Wang , Peng Sun , Siteng Yuan , Lu Yue , Yufeng Zhao . P2-type low-cost and moisture-stable cathode for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(5): 110015-. doi: 10.1016/j.cclet.2024.110015
-
[6]
Jun Dong , Senyuan Tan , Sunbin Yang , Yalong Jiang , Ruxing Wang , Jian Ao , Zilun Chen , Chaohai Zhang , Qinyou An , Xiaoxing Zhang . Spatial confinement of free-standing graphene sponge enables excellent stability of conversion-type Fe2O3 anode for sodium storage. Chinese Chemical Letters, 2025, 36(3): 110010-. doi: 10.1016/j.cclet.2024.110010
-
[7]
Ruofan Yin , Zhaoxin Guo , Rui Liu , Xian-Sen Tao . Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109643-. doi: 10.1016/j.cclet.2024.109643
-
[8]
Jiaojiao Liang , Youming Peng , Zhichao Xu , Yufei Wang , Menglong Liu , Xin Liu , Di Huang , Yuehua Wei , Zengxi Wei . Boron/phosphorus co-doped nitrogen-rich carbon nanofiber with flexible anode for robust sodium-ion battery. Chinese Chemical Letters, 2025, 36(1): 110452-. doi: 10.1016/j.cclet.2024.110452
-
[9]
Junhan Luo , Qi Qing , Liqin Huang , Zhe Wang , Shuang Liu , Jing Chen , Yuexiang Lu . Non-contact gaseous microplasma electrode as anode for electrodeposition of metal and metal alloy in molten salt. Chinese Chemical Letters, 2024, 35(4): 108483-. doi: 10.1016/j.cclet.2023.108483
-
[10]
Tong Su , Yue Wang , Qizhen Zhu , Mengyao Xu , Ning Qiao , Bin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191
-
[11]
Yunyu Zhao , Chuntao Yang , Yingjian Yu . A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chinese Chemical Letters, 2024, 35(7): 108865-. doi: 10.1016/j.cclet.2023.108865
-
[12]
Caili Yang , Tao Long , Ruotong Li , Chunyang Wu , Yuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675
-
[13]
Guangchang Yang , Shenglong Yang , Jinlian Yu , Yishun Xie , Chunlei Tan , Feiyan Lai , Qianqian Jin , Hongqiang Wang , Xiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722
-
[14]
Zhanheng Yan , Weiqing Su , Weiwei Xu , Qianhui Mao , Lisha Xue , Huanxin Li , Wuhua Liu , Xiu Li , Qiuhui Zhang . Carbon-based quantum dots/nanodots materials for potassium ion storage. Chinese Chemical Letters, 2025, 36(4): 110217-. doi: 10.1016/j.cclet.2024.110217
-
[15]
Shimei Wu , Yining Li , Lantao Chen , Yufei Zhang , Lingxing Zeng , Haosen Fan . Hexapod cobalt phosphosulfide nanorods encapsulating into multiple hetero-atom doped carbon frameworks for advanced sodium/potassium ion battery anodes. Chinese Chemical Letters, 2025, 36(4): 109796-. doi: 10.1016/j.cclet.2024.109796
-
[16]
Mingxin Song , Lijing Xie , Fangyuan Su , Zonglin Yi , Quangui Guo , Cheng-Meng Chen . New insights into the effect of hard carbons microstructure on the diffusion of sodium ions into closed pores. Chinese Chemical Letters, 2024, 35(6): 109266-. doi: 10.1016/j.cclet.2023.109266
-
[17]
Yan-Jiang Li , Shu-Lei Chou , Yao Xiao . Detecting dynamic structural evolution based on in-situ high-energy X-ray diffraction technology for sodium layered oxide cathodes. Chinese Chemical Letters, 2025, 36(2): 110389-. doi: 10.1016/j.cclet.2024.110389
-
[18]
Kailong Zhang , Chao Zhang , Luanhui Wu , Qidong Yang , Jiadong Zhang , Guang Hu , Liang Song , Gaoran Li , Wenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618
-
[19]
Yixin Lu , Minghan Qin , Shixian Zhang , Zhen Liu , Wang Sun , Zhenhua Wang , Jinshuo Qiao , Kening Sun . Triple-conducting heterostructure anodes for electrochemical ethane nonoxidative dehydrogenation by protonic ceramic electrolysis cells. Chinese Chemical Letters, 2025, 36(4): 110567-. doi: 10.1016/j.cclet.2024.110567
-
[20]
Zhijia Zhang , Shihao Sun , Yuefang Chen , Yanhao Wei , Mengmeng Zhang , Chunsheng Li , Yan Sun , Shaofei Zhang , Yong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(150)
- HTML views(3)