Citation: Ming Yue, Yi-Rong Wang, Jia-Yong Weng, Jia-Li Zhang, Da-Yu Chi, Mingjin Shi, Xiao-Gang Hu, Yifa Chen, Shun-Li Li, Ya-Qian Lan. Multi-metal porous crystalline materials for electrocatalysis applications[J]. Chinese Chemical Letters, ;2025, 36(6): 110049. doi: 10.1016/j.cclet.2024.110049 shu

Multi-metal porous crystalline materials for electrocatalysis applications





  • Author Bio: Ming Yue received her B. Eng. degree at East China University of Science and Technology in 2021, and is now studying for a postgraduate degree at South China Normal University under the supervision of Prof. Ya-Qian Lan and Prof. Yifa Chen. Her research interest focuses on the design and synthesis of crystalline porous materials (MOF- and COF-based composites) for energy conversion
    Yi-Rong Wang received her M.S. degree (2019) and Ph.D. degrees (2022) from Nanjing Normal University under the supervision of Prof. Ya-Qian Lan. Since 2022, she has carried out postdoctoral research at South China Normal University with Prof. Ya-Qian Lan. Her current research focuses on the synthesis of crystalline porous materials (MOF- and COF-based composites) and their applications in energy storage and conversion




    Xiao-Gang Hu received his Ph.D. degree (2008) from the School of Chemistry and Chemical Engineering, Sun Yat-sen University. He joined the Analytical Chemistry Committee of Guangdong Chemical Society and the Chromatography Committee of Guangdong Analytical Testing Association. He joined South China Normal University (SCNU, China) in 2001, and is now a professor of chemistry. His-current research interest focuses on the fields of sample pretreatment, separation and enrichment materials, solid phase extraction, chromatographic analysis, nucleic acid aptamer, etc
    Yifa Chen was born in 1989 in Fujian, China. He received his B.S. degree from School of Chemistry, Beijing Institute of Technology. He subsequently obtained his Ph.D. degree from School of Chemistry and Chemical Engineering, Beijing Institute of Technology under the supervision of Prof. Bo Wang. In 2018, he became an associate professor at Nanjing Normal University (NNU, China). In 2022, he joined South China Normal University (SCNU, China) as a professor of chemistry. His-research interest focuses on the fabrication of porous crystalline material based devices like membranes, foams and fibers that can be applicable in energy storage, environment treatment or photo-/electro-catalysis


  • * Corresponding authors.
    E-mail addresses: yirongwang@m.scnu.edu.cn (Y.-R. Wang), huxg@scnu.edu.cn (X.-G. Hu), chyf927821@163.com (Y. Chen).
  • Received Date: 7 February 2024
    Revised Date: 4 May 2024
    Accepted Date: 24 May 2024
    Available Online: 24 May 2024

Figures(25)

  • Multi-metal porous crystalline materials (MPCM), integrating the functions of both multi-metal centres and porous crystalline materials (e.g., metal-organic frameworks (MOFs) and covalent organic frameworks (COFs)), are an extended class of porous materials that have attracted much attention for a broad range of applications. Owing to the advantages of these materials, they generally display high porosity, multi-metal active sites, well-tuned functions, and pre-designable structures, etc., serving as desired platforms for the study of structure-property relationships. In view of the clean and sustainable target, a series of MPCM have been explored as electrocatalysts for electrocatalytic reactions like hydrogen evolution reaction, oxygen evolution reaction and electrocatalytic CO2 reduction reaction. Concerning the progress achieved for MPCM in electrocatalytic field during past years, this review will provide a brief introduction on the recent breakthrough of MPCM based electrocatalysts including their synthesis methods, structure design, component/morphology tuning, electrocatalytic property and structure-property relationship, etc. Besides, it will also conclude the current challenges and present perspectives for the MPCM based electrocatalysts, which might promote the development of porous crystalline materials in electrocatalysis and hope to provide new insights for scientists in related fields.
  • 加载中
    1. [1]

      H.K. Chae, D.Y. Siberio-Pérez, et al., Nature 427 (2004) 523–527.

    2. [2]

      Y. Zheng, Y. Jiao, M. Jaroniec, S.Z. Qiao, Angew. Chem. Int. Ed. 54 (2015) 52–65.  doi: 10.1002/anie.201407031

    3. [3]

      D. Yuan, D. Zhao, D. Sun, H.C. Zhou, Angew. Chem. Int. Ed. 49 (2010) 5357–5361.  doi: 10.1002/anie.201001009

    4. [4]

      A.P. Cote, A.I. Benin, N.W. Ockwig, et al., Science 310 (2005) 1166–1170.  doi: 10.1126/science.1120411

    5. [5]

      C. Guo, J. Zhou, Y. Chen, et al., Angew. Chem. Int. Ed. 61 (2022) e202210871.

    6. [6]

      J. Chang, Q. Li, J. Shi, et al., Angew. Chem. Int. Ed. 62 (2023) e202218868.

    7. [7]

      L.Z. Dong, Y.F. Lu, R. Wang, et al., Nano Res. 15 (2022) 10185–10193.  doi: 10.1007/s12274-022-4681-z

    8. [8]

      Y. Wang, H. Ding, S. Sun, et al., Angew. Chem. Int. Ed. 61 (2022) e202212162.

    9. [9]

      X. Yao, C. Guo, C. Song, et al., Adv. Mater. 35 (2023) 2208846.

    10. [10]

      Y. Wang, H. Ding, X. Ma, et al., Angew. Chem. Int. Ed. 61 (2022) e202114648.

    11. [11]

      C. Hou, L. Zou, Q. Xu, Adv. Mater. 31 (2019) 1904689.

    12. [12]

      C.S. Feng, T.W. Lu, T.L. Wang, et al., Acta Metall. Sin. Engl. Lett. 34 (2021) 1537–1545.  doi: 10.1007/s40195-021-01255-9

    13. [13]

      L. Wei, H.E. Karahan, S. Zhai, et al., Adv. Mater. 29 (2017) 1701410.

    14. [14]

      J. Song, C. Zhu, B.Z. Xu, et al., Adv. Energy Mater. 7 (2017) 1601555.

    15. [15]

      X. Han, C. Jiang, B. Hou, et al., J. Am. Chem. Soc. 146 (2024) 6733–6743.  doi: 10.1021/jacs.3c13032

    16. [16]

      C. Li, Z. Qiu, H. Sun, Y. Yang, C.P. Li, Chin. J. Struct. Chem. 41 (2022) 2211084.

    17. [17]

      S. Ruidas, B. Mohanty, P. Bhanja, et al., ChemSusChem 14 (2021) 5057–5064.  doi: 10.1002/cssc.202101663

    18. [18]

      X. Huang, C. Sun, X. Feng, Sci. China Chem. 63 (2020) 1367–1390.  doi: 10.1007/s11426-020-9836-x

    19. [19]

      J. Pang, R.G. Mendes, A. Bachmatiuk, et al., Chem. Soc. Rev. 48 (2019) 72–133.  doi: 10.1039/c8cs00324f

    20. [20]

      H. Sun, Z. Yan, F. Liu, et al., Adv. Mater. 32 (2020) 1806326.

    21. [21]

      J. Liu, Y. Gao, Y. Wei, et al., Chem. Commun. 56 (2020) 4228–4231.  doi: 10.1039/d0cc00177e

    22. [22]

      Y. Hu, W. Liu, K. Jiang, et al., Inorg. Chem. Front. 7 (2020) 4461–4468.  doi: 10.1039/d0qi01003k

    23. [23]

      Q. Gan, B. Liu, K. Zhao, Z. He, S. Liu, Electrochim. Acta 279 (2018) 152–160.

    24. [24]

      J. Huang, H. Sheng, R.D. Ross, et al., Nat. Commun. 12 (2021) 3036.

    25. [25]

      L. Wan, P. Wang, Int. J. Hydrog. Energy 46 (2021) 8356–8376.

    26. [26]

      G. Lee, W. Na, J. Kim, S. Lee, J. Jang, J. Mater. Chem. A 7 (2019) 17637–17647.  doi: 10.1039/c9ta05138d

    27. [27]

      S. Anantharaj, K. Karthick, S. Kundu, Mater. Today Energy 6 (2017) 1–26.

    28. [28]

      M. Gong, Y. Li, H. Wang, et al., J. Am. Chem. Soc. 135 (2013) 8452–8455.  doi: 10.1021/ja4027715

    29. [29]

      C.C.L. McCrory, S. Jung, J.C. Peters, T.F. Jaramillo, J. Am. Chem. Soc. 135 (2013) 16977–16987.  doi: 10.1021/ja407115p

    30. [30]

      D. Yang, B.C. Gates, ACS Catal. 9 (2019) 1779–1798.  doi: 10.1021/acscatal.8b04515

    31. [31]

      Z.W. Seh, J. Kibsgaard, C.F. Dickens, et al., Science 355 (2017), doi: 10.1126/science.aad4998.  doi: 10.1126/science.aad4998

    32. [32]

      X.F. Lu, L. Yu, X.W. (David) Lou, Sci. Adv. 5 (2019) eaav6009.

    33. [33]

      W.Q. Zhou, B.J. Xi, X.W. Chang, et al., Molecules 27 (2022) 2113.  doi: 10.3390/molecules27072113

    34. [34]

      X. Zhang, H. Pan, Y. Jia, et al., J. Colloid Interf. Sci. 623 (2022) 552–560.

    35. [35]

      Q. Wang, Z. Liu, H. Zhao, et al., J. Mater. Chem. A 6 (2018) 18720–18727.  doi: 10.1039/c8ta06491a

    36. [36]

      Z. Gao, Y. Lai, L. Zhang, et al., J. Chem. Educ. 98 (2021) 3341–3347.  doi: 10.1021/acs.jchemed.1c00583

    37. [37]

      J. Yang, X. Wang, Y. Qu, et al., Adv. Energy Mater. 10 (2020) 2001709.

    38. [38]

      J. Li, M. Zhang, H. Zang, et al., ChemCatChem 11 (2019) 4998–5012.  doi: 10.1002/cctc.201901127

    39. [39]

      P. Zhang, L. Li, D. Nordlund, et al., Nat. Commun. 9 (2018) 381.

    40. [40]

      X. Zhao, X. Li, Y. Yan, et al., Appl. Catal. B: Environ. 236 (2018) 569–575.

    41. [41]

      Z. Kang, H. Guo, J. Wu, et al., Adv. Funct. Mater. 29 (2019) 1807031.

    42. [42]

      M.B. Stevens, L.J. Enman, E.H. Korkus, et al., Nano Res. 12 (2019) 2288–2295.  doi: 10.1007/s12274-019-2391-y

    43. [43]

      Z. Lu, L. Qian, Y. Tian, et al., Chem. Commun. 52 (2016) 908–911.

    44. [44]

      C. Worch, F. Kettner, D. Laessig, et al., Catal. Commun. 44 (2014) 46–49.

    45. [45]

      V. Rubio-Giménez, J.C. Waerenborgh, J.M. Clemente-Juan, C. Martí-Gastaldo, Chem. Mater. 29 (2017) 6181–6185.  doi: 10.1021/acs.chemmater.7b01601

    46. [46]

      S. Wang, W. Huo, F. Fang, et al., Chem. Eng. J. 429 (2022) 132410.

    47. [47]

      J.K. Sun, Q. Xu, Energy Environ. Sci. 7 (2014) 2071–2100.  doi: 10.1039/c4ee00517a

    48. [48]

      C. Castillo-Blas, F. Gandara, Isr. J. Chem. 58 (2018) 1036–1043.  doi: 10.1002/ijch.201800085

    49. [49]

      M.Y. Masoomi, A. Morsali, A. Dhakshinamoorthy, H. Garcia, Angew. Chem. Int. Ed. 58 (2019) 15188–15205.  doi: 10.1002/anie.201902229

    50. [50]

      J.S. Kim, B. Kim, H. Kim, K. Kang, Adv. Energy Mater. 8 (2018) 1702774.

    51. [51]

      L.J. Wang, H. Deng, H. Furukawa, et al., Inorg. Chem. 53 (2014) 5881–5883.  doi: 10.1021/ic500434a

    52. [52]

      Y. Wang, S. Zhao, Y. Zhu, et al., iScience 23 (2020) 100761.

    53. [53]

      S. Qiu, M. Xue, G. Zhu, Chem. Soc. Rev. 43 (2014) 6116–6140.

    54. [54]

      Y.Z. Chen, R. Zhang, L. Jiao, H.L. Jiang, Coord. Chem. Rev. 362 (2018) 1–23.

    55. [55]

      A. Shafiei, Met. Mater. Int. 27 (2021) 127–138.  doi: 10.1007/s12540-020-00655-3

    56. [56]

      L. Han, X.Y. Yu, X.W.D. Lou, Adv. Mater. 28 (2016) 4601–4605.  doi: 10.1002/adma.201506315

    57. [57]

      Y. Zhai, X. Ren, B. Wang, S. (Frank) Liu, Adv. Funct. Mater. 32 (2022) 2207536.

    58. [58]

      T.Y. Luo, C. Liu, X.Y. Gan, et al., J. Am. Chem. Soc. 141 (2019) 2161–2168.  doi: 10.1021/jacs.8b13502

    59. [59]

      O.S. Bushuyev, P. De Luna, C.T. Dinh, et al., Joule 2 (2018) 825–832.

    60. [60]

      H. Rao, L.C.S. Chmidt, J. Bonin, M. Robert, Nature 548 (2017) 74.  doi: 10.1038/nature23016

    61. [61]

      D. Ren, B.S.H. Ang, B.S. Yeo, ACS Catal. 6 (2016) 8239–8247.  doi: 10.1021/acscatal.6b02162

    62. [62]

      Y. Xu, B. Zhang, ChemElectroChem 6 (2019) 3214–3226.  doi: 10.1002/celc.201900675

    63. [63]

      X. Huang, Q. Shen, J. Liu, N. Yang, G. Zhao, Energy Environ. Sci. 9 (2016) 3161–3171.

    64. [64]

      S. Verma, S. Lu, P.J.A. Kenis, Nat. Energy 4 (2019) 466–474.  doi: 10.1038/s41560-019-0374-6

    65. [65]

      X. Deng, M. Li, Y. Fan, et al., Appl. Catal. B: Environ. 278 (2020) 119339.

    66. [66]

      M. Lu, M. Zhang, J. Liu, et al., Angew. Chem. Int. Ed. 61 (2022) e202200003.

    67. [67]

      Z. Mi, T. Zhou, W. Weng, et al., Angew. Chem. Int. Ed. 60 (2021) 9642–9649.  doi: 10.1002/anie.202016618

    68. [68]

      D.S. Raja, C.L. Huang, Y.A. Chen, Y. Choi, S.Y. Lu, Appl. Catal. B: Environ. 279 (2020) 119375.

    69. [69]

      Z. Chen, D. Liu, Y. Gao, et al., Sci. China Mater. 65 (2022) 1217–1224.  doi: 10.1007/s40843-021-1943-5

    70. [70]

      D.X. Yang, P.F. Wang, H.Y. Liu, et al., J. Solid State Chem. 309 (2022) 122947.

    71. [71]

      Z. Li, S. Deng, H. Yu, et al., J. Mater. Chem. A 10 (2022) 4230–4241.  doi: 10.1039/d1ta09658c

    72. [72]

      M. Zhang, W. Xu, T. Li, H. Zhu, Y. Zheng, Inorg. Chem. 59 (2020) 15467–15477.  doi: 10.1021/acs.inorgchem.0c02504

    73. [73]

      Y. Yao, Z. Ma, Y. Dou, et al., Chem. Eur. J. 28 (2022) e202104288.

    74. [74]

      J.M. Saveant, C. Tard, J. Am. Chem. Soc. 138 (2016) 1017–1021.  doi: 10.1021/jacs.5b12138

    75. [75]

      Y. Li, K. Zuo, T. Gao, et al., RSC Adv. 12 (2022) 4874–4882.  doi: 10.1039/d1ra05315a

    76. [76]

      R. Losantos, D. Sampedro, Molecules 26 (2021) 3796.  doi: 10.3390/molecules26133796

    77. [77]

      S.P.S. Fernandes, A. Mellah, P. Kovar, et al., Molecules 25 (2020) 3132.  doi: 10.3390/molecules25143132

    78. [78]

      I. Bar-Nahum, A. Khenkin, R. Neumann, J. Am. Chem. Soc. 126 (2004) 10236–10237.

    79. [79]

      M. Jiang, X. Meng, W. Zhang, et al., Electrochem. Commun. 126 (2021) 107004.

    80. [80]

      Y. Kim, Y.W. Lee, M. Kim, S.W. Han, Chem. Eur. J. 20 (2014) 7901–7905.  doi: 10.1002/chem.201402185

    81. [81]

      P. Guo, Q. Wang, Y. Sang, et al., Sci. Adv. Mater. 8 (2016) 1345–1353.  doi: 10.1166/sam.2016.2754

    82. [82]

      M. Tang, W. Chen, S. Luo, et al., J. Mater. Chem. A 9 (2021) 9602–9608.  doi: 10.1039/d1ta01123e

    83. [83]

      K. Wu, K. Sun, S. Liu, et al., Nano Energy 80 (2021) 105467.

    84. [84]

      A. Begum, P.G. Pickup, Electrochem. Commun. 9 (2007) 2525–2528.

    85. [85]

      M. Jia, L. Shen, G. Tian, et al., Chem. Asian J. 17 (2022) e202200449.

    86. [86]

      L. Gloag, T.M. Benedetti, S. Cheong, et al., Angew. Chem. Int. Ed. 57 (2018) 10241–10245.  doi: 10.1002/anie.201806300

    87. [87]

      Y. Wang, J. Kim, Electroanalysis 31 (2019) 1026–1033.

    88. [88]

      Z. Lu, C. Wei, X. Liu, et al., Mater. Chem. Front. 5 (2021) 6092–6100.  doi: 10.1039/d1qm00551k

    89. [89]

      E.M. Johnson, R. Haiges, S.C. Marinescu, ACS Appl. Mater. Interfaces 10 (2018) 37919–37927.  doi: 10.1021/acsami.8b07795

    90. [90]

      X. Wang, H. Xiao, A. Li, et al., J. Am. Chem. Soc. 140 (2018) 15336–15341.  doi: 10.1021/jacs.8b08744

    91. [91]

      D. Wu, Q. Xu, J. Qian, X. Li, Y. Sun, Chem. Eur. J. 25 (2019) 3105–3111.  doi: 10.1002/chem.201805550

    92. [92]

      Y. Yue, P. Cai, K. Xu, et al., J. Am. Chem. Soc. 143 (2021) 18052–18060.  doi: 10.1021/jacs.1c06238

    93. [93]

      W. Zhou, Z. Xue, Q. Liu, et al., ChemSusChem 13 (2020) 5647–5653.  doi: 10.1002/cssc.202001230

    94. [94]

      W. Xu, H. Chen, K. Jie, et al., Angew. Chem. Int. Ed. 58 (2019) 5018–5022.  doi: 10.1002/anie.201900787

    95. [95]

      X. Zhao, Z. Xue, W. Chen, et al., J. Mater. Chem. A 7 (2019) 26238–26242.  doi: 10.1039/c9ta09975a

    96. [96]

      J. Cui, J. Liu, C. Wang, et al., Electrochim. Acta 334 (2020) 135577.

    97. [97]

      S. Zhao, C. Tan, C.T. He, et al., Nat. Energy 5 (2020) 881–890.  doi: 10.1038/s41560-020-00709-1

    98. [98]

      R. Zhang, L. Lu, Z. Chen, et al., Chem. Eur. J. 28 (2022) e202200401.

    99. [99]

      G. Zhan, H.C. Zeng, Chem. Commun. 53 (2017) 72–81.

    100. [100]

      R. Francke, B. Schille, M. Roemelt, Chem. Rev. 118 (2018) 4631–4701.  doi: 10.1021/acs.chemrev.7b00459

    101. [101]

      J. Xing, K. Guo, Z. Zou, et al., Chem. Commun. 54 (2018) 7046–7049.  doi: 10.1039/c8cc03112f

    102. [102]

      Y. Wang, M. Liu, G. Gao, et al., Angew. Chem. Int. Ed. 60 (2021) 21952–21958.  doi: 10.1002/anie.202108388

    103. [103]

      Q. Li, Z.M. Wang, Y. Chen, et al., J. Mater. Chem. A 10 (2022) 25356–25362.  doi: 10.1039/d2ta05934g

    104. [104]

      W. Zhou, L. Gao, Y. Zhang, T. Hu, Int. J. Hydrog. Energy 46 (2021) 27128–27137.

    105. [105]

      R. Mehek, N. Iqbal, T. Noor, et al., Electrochim. Acta 255 (2017) 195–204.

    106. [106]

      C. Wang, J. Kim, J. Tang, et al., Chem 6 (2020) 19–40.

    107. [107]

      M. Kang, D.W. Kang, C.S. Hong, Dalton Trans. 48 (2019) 2263–2270.  doi: 10.1039/c8dt04339f

    108. [108]

      T. Chen, D. Zhao, Coord. Chem. Rev. 491 (2023) 215259.

    109. [109]

      M. Kandiah, S. Usseglio, S. Svelle, et al., J. Mater. Chem. 20 (2010) 9848–9851.  doi: 10.1039/c0jm02416c

    110. [110]

      B. Slater, S.O. Wong, A. Duckworth, et al., Chem. Commun. 55 (2019) 7319–7322.  doi: 10.1039/c9cc02861g

    111. [111]

      M. Soleiman-Beigi, I. Yavari, F. Sadeghizadeh, RSC Adv. 5 (2015) 87564–87570.

    112. [112]

      Y. Duan, F. Ye, Y. Huang, et al., Chem. Commun. 54 (2018) 5377–5380.  doi: 10.1039/c8cc02708k

    113. [113]

      Y. Wang, Y. Lu, Z. Li, et al., Chem. Commun. 57 (2021) 8933–8936.  doi: 10.1039/d1cc03482k

    114. [114]

      L. Wang, W. Yang, Y. Li, et al., Chem. Commun. 50 (2014) 11653–11656.

    115. [115]

      S.H. Doan, C.B. Tran, An. L.N. Cao, N.T.H. Le, N.T.S. Phan, Catal. Lett. 149 (2019) 2053–2063.  doi: 10.1007/s10562-019-02747-1

    116. [116]

      P. Puthiaraj, A. Ramu, K. Pitchumani, Asian J. Org. Chem. 3 (2014) 784–791.  doi: 10.1002/ajoc.201402019

    117. [117]

      H.V. Dang, H.T.B. Le, L.T.B. Tran, et al., RSC Adv. 8 (2018) 31455–31464.  doi: 10.1039/c8ra05459b

    118. [118]

      T. He, X.J. Kong, J. Zhou, et al., J. Am. Chem. Soc. 143 (2021) 9901–9911.  doi: 10.1021/jacs.1c04077

    119. [119]

      D. Liu, H. Xu, C. Wang, et al., Inorg. Chem. 60 (2021) 5882–5889.  doi: 10.1021/acs.inorgchem.1c00295

    120. [120]

      Z. Wu, J. Zhu, W. Wen, X. Zhang, S. Wang, J. Solid State Chem. 311 (2022) 123116.

    121. [121]

      Y. Zhou, R. Abazari, J. Chen, et al., Coord. Chem. Rev. 451 (2022) 214264.

    122. [122]

      U. Khan, A. Nairan, J. Gao, Q. Zhang, Small Struct. 4 (2023) 2200109.

    123. [123]

      A. Radwan, H. Jin, D. He, S. Mu, Nano-Micro Lett. 13 (2021) 132.

    124. [124]

      X. Wang, Y. Feng, P. Dong, J. Huang, Front. Chem. 7 (2019), doi: 10.3389/fchem.2019.00671.  doi: 10.3389/fchem.2019.00671

    125. [125]

      H.F. Wang, C. Tang, Q. Zhang, Adv. Funct. Mater. 28 (2018) 1803329.

    126. [126]

      K. Zhang, R. Zou, Small 17 (2021) 2100129.

    127. [127]

      T. Tang, S. Li, J. Sun, Z. Wang, J. Guan, Nano Res. 15 (2022) 8714–8750.  doi: 10.1007/s12274-022-4575-0

    128. [128]

      J. Zhang, Z. Cui, J. Liu, et al., Front. Phys. 18 (2023) 13603.

    129. [129]

      M.I. Jamesh, M. Harb, J. Energy Chem. 56 (2021) 299–342.

    130. [130]

      S. Li, Y. Gao, N. Li, et al., Energy Environ. Sci. 14 (2021) 1897–1927.  doi: 10.1039/d0ee03697h

    131. [131]

      B. Zhou, R. Gao, J.J. Zou, H. Yang, Small 18 (2022) 2202336.

    132. [132]

      H. Ding, H. Liu, W. Chu, C. Wu, Y. Xie, Chem. Rev. 121 (2021) 13174–13212.  doi: 10.1021/acs.chemrev.1c00234

    133. [133]

      J. Wang, M. Zhang, J. Li, et al., Dalton Trans. 49 (2020) 14290–14296.  doi: 10.1039/d0dt03085f

    134. [134]

      L. Ai, Y. Luo, W. Huang, Y. Tian, J. Jiang, Int. J. Hydrog. Energy 47 (2022) 12893–12902.

    135. [135]

      K. Ge, S. Sun, Y. Zhao, et al., Angew. Chem. Int. Ed. 60 (2021) 12097–12102.  doi: 10.1002/anie.202102632

    136. [136]

      F. Sun, G. Wang, Y. Ding, et al., Adv. Energy Mater. 8 (2018) 1800584.

    137. [137]

      J. Zhang, L. Jin, P. Gu, et al., ACS Appl. Nano Mater. 4 (2021) 12407–12414.  doi: 10.1021/acsanm.1c02864

    138. [138]

      X. Su, Y. Wang, J. Zhou, et al., J. Am. Chem. Soc. 140 (2018) 11286–11292.  doi: 10.1021/jacs.8b05294

    139. [139]

      Y. Fu, L. Xu, H. Shen, et al., Chem. Eng. J. 299 (2016) 135–141.

    140. [140]

      J. Li, W. Huang, M. Wang, et al., ACS Energy Lett. 4 (2019) 285–292.  doi: 10.1021/acsenergylett.8b02345

    141. [141]

      X.L. Wang, L.Z. Dong, M. Qiao, et al., Angew. Chem. Int. Ed. 57 (2018) 9660–9664.  doi: 10.1002/anie.201803587

    142. [142]

      L. Huang, G. Gao, H. Zhang, et al., Nano Energy 68 (2020) 104296.

    143. [143]

      Y. Jiao, J. Pei, D. Chen, et al., J. Mater. Chem. A 5 (2017) 1094–1102.

    144. [144]

      M. Aghazadeh, H.F. Rad, J. Energy Storage 53 (2022) 105194.

    145. [145]

      M. Aghazadeh, H. Foratirad, Mater. Lett. 313 (2022) 131804.

    146. [146]

      S. He, Z. Li, J. Wang, J. Solid State Chem. 307 (2022) 122726.

    147. [147]

      S. Sun, M. Huang, P. Wang, M. Lu, J. Electrochem. Soc. 166 (2019) A1799–A1805.  doi: 10.1149/2.0291910jes

    148. [148]

      Y. Shan, L. Chen, H. Pang, Q. Xu, Small Struct. 2 (2021) 2000078.

    149. [149]

      X.Y. Yu, Y. Feng, B. Guan, X.W. (David) Lou, U. Paik, Energy Environ. Sci. 9 (2016) 1246–1250.

    150. [150]

      F.L. Li, Q. Shao, X. Huang, J.P. Lang, Angew. Chem. Int. Ed. 57 (2018) 1888–1892.  doi: 10.1002/anie.201711376

    151. [151]

      S.S. Sankar, K. Manjula, G. Keerthana, B. Ramesh Babu, S. Kundu, Cryst. Growth Des. 21 (2021) 1800–1809.  doi: 10.1021/acs.cgd.0c01685

    152. [152]

      S. Xu, M. Li, H. Wang, et al., J. Phys. Chem. C 126 (2022) 14094–14102.  doi: 10.1021/acs.jpcc.2c05083

    153. [153]

      X. Zuo, K. Chang, J. Zhao, et al., J. Mater. Chem. A 4 (2016) 51–58.

    154. [154]

      L. Zhang, M.J. Liu, D.Y. Zhu, et al., Nat. Commun. 15 (2024) 3409.

    155. [155]

      W. Li, D. Wang, Y. Zhang, et al., Adv. Mater. 32 (2020) 1907879.

    156. [156]

      D. Zhao, Z. Zhuang, X. Cao, et al., Chem. Soc. Rev. 49 (2020) 2215–2264.  doi: 10.1039/c9cs00869a

    157. [157]

      N. Ramaswamy, S. Mukerjee, Chem. Rev. 119 (2019) 11945–11979.  doi: 10.1021/acs.chemrev.9b00157

    158. [158]

      Q. Wang, D. Astruc, Chem. Rev. 120 (2020) 1438–1511.  doi: 10.1021/acs.chemrev.9b00223

    159. [159]

      J. Kim, H.E. Kim, H. Lee, ChemSusChem 11 (2018) 104–113.  doi: 10.1002/cssc.201701306

    160. [160]

      H. Niu, C. Xia, L. Huang, et al., Chin. J. Catal. 43 (2022) 1459–1472.

    161. [161]

      Y. Yang, M. Luo, W. Zhang, et al., Chem 4 (2018) 2054–2083.

    162. [162]

      Y. Yan, J. Miao, Z. Yang, et al., Chem. Soc. Rev. 44 (2015) 3295–3346.

    163. [163]

      X. Ren, Q. Lv, L. Liu, et al., Sustain. Energy Fuels 4 (2020) 15–30.  doi: 10.1039/c9se00460b

    164. [164]

      M. Wang, C. Wang, L. Zhu, et al., Appl. Catal. Gen. 619 (2021) 118159.

    165. [165]

      F. Gao, Y. Zhang, Z. Wu, H. You, Y. Du, Coord. Chem. Rev. 436 (2021) 213825.

    166. [166]

      Z. Pu, T. Liu, I.S. Amiinu, et al., Adv. Funct. Mater. 30 (2020) 2004009.

    167. [167]

      S. Li, E. Li, X. An, et al., Nanoscale 13 (2021) 12788–12817.  doi: 10.1039/d1nr02592a

    168. [168]

      C.C. Weng, J.T. Ren, Z.Y. Yuan, ChemSusChem 13 (2020) 3357–3375.  doi: 10.1002/cssc.202000416

    169. [169]

      Y. Zheng, Y. Jiao, A. Vasileff, S.Z. Qiao, Angew. Chem. Int. Ed. 57 (2018) 7568–7579.  doi: 10.1002/anie.201710556

    170. [170]

      S.K. Saxena, V. Drozd, A. Durygin, Int. J. Hydrog. Energy 33 (2008) 3625–3631.

    171. [171]

      A. Steinfeld, Fuel Cell World Proc. (2002) 356–366.

    172. [172]

      S.M. Thalluri, L. Bai, C. Lv, et al., Adv. Sci. 7 (2020) 1902102.

    173. [173]

      P. Zhou, J. Lv, X. Huang, Y. Lu, G. Wang, Coord. Chem. Rev. 478 (2023) 214969.

    174. [174]

      S. Anantharaj, S. Noda, V.R. Jothi, et al., Angew. Chem. Int. Ed. 60 (2021) 18981–19006.  doi: 10.1002/anie.202015738

    175. [175]

      Y. Cao, ACS Nano 15 (2021) 11014–11039.  doi: 10.1021/acsnano.1c01879

    176. [176]

      C. Wei, R.R. Rao, J. Peng, et al., Adv. Mater. 31 (2019) 1806296.

    177. [177]

      Z. Pu, I.S. Amiinu, R. Cheng, et al., Nano-Micro Lett. 12 (2020) 21.

    178. [178]

      L. Zou, Y.S. Wei, C.C. Hou, C. Li, Q. Xu, Small 17 (2021) 2004809.

    179. [179]

      P. Chen, J. Ye, H. Wang, L. Ouyang, M. Zhu, J. Alloy. Compd. 883 (2021) 160833.

    180. [180]

      Z.X. Wei, Y.T. Zhu, J.Y. Liu, et al., Rare Met. 40 (2021) 767–789.  doi: 10.1007/s12598-020-01592-1

    181. [181]

      L. Wang, L. Ren, X. Wang, et al., ACS Appl. Mater. Interfaces 10 (2018) 4750–4756.  doi: 10.1021/acsami.7b18650

    182. [182]

      X.B. Xu, D.F. Xiao, Y.G. Gao, et al., ACS Appl. Mater. Interfaces 16 (2024) 16243–16252.  doi: 10.1021/acsami.4c00472

    183. [183]

      Y. Pan, R. Abazari, Y. Wu, J. Gao, Q. Zhang, Electrochem. Commun. 126 (2021) 107024.

    184. [184]

      S. Zhang, Q. Fan, R. Xia, T.J. Meyer, Acc. Chem. Res. 53 (2020) 255–264.  doi: 10.1021/acs.accounts.9b00496

    185. [185]

      M.G. Kibria, J.P. Edwards, C.M. Gabardo, et al., Adv. Mater. 31 (2019) 1807166.

    186. [186]

      X. Song, L. Xu, X. Sun, B. Han, Sci. China Chem. 66 (2023) 315–323.  doi: 10.1007/s11426-021-1463-6

    187. [187]

      L. Lu, H. Zheng, Y. Li, Y. Zhou, B. Fang, Chem. Eng. J. 451 (2023) 138668.

    188. [188]

      S. Huang, K. Chen, T.T. Li, Coord. Chem. Rev. 464 (2022) 214563.

    189. [189]

      S.C. Sun, B. Peng, Y. Song, et al., ACS Appl. Mater. Interfaces 15 (2023) 12957–12966.  doi: 10.1021/acsami.2c19906

    190. [190]

      W.J.M. Kort-Kamp, M. Ferrandon, X. Wang, et al., J. Power Sources 559 (2023) 232583.

    191. [191]

      D. Alba-Molina, A.R. Puente Santiago, J.J. Giner-Casares, et al., J. Phys. Chem. C 123 (2019) 9807–9812.  doi: 10.1021/acs.jpcc.9b00249

    192. [192]

      G.R. Dillip, G.K. Kiran, A. Bharti, et al., ACS Appl. Energy Mater. 5 (2022) 13635–13644.  doi: 10.1021/acsaem.2c02257

    193. [193]

      X. Ge, F.W.T. Goh, B. Li, et al., Nanoscale 7 (2015) 9046–9054.

    194. [194]

      S.K. Singh, K. Takeyasu, J. Nakamura, Adv. Mater. 31 (2019) 1804297.

    195. [195]

      X. Tian, X.F. Lu, B.Y. Xia, X.W. (David) Lou, Joule 4 (2020) 45–68.

    196. [196]

      H. Wang, F. Yin, G. Li, B. Chen, Z. Wang, Int. J. Hydrog. Energy 39 (2014) 16179–16186.

    197. [197]

      B. Vishnu, S. Mathi, S. Sriram, J. Jayabharathi, ChemistrySelect 7 (2022) e202201682.

  • 加载中
    1. [1]

      Yuting Wu Haifeng Lv Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375

    2. [2]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    3. [3]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    4. [4]

      Jiaqi Ma Lan Li Yiming Zhang Jinjie Qian Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466

    5. [5]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    6. [6]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    7. [7]

      Ze LiuXiaochen ZhangJinlong LuoYingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500

    8. [8]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    9. [9]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    10. [10]

      Fereshte Hassanzadeh-AfruziMina AziziIman ZareEhsan Nazarzadeh ZareAnwarul HasanSiavash IravaniPooyan MakvandiYi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564

    11. [11]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    12. [12]

      Xi Feng Ding-Yi Hu Zi-Jun Liang Mu-Yang Zhou Zhi-Shuo Wang Wen-Yu Su Rui-Biao Lin Dong-Dong Zhou Jie-Peng Zhang . A metal azolate framework with small aperture for highly efficient ternary benzene/cyclohexene/cyclohexane separation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100540-100540. doi: 10.1016/j.cjsc.2025.100540

    13. [13]

      Fahui XiangLu LiZhen YuanWuji WeiXiaoqing ZhengShimin ChenYisi YangLiangji ChenZizhu YaoJianwei FuZhangjing ZhangShengchang Xiang . Enhanced C2H2/CO2 separation in tetranuclear Cu(Ⅱ) cluster-based metal-organic frameworks by adjusting divider length of pore space partition. Chinese Chemical Letters, 2025, 36(3): 109672-. doi: 10.1016/j.cclet.2024.109672

    14. [14]

      Wenbiao ZhangBolong YangZhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630

    15. [15]

      Xudong ZhaoYuxuan WangXinxin GaoXinli GaoMeihua WangHongliang HuangBaosheng Liu . Anchoring thiol-rich traps in 1D channel wall of metal-organic framework for efficient removal of mercury ions. Chinese Chemical Letters, 2025, 36(2): 109901-. doi: 10.1016/j.cclet.2024.109901

    16. [16]

      Sixiao LiuTianyi WangLei ZhangChengyin WangHuan Pang . Cerium-based metal-organic framework-modified natural mineral vermiculite for photocatalytic nitrogen fixation under visible-light irradiation. Chinese Chemical Letters, 2025, 36(3): 110058-. doi: 10.1016/j.cclet.2024.110058

    17. [17]

      Liying OuZhenluan XueBo LiZhiwei JinJiaochan ZhongLixia YangPenghui ShaoShenglian Luo . Nitrogen-containing linkage-bonds in covalent organic frameworks: Synthesis and applications. Chinese Chemical Letters, 2025, 36(6): 110294-. doi: 10.1016/j.cclet.2024.110294

    18. [18]

      Guorong LiYijing WuChao ZhongYixin YangZian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904

    19. [19]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    20. [20]

      Pingfan ZhangShihuan HongNing SongZhonghui HanFei GeGang DaiHongjun DongChunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073

Metrics
  • PDF Downloads(0)
  • Abstract views(156)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return