Multi-metal porous crystalline materials for electrocatalysis applications
* Corresponding authors.
E-mail addresses: yirongwang@m.scnu.edu.cn (Y.-R. Wang), huxg@scnu.edu.cn (X.-G. Hu), chyf927821@163.com (Y. Chen).
Citation:
Ming Yue, Yi-Rong Wang, Jia-Yong Weng, Jia-Li Zhang, Da-Yu Chi, Mingjin Shi, Xiao-Gang Hu, Yifa Chen, Shun-Li Li, Ya-Qian Lan. Multi-metal porous crystalline materials for electrocatalysis applications[J]. Chinese Chemical Letters,
;2025, 36(6): 110049.
doi:
10.1016/j.cclet.2024.110049
H.K. Chae, D.Y. Siberio-Pérez, et al., Nature 427 (2004) 523–527.
Y. Zheng, Y. Jiao, M. Jaroniec, S.Z. Qiao, Angew. Chem. Int. Ed. 54 (2015) 52–65.
doi: 10.1002/anie.201407031
D. Yuan, D. Zhao, D. Sun, H.C. Zhou, Angew. Chem. Int. Ed. 49 (2010) 5357–5361.
doi: 10.1002/anie.201001009
A.P. Cote, A.I. Benin, N.W. Ockwig, et al., Science 310 (2005) 1166–1170.
doi: 10.1126/science.1120411
C. Guo, J. Zhou, Y. Chen, et al., Angew. Chem. Int. Ed. 61 (2022) e202210871.
J. Chang, Q. Li, J. Shi, et al., Angew. Chem. Int. Ed. 62 (2023) e202218868.
L.Z. Dong, Y.F. Lu, R. Wang, et al., Nano Res. 15 (2022) 10185–10193.
doi: 10.1007/s12274-022-4681-z
Y. Wang, H. Ding, S. Sun, et al., Angew. Chem. Int. Ed. 61 (2022) e202212162.
X. Yao, C. Guo, C. Song, et al., Adv. Mater. 35 (2023) 2208846.
Y. Wang, H. Ding, X. Ma, et al., Angew. Chem. Int. Ed. 61 (2022) e202114648.
C. Hou, L. Zou, Q. Xu, Adv. Mater. 31 (2019) 1904689.
C.S. Feng, T.W. Lu, T.L. Wang, et al., Acta Metall. Sin. Engl. Lett. 34 (2021) 1537–1545.
doi: 10.1007/s40195-021-01255-9
L. Wei, H.E. Karahan, S. Zhai, et al., Adv. Mater. 29 (2017) 1701410.
J. Song, C. Zhu, B.Z. Xu, et al., Adv. Energy Mater. 7 (2017) 1601555.
X. Han, C. Jiang, B. Hou, et al., J. Am. Chem. Soc. 146 (2024) 6733–6743.
doi: 10.1021/jacs.3c13032
C. Li, Z. Qiu, H. Sun, Y. Yang, C.P. Li, Chin. J. Struct. Chem. 41 (2022) 2211084.
S. Ruidas, B. Mohanty, P. Bhanja, et al., ChemSusChem 14 (2021) 5057–5064.
doi: 10.1002/cssc.202101663
X. Huang, C. Sun, X. Feng, Sci. China Chem. 63 (2020) 1367–1390.
doi: 10.1007/s11426-020-9836-x
J. Pang, R.G. Mendes, A. Bachmatiuk, et al., Chem. Soc. Rev. 48 (2019) 72–133.
doi: 10.1039/c8cs00324f
H. Sun, Z. Yan, F. Liu, et al., Adv. Mater. 32 (2020) 1806326.
J. Liu, Y. Gao, Y. Wei, et al., Chem. Commun. 56 (2020) 4228–4231.
doi: 10.1039/d0cc00177e
Y. Hu, W. Liu, K. Jiang, et al., Inorg. Chem. Front. 7 (2020) 4461–4468.
doi: 10.1039/d0qi01003k
Q. Gan, B. Liu, K. Zhao, Z. He, S. Liu, Electrochim. Acta 279 (2018) 152–160.
J. Huang, H. Sheng, R.D. Ross, et al., Nat. Commun. 12 (2021) 3036.
L. Wan, P. Wang, Int. J. Hydrog. Energy 46 (2021) 8356–8376.
G. Lee, W. Na, J. Kim, S. Lee, J. Jang, J. Mater. Chem. A 7 (2019) 17637–17647.
doi: 10.1039/c9ta05138d
S. Anantharaj, K. Karthick, S. Kundu, Mater. Today Energy 6 (2017) 1–26.
M. Gong, Y. Li, H. Wang, et al., J. Am. Chem. Soc. 135 (2013) 8452–8455.
doi: 10.1021/ja4027715
C.C.L. McCrory, S. Jung, J.C. Peters, T.F. Jaramillo, J. Am. Chem. Soc. 135 (2013) 16977–16987.
doi: 10.1021/ja407115p
D. Yang, B.C. Gates, ACS Catal. 9 (2019) 1779–1798.
doi: 10.1021/acscatal.8b04515
Z.W. Seh, J. Kibsgaard, C.F. Dickens, et al., Science 355 (2017), doi: 10.1126/science.aad4998.
doi: 10.1126/science.aad4998
X.F. Lu, L. Yu, X.W. (David) Lou, Sci. Adv. 5 (2019) eaav6009.
W.Q. Zhou, B.J. Xi, X.W. Chang, et al., Molecules 27 (2022) 2113.
doi: 10.3390/molecules27072113
X. Zhang, H. Pan, Y. Jia, et al., J. Colloid Interf. Sci. 623 (2022) 552–560.
Q. Wang, Z. Liu, H. Zhao, et al., J. Mater. Chem. A 6 (2018) 18720–18727.
doi: 10.1039/c8ta06491a
Z. Gao, Y. Lai, L. Zhang, et al., J. Chem. Educ. 98 (2021) 3341–3347.
doi: 10.1021/acs.jchemed.1c00583
J. Yang, X. Wang, Y. Qu, et al., Adv. Energy Mater. 10 (2020) 2001709.
J. Li, M. Zhang, H. Zang, et al., ChemCatChem 11 (2019) 4998–5012.
doi: 10.1002/cctc.201901127
P. Zhang, L. Li, D. Nordlund, et al., Nat. Commun. 9 (2018) 381.
X. Zhao, X. Li, Y. Yan, et al., Appl. Catal. B: Environ. 236 (2018) 569–575.
Z. Kang, H. Guo, J. Wu, et al., Adv. Funct. Mater. 29 (2019) 1807031.
M.B. Stevens, L.J. Enman, E.H. Korkus, et al., Nano Res. 12 (2019) 2288–2295.
doi: 10.1007/s12274-019-2391-y
Z. Lu, L. Qian, Y. Tian, et al., Chem. Commun. 52 (2016) 908–911.
C. Worch, F. Kettner, D. Laessig, et al., Catal. Commun. 44 (2014) 46–49.
V. Rubio-Giménez, J.C. Waerenborgh, J.M. Clemente-Juan, C. Martí-Gastaldo, Chem. Mater. 29 (2017) 6181–6185.
doi: 10.1021/acs.chemmater.7b01601
S. Wang, W. Huo, F. Fang, et al., Chem. Eng. J. 429 (2022) 132410.
J.K. Sun, Q. Xu, Energy Environ. Sci. 7 (2014) 2071–2100.
doi: 10.1039/c4ee00517a
C. Castillo-Blas, F. Gandara, Isr. J. Chem. 58 (2018) 1036–1043.
doi: 10.1002/ijch.201800085
M.Y. Masoomi, A. Morsali, A. Dhakshinamoorthy, H. Garcia, Angew. Chem. Int. Ed. 58 (2019) 15188–15205.
doi: 10.1002/anie.201902229
J.S. Kim, B. Kim, H. Kim, K. Kang, Adv. Energy Mater. 8 (2018) 1702774.
L.J. Wang, H. Deng, H. Furukawa, et al., Inorg. Chem. 53 (2014) 5881–5883.
doi: 10.1021/ic500434a
Y. Wang, S. Zhao, Y. Zhu, et al., iScience 23 (2020) 100761.
S. Qiu, M. Xue, G. Zhu, Chem. Soc. Rev. 43 (2014) 6116–6140.
Y.Z. Chen, R. Zhang, L. Jiao, H.L. Jiang, Coord. Chem. Rev. 362 (2018) 1–23.
A. Shafiei, Met. Mater. Int. 27 (2021) 127–138.
doi: 10.1007/s12540-020-00655-3
L. Han, X.Y. Yu, X.W.D. Lou, Adv. Mater. 28 (2016) 4601–4605.
doi: 10.1002/adma.201506315
Y. Zhai, X. Ren, B. Wang, S. (Frank) Liu, Adv. Funct. Mater. 32 (2022) 2207536.
T.Y. Luo, C. Liu, X.Y. Gan, et al., J. Am. Chem. Soc. 141 (2019) 2161–2168.
doi: 10.1021/jacs.8b13502
O.S. Bushuyev, P. De Luna, C.T. Dinh, et al., Joule 2 (2018) 825–832.
H. Rao, L.C.S. Chmidt, J. Bonin, M. Robert, Nature 548 (2017) 74.
doi: 10.1038/nature23016
D. Ren, B.S.H. Ang, B.S. Yeo, ACS Catal. 6 (2016) 8239–8247.
doi: 10.1021/acscatal.6b02162
Y. Xu, B. Zhang, ChemElectroChem 6 (2019) 3214–3226.
doi: 10.1002/celc.201900675
X. Huang, Q. Shen, J. Liu, N. Yang, G. Zhao, Energy Environ. Sci. 9 (2016) 3161–3171.
S. Verma, S. Lu, P.J.A. Kenis, Nat. Energy 4 (2019) 466–474.
doi: 10.1038/s41560-019-0374-6
X. Deng, M. Li, Y. Fan, et al., Appl. Catal. B: Environ. 278 (2020) 119339.
M. Lu, M. Zhang, J. Liu, et al., Angew. Chem. Int. Ed. 61 (2022) e202200003.
Z. Mi, T. Zhou, W. Weng, et al., Angew. Chem. Int. Ed. 60 (2021) 9642–9649.
doi: 10.1002/anie.202016618
D.S. Raja, C.L. Huang, Y.A. Chen, Y. Choi, S.Y. Lu, Appl. Catal. B: Environ. 279 (2020) 119375.
Z. Chen, D. Liu, Y. Gao, et al., Sci. China Mater. 65 (2022) 1217–1224.
doi: 10.1007/s40843-021-1943-5
D.X. Yang, P.F. Wang, H.Y. Liu, et al., J. Solid State Chem. 309 (2022) 122947.
Z. Li, S. Deng, H. Yu, et al., J. Mater. Chem. A 10 (2022) 4230–4241.
doi: 10.1039/d1ta09658c
M. Zhang, W. Xu, T. Li, H. Zhu, Y. Zheng, Inorg. Chem. 59 (2020) 15467–15477.
doi: 10.1021/acs.inorgchem.0c02504
Y. Yao, Z. Ma, Y. Dou, et al., Chem. Eur. J. 28 (2022) e202104288.
J.M. Saveant, C. Tard, J. Am. Chem. Soc. 138 (2016) 1017–1021.
doi: 10.1021/jacs.5b12138
Y. Li, K. Zuo, T. Gao, et al., RSC Adv. 12 (2022) 4874–4882.
doi: 10.1039/d1ra05315a
R. Losantos, D. Sampedro, Molecules 26 (2021) 3796.
doi: 10.3390/molecules26133796
S.P.S. Fernandes, A. Mellah, P. Kovar, et al., Molecules 25 (2020) 3132.
doi: 10.3390/molecules25143132
I. Bar-Nahum, A. Khenkin, R. Neumann, J. Am. Chem. Soc. 126 (2004) 10236–10237.
M. Jiang, X. Meng, W. Zhang, et al., Electrochem. Commun. 126 (2021) 107004.
Y. Kim, Y.W. Lee, M. Kim, S.W. Han, Chem. Eur. J. 20 (2014) 7901–7905.
doi: 10.1002/chem.201402185
P. Guo, Q. Wang, Y. Sang, et al., Sci. Adv. Mater. 8 (2016) 1345–1353.
doi: 10.1166/sam.2016.2754
M. Tang, W. Chen, S. Luo, et al., J. Mater. Chem. A 9 (2021) 9602–9608.
doi: 10.1039/d1ta01123e
K. Wu, K. Sun, S. Liu, et al., Nano Energy 80 (2021) 105467.
A. Begum, P.G. Pickup, Electrochem. Commun. 9 (2007) 2525–2528.
M. Jia, L. Shen, G. Tian, et al., Chem. Asian J. 17 (2022) e202200449.
L. Gloag, T.M. Benedetti, S. Cheong, et al., Angew. Chem. Int. Ed. 57 (2018) 10241–10245.
doi: 10.1002/anie.201806300
Y. Wang, J. Kim, Electroanalysis 31 (2019) 1026–1033.
Z. Lu, C. Wei, X. Liu, et al., Mater. Chem. Front. 5 (2021) 6092–6100.
doi: 10.1039/d1qm00551k
E.M. Johnson, R. Haiges, S.C. Marinescu, ACS Appl. Mater. Interfaces 10 (2018) 37919–37927.
doi: 10.1021/acsami.8b07795
X. Wang, H. Xiao, A. Li, et al., J. Am. Chem. Soc. 140 (2018) 15336–15341.
doi: 10.1021/jacs.8b08744
D. Wu, Q. Xu, J. Qian, X. Li, Y. Sun, Chem. Eur. J. 25 (2019) 3105–3111.
doi: 10.1002/chem.201805550
Y. Yue, P. Cai, K. Xu, et al., J. Am. Chem. Soc. 143 (2021) 18052–18060.
doi: 10.1021/jacs.1c06238
W. Zhou, Z. Xue, Q. Liu, et al., ChemSusChem 13 (2020) 5647–5653.
doi: 10.1002/cssc.202001230
W. Xu, H. Chen, K. Jie, et al., Angew. Chem. Int. Ed. 58 (2019) 5018–5022.
doi: 10.1002/anie.201900787
X. Zhao, Z. Xue, W. Chen, et al., J. Mater. Chem. A 7 (2019) 26238–26242.
doi: 10.1039/c9ta09975a
J. Cui, J. Liu, C. Wang, et al., Electrochim. Acta 334 (2020) 135577.
S. Zhao, C. Tan, C.T. He, et al., Nat. Energy 5 (2020) 881–890.
doi: 10.1038/s41560-020-00709-1
R. Zhang, L. Lu, Z. Chen, et al., Chem. Eur. J. 28 (2022) e202200401.
G. Zhan, H.C. Zeng, Chem. Commun. 53 (2017) 72–81.
R. Francke, B. Schille, M. Roemelt, Chem. Rev. 118 (2018) 4631–4701.
doi: 10.1021/acs.chemrev.7b00459
J. Xing, K. Guo, Z. Zou, et al., Chem. Commun. 54 (2018) 7046–7049.
doi: 10.1039/c8cc03112f
Y. Wang, M. Liu, G. Gao, et al., Angew. Chem. Int. Ed. 60 (2021) 21952–21958.
doi: 10.1002/anie.202108388
Q. Li, Z.M. Wang, Y. Chen, et al., J. Mater. Chem. A 10 (2022) 25356–25362.
doi: 10.1039/d2ta05934g
W. Zhou, L. Gao, Y. Zhang, T. Hu, Int. J. Hydrog. Energy 46 (2021) 27128–27137.
R. Mehek, N. Iqbal, T. Noor, et al., Electrochim. Acta 255 (2017) 195–204.
C. Wang, J. Kim, J. Tang, et al., Chem 6 (2020) 19–40.
M. Kang, D.W. Kang, C.S. Hong, Dalton Trans. 48 (2019) 2263–2270.
doi: 10.1039/c8dt04339f
T. Chen, D. Zhao, Coord. Chem. Rev. 491 (2023) 215259.
M. Kandiah, S. Usseglio, S. Svelle, et al., J. Mater. Chem. 20 (2010) 9848–9851.
doi: 10.1039/c0jm02416c
B. Slater, S.O. Wong, A. Duckworth, et al., Chem. Commun. 55 (2019) 7319–7322.
doi: 10.1039/c9cc02861g
M. Soleiman-Beigi, I. Yavari, F. Sadeghizadeh, RSC Adv. 5 (2015) 87564–87570.
Y. Duan, F. Ye, Y. Huang, et al., Chem. Commun. 54 (2018) 5377–5380.
doi: 10.1039/c8cc02708k
Y. Wang, Y. Lu, Z. Li, et al., Chem. Commun. 57 (2021) 8933–8936.
doi: 10.1039/d1cc03482k
L. Wang, W. Yang, Y. Li, et al., Chem. Commun. 50 (2014) 11653–11656.
S.H. Doan, C.B. Tran, An. L.N. Cao, N.T.H. Le, N.T.S. Phan, Catal. Lett. 149 (2019) 2053–2063.
doi: 10.1007/s10562-019-02747-1
P. Puthiaraj, A. Ramu, K. Pitchumani, Asian J. Org. Chem. 3 (2014) 784–791.
doi: 10.1002/ajoc.201402019
H.V. Dang, H.T.B. Le, L.T.B. Tran, et al., RSC Adv. 8 (2018) 31455–31464.
doi: 10.1039/c8ra05459b
T. He, X.J. Kong, J. Zhou, et al., J. Am. Chem. Soc. 143 (2021) 9901–9911.
doi: 10.1021/jacs.1c04077
D. Liu, H. Xu, C. Wang, et al., Inorg. Chem. 60 (2021) 5882–5889.
doi: 10.1021/acs.inorgchem.1c00295
Z. Wu, J. Zhu, W. Wen, X. Zhang, S. Wang, J. Solid State Chem. 311 (2022) 123116.
Y. Zhou, R. Abazari, J. Chen, et al., Coord. Chem. Rev. 451 (2022) 214264.
U. Khan, A. Nairan, J. Gao, Q. Zhang, Small Struct. 4 (2023) 2200109.
A. Radwan, H. Jin, D. He, S. Mu, Nano-Micro Lett. 13 (2021) 132.
X. Wang, Y. Feng, P. Dong, J. Huang, Front. Chem. 7 (2019), doi: 10.3389/fchem.2019.00671.
doi: 10.3389/fchem.2019.00671
H.F. Wang, C. Tang, Q. Zhang, Adv. Funct. Mater. 28 (2018) 1803329.
K. Zhang, R. Zou, Small 17 (2021) 2100129.
T. Tang, S. Li, J. Sun, Z. Wang, J. Guan, Nano Res. 15 (2022) 8714–8750.
doi: 10.1007/s12274-022-4575-0
J. Zhang, Z. Cui, J. Liu, et al., Front. Phys. 18 (2023) 13603.
M.I. Jamesh, M. Harb, J. Energy Chem. 56 (2021) 299–342.
S. Li, Y. Gao, N. Li, et al., Energy Environ. Sci. 14 (2021) 1897–1927.
doi: 10.1039/d0ee03697h
B. Zhou, R. Gao, J.J. Zou, H. Yang, Small 18 (2022) 2202336.
H. Ding, H. Liu, W. Chu, C. Wu, Y. Xie, Chem. Rev. 121 (2021) 13174–13212.
doi: 10.1021/acs.chemrev.1c00234
J. Wang, M. Zhang, J. Li, et al., Dalton Trans. 49 (2020) 14290–14296.
doi: 10.1039/d0dt03085f
L. Ai, Y. Luo, W. Huang, Y. Tian, J. Jiang, Int. J. Hydrog. Energy 47 (2022) 12893–12902.
K. Ge, S. Sun, Y. Zhao, et al., Angew. Chem. Int. Ed. 60 (2021) 12097–12102.
doi: 10.1002/anie.202102632
F. Sun, G. Wang, Y. Ding, et al., Adv. Energy Mater. 8 (2018) 1800584.
J. Zhang, L. Jin, P. Gu, et al., ACS Appl. Nano Mater. 4 (2021) 12407–12414.
doi: 10.1021/acsanm.1c02864
X. Su, Y. Wang, J. Zhou, et al., J. Am. Chem. Soc. 140 (2018) 11286–11292.
doi: 10.1021/jacs.8b05294
Y. Fu, L. Xu, H. Shen, et al., Chem. Eng. J. 299 (2016) 135–141.
J. Li, W. Huang, M. Wang, et al., ACS Energy Lett. 4 (2019) 285–292.
doi: 10.1021/acsenergylett.8b02345
X.L. Wang, L.Z. Dong, M. Qiao, et al., Angew. Chem. Int. Ed. 57 (2018) 9660–9664.
doi: 10.1002/anie.201803587
L. Huang, G. Gao, H. Zhang, et al., Nano Energy 68 (2020) 104296.
Y. Jiao, J. Pei, D. Chen, et al., J. Mater. Chem. A 5 (2017) 1094–1102.
M. Aghazadeh, H.F. Rad, J. Energy Storage 53 (2022) 105194.
M. Aghazadeh, H. Foratirad, Mater. Lett. 313 (2022) 131804.
S. He, Z. Li, J. Wang, J. Solid State Chem. 307 (2022) 122726.
S. Sun, M. Huang, P. Wang, M. Lu, J. Electrochem. Soc. 166 (2019) A1799–A1805.
doi: 10.1149/2.0291910jes
Y. Shan, L. Chen, H. Pang, Q. Xu, Small Struct. 2 (2021) 2000078.
X.Y. Yu, Y. Feng, B. Guan, X.W. (David) Lou, U. Paik, Energy Environ. Sci. 9 (2016) 1246–1250.
F.L. Li, Q. Shao, X. Huang, J.P. Lang, Angew. Chem. Int. Ed. 57 (2018) 1888–1892.
doi: 10.1002/anie.201711376
S.S. Sankar, K. Manjula, G. Keerthana, B. Ramesh Babu, S. Kundu, Cryst. Growth Des. 21 (2021) 1800–1809.
doi: 10.1021/acs.cgd.0c01685
S. Xu, M. Li, H. Wang, et al., J. Phys. Chem. C 126 (2022) 14094–14102.
doi: 10.1021/acs.jpcc.2c05083
X. Zuo, K. Chang, J. Zhao, et al., J. Mater. Chem. A 4 (2016) 51–58.
L. Zhang, M.J. Liu, D.Y. Zhu, et al., Nat. Commun. 15 (2024) 3409.
W. Li, D. Wang, Y. Zhang, et al., Adv. Mater. 32 (2020) 1907879.
D. Zhao, Z. Zhuang, X. Cao, et al., Chem. Soc. Rev. 49 (2020) 2215–2264.
doi: 10.1039/c9cs00869a
N. Ramaswamy, S. Mukerjee, Chem. Rev. 119 (2019) 11945–11979.
doi: 10.1021/acs.chemrev.9b00157
Q. Wang, D. Astruc, Chem. Rev. 120 (2020) 1438–1511.
doi: 10.1021/acs.chemrev.9b00223
J. Kim, H.E. Kim, H. Lee, ChemSusChem 11 (2018) 104–113.
doi: 10.1002/cssc.201701306
H. Niu, C. Xia, L. Huang, et al., Chin. J. Catal. 43 (2022) 1459–1472.
Y. Yang, M. Luo, W. Zhang, et al., Chem 4 (2018) 2054–2083.
Y. Yan, J. Miao, Z. Yang, et al., Chem. Soc. Rev. 44 (2015) 3295–3346.
X. Ren, Q. Lv, L. Liu, et al., Sustain. Energy Fuels 4 (2020) 15–30.
doi: 10.1039/c9se00460b
M. Wang, C. Wang, L. Zhu, et al., Appl. Catal. Gen. 619 (2021) 118159.
F. Gao, Y. Zhang, Z. Wu, H. You, Y. Du, Coord. Chem. Rev. 436 (2021) 213825.
Z. Pu, T. Liu, I.S. Amiinu, et al., Adv. Funct. Mater. 30 (2020) 2004009.
S. Li, E. Li, X. An, et al., Nanoscale 13 (2021) 12788–12817.
doi: 10.1039/d1nr02592a
C.C. Weng, J.T. Ren, Z.Y. Yuan, ChemSusChem 13 (2020) 3357–3375.
doi: 10.1002/cssc.202000416
Y. Zheng, Y. Jiao, A. Vasileff, S.Z. Qiao, Angew. Chem. Int. Ed. 57 (2018) 7568–7579.
doi: 10.1002/anie.201710556
S.K. Saxena, V. Drozd, A. Durygin, Int. J. Hydrog. Energy 33 (2008) 3625–3631.
A. Steinfeld, Fuel Cell World Proc. (2002) 356–366.
S.M. Thalluri, L. Bai, C. Lv, et al., Adv. Sci. 7 (2020) 1902102.
P. Zhou, J. Lv, X. Huang, Y. Lu, G. Wang, Coord. Chem. Rev. 478 (2023) 214969.
S. Anantharaj, S. Noda, V.R. Jothi, et al., Angew. Chem. Int. Ed. 60 (2021) 18981–19006.
doi: 10.1002/anie.202015738
Y. Cao, ACS Nano 15 (2021) 11014–11039.
doi: 10.1021/acsnano.1c01879
C. Wei, R.R. Rao, J. Peng, et al., Adv. Mater. 31 (2019) 1806296.
Z. Pu, I.S. Amiinu, R. Cheng, et al., Nano-Micro Lett. 12 (2020) 21.
L. Zou, Y.S. Wei, C.C. Hou, C. Li, Q. Xu, Small 17 (2021) 2004809.
P. Chen, J. Ye, H. Wang, L. Ouyang, M. Zhu, J. Alloy. Compd. 883 (2021) 160833.
Z.X. Wei, Y.T. Zhu, J.Y. Liu, et al., Rare Met. 40 (2021) 767–789.
doi: 10.1007/s12598-020-01592-1
L. Wang, L. Ren, X. Wang, et al., ACS Appl. Mater. Interfaces 10 (2018) 4750–4756.
doi: 10.1021/acsami.7b18650
X.B. Xu, D.F. Xiao, Y.G. Gao, et al., ACS Appl. Mater. Interfaces 16 (2024) 16243–16252.
doi: 10.1021/acsami.4c00472
Y. Pan, R. Abazari, Y. Wu, J. Gao, Q. Zhang, Electrochem. Commun. 126 (2021) 107024.
S. Zhang, Q. Fan, R. Xia, T.J. Meyer, Acc. Chem. Res. 53 (2020) 255–264.
doi: 10.1021/acs.accounts.9b00496
M.G. Kibria, J.P. Edwards, C.M. Gabardo, et al., Adv. Mater. 31 (2019) 1807166.
X. Song, L. Xu, X. Sun, B. Han, Sci. China Chem. 66 (2023) 315–323.
doi: 10.1007/s11426-021-1463-6
L. Lu, H. Zheng, Y. Li, Y. Zhou, B. Fang, Chem. Eng. J. 451 (2023) 138668.
S. Huang, K. Chen, T.T. Li, Coord. Chem. Rev. 464 (2022) 214563.
S.C. Sun, B. Peng, Y. Song, et al., ACS Appl. Mater. Interfaces 15 (2023) 12957–12966.
doi: 10.1021/acsami.2c19906
W.J.M. Kort-Kamp, M. Ferrandon, X. Wang, et al., J. Power Sources 559 (2023) 232583.
D. Alba-Molina, A.R. Puente Santiago, J.J. Giner-Casares, et al., J. Phys. Chem. C 123 (2019) 9807–9812.
doi: 10.1021/acs.jpcc.9b00249
G.R. Dillip, G.K. Kiran, A. Bharti, et al., ACS Appl. Energy Mater. 5 (2022) 13635–13644.
doi: 10.1021/acsaem.2c02257
X. Ge, F.W.T. Goh, B. Li, et al., Nanoscale 7 (2015) 9046–9054.
S.K. Singh, K. Takeyasu, J. Nakamura, Adv. Mater. 31 (2019) 1804297.
X. Tian, X.F. Lu, B.Y. Xia, X.W. (David) Lou, Joule 4 (2020) 45–68.
H. Wang, F. Yin, G. Li, B. Chen, Z. Wang, Int. J. Hydrog. Energy 39 (2014) 16179–16186.
B. Vishnu, S. Mathi, S. Sriram, J. Jayabharathi, ChemistrySelect 7 (2022) e202201682.
Yuting Wu , Haifeng Lv , Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375
Muhammad Riaz , Rakesh Kumar Gupta , Di Sun , Mohammad Azam , Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427
Tengjia Ni , Xianbiao Hou , Huanlei Wang , Lei Chu , Shuixing Dai , Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210
Jiaqi Ma , Lan Li , Yiming Zhang , Jinjie Qian , Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466
Weixu Li , Yuexin Wang , Lin Li , Xinyi Huang , Mengdi Liu , Bo Gui , Xianjun Lang , Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299
Deshuai Zhen , Chunlin Liu , Qiuhui Deng , Shaoqi Zhang , Ningman Yuan , Le Li , Yu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249
Ze Liu , Xiaochen Zhang , Jinlong Luo , Yingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500
Longlong Geng , Huiling Liu , Wenfeng Zhou , Yong-Zheng Zhang , Hongliang Huang , Da-Shuai Zhang , Hui Hu , Chao Lv , Xiuling Zhang , Suijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120
Rui Wang , He Qi , Haijiao Zheng , Qiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215
Fereshte Hassanzadeh-Afruzi , Mina Azizi , Iman Zare , Ehsan Nazarzadeh Zare , Anwarul Hasan , Siavash Iravani , Pooyan Makvandi , Yi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564
Xiao-Hong Yi , Chong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094
Xi Feng , Ding-Yi Hu , Zi-Jun Liang , Mu-Yang Zhou , Zhi-Shuo Wang , Wen-Yu Su , Rui-Biao Lin , Dong-Dong Zhou , Jie-Peng Zhang . A metal azolate framework with small aperture for highly efficient ternary benzene/cyclohexene/cyclohexane separation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100540-100540. doi: 10.1016/j.cjsc.2025.100540
Fahui Xiang , Lu Li , Zhen Yuan , Wuji Wei , Xiaoqing Zheng , Shimin Chen , Yisi Yang , Liangji Chen , Zizhu Yao , Jianwei Fu , Zhangjing Zhang , Shengchang Xiang . Enhanced C2H2/CO2 separation in tetranuclear Cu(Ⅱ) cluster-based metal-organic frameworks by adjusting divider length of pore space partition. Chinese Chemical Letters, 2025, 36(3): 109672-. doi: 10.1016/j.cclet.2024.109672
Wenbiao Zhang , Bolong Yang , Zhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630
Xudong Zhao , Yuxuan Wang , Xinxin Gao , Xinli Gao , Meihua Wang , Hongliang Huang , Baosheng Liu . Anchoring thiol-rich traps in 1D channel wall of metal-organic framework for efficient removal of mercury ions. Chinese Chemical Letters, 2025, 36(2): 109901-. doi: 10.1016/j.cclet.2024.109901
Sixiao Liu , Tianyi Wang , Lei Zhang , Chengyin Wang , Huan Pang . Cerium-based metal-organic framework-modified natural mineral vermiculite for photocatalytic nitrogen fixation under visible-light irradiation. Chinese Chemical Letters, 2025, 36(3): 110058-. doi: 10.1016/j.cclet.2024.110058
Liying Ou , Zhenluan Xue , Bo Li , Zhiwei Jin , Jiaochan Zhong , Lixia Yang , Penghui Shao , Shenglian Luo . Nitrogen-containing linkage-bonds in covalent organic frameworks: Synthesis and applications. Chinese Chemical Letters, 2025, 36(6): 110294-. doi: 10.1016/j.cclet.2024.110294
Guorong Li , Yijing Wu , Chao Zhong , Yixin Yang , Zian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904
Yue Qian , Zhoujia Liu , Haixin Song , Ruize Yin , Hanni Yang , Siyang Li , Weiwei Xiong , Saisai Yuan , Junhao Zhang , Huan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785
Pingfan Zhang , Shihuan Hong , Ning Song , Zhonghui Han , Fei Ge , Gang Dai , Hongjun Dong , Chunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073