Effects of salt fraction on the Na+ transport in salt-in-ionic liquid electrolytes
-
* Corresponding authors.
E-mail addresses: shuli@nankai.edu.cn (S. Li), tyan@nankai.edu.cn (T. Yan).
Citation:
Yuhao Zhou, Siyuan Wu, Xiaozhe Ren, Hongjin Li, Shu Li, Tianying Yan. Effects of salt fraction on the Na+ transport in salt-in-ionic liquid electrolytes[J]. Chinese Chemical Letters,
;2025, 36(6): 110048.
doi:
10.1016/j.cclet.2024.110048
J. Xiang, L. Yang, L. Yuan, et al., Joule 3 (2019) 2334–2363.
doi: 10.1016/j.joule.2019.07.027
D. Zhang, L. Li, W. Zhang, et al., Chin. Chem. Lett. 34 (2023) 107122.
doi: 10.1016/j.cclet.2022.01.015
G.G. Eshetu, G.A. Elia, M. Armand, et al., Adv. Energy Mater. 10 (2020) 2000093.
doi: 10.1002/aenm.202000093
R. Usiskin, Y. Lu, J. Popovic, et al., Nat. Rev. Mater. 6 (2021) 1020–1035.
doi: 10.1038/s41578-021-00324-w
Y. Zhao, K.R. Adair, X. Sun, Energy Environ. Sci. 11 (2018) 2673–2695.
doi: 10.1039/c8ee01373j
J.Y. Hwang, S.T. Myung, Y.K. Sun, Chem. Soc. Rev. 46 (2017) 3529–3614.
doi: 10.1039/C6CS00776G
B. Dunn, H. Kamath, J.M. Tarascon, Science 334 (2011) 928–935.
doi: 10.1126/science.1212741
Y. Li, F. Wu, Y. Li, et al., Chem. Soc. Rev. 51 (2022) 4484–4536.
doi: 10.1039/d1cs00948f
A. Ponrouch, E. Marchante, M. Courty, J.M. Tarascon, M.R. Palacín, Energy Environ. Sci. 5 (2012) 8572–8583.
doi: 10.1039/c2ee22258b
A. Ponrouch, D. Monti, A. Boschin, et al., J. Mater. Chem. A 3 (2015) 22–42.
doi: 10.1039/C4TA04428B
H. Che, S. Chen, Y. Xie, et al., Energy Environ. Sci. 10 (2017) 1075–1101.
doi: 10.1039/C7EE00524E
I. Hasa, S. Mariyappan, D. Saurel, et al., J. Power Sources 482 (2021) 228872.
doi: 10.1016/j.jpowsour.2020.228872
Y. Huang, L. Zhao, L. Li, et al., Adv. Mater. 31 (2019) 1808393.
doi: 10.1002/adma.201808393
H. Liu, H. Yu, J. Mater. Sci. Technol. 35 (2019) 674–686.
doi: 10.1016/j.jmst.2018.10.007
M. Armand, F. Endres, D.R. MacFarlane, H. Ohno, B. Scrosati, Nat. Mater. 8 (2009) 621–629.
doi: 10.1038/nmat2448
D.R. MacFarlane, N. Tachikawa, M. Forsyth, et al., Energy Environ. Sci. 7 (2014) 232–250.
doi: 10.1039/C3EE42099J
M. Watanabe, M.L. Thomas, S. Zhang, et al., Chem. Rev. 117 (2017) 7190–7239.
doi: 10.1021/acs.chemrev.6b00504
H. Yang, J. Hwang, Y. Wang, K. Matsumoto, R. Hagiwara, J. Phys. Chem. C 123 (2019) 22018–22026.
doi: 10.1021/acs.jpcc.9b05941
C.V. Manohar, A.K. Raj, M. Kar, et al., Sustain. Energy Fuels 2 (2018) 566–576.
doi: 10.1039/c7se00537g
P. Kubisiak, A. Eilmes, J. Phys. Chem. B 121 (2017) 9957–9968.
doi: 10.1021/acs.jpcb.7b08258
T. Yim, M.S. Kwon, J. Mun, K.T. Lee, Isr. J. Chem. 55 (2015) 586–598.
doi: 10.1002/ijch.201400181
H. Sun, G. Zhu, X. Xu, et al., Nat. Commun. 10 (2019) 3302.
doi: 10.1038/s41467-019-11102-2
M. McEldrew, Z.A.H. Goodwin, N. Molinari, et al., J. Phys. Chem. B 125 (2021) 13752–13766.
doi: 10.1021/acs.jpcb.1c05546
P.J. Fischer, M.P. Do, R.M. Reich, et al., Phys. Chem. Chem. Phys. 20 (2018) 29412–29422.
doi: 10.1039/c8cp06099a
Z. Wang, L.P. Hou, Q.K. Zhang, et al., Chin. Chem. Lett. 35 (2024) 108570.
doi: 10.1016/j.cclet.2023.108570
N. Molinari, J.P. Mailoa, N. Craig, J. Christensen, B. Kozinsky, J. Power Sources 428 (2019) 27–36.
doi: 10.1016/j.jpowsour.2019.04.085
M. Forsyth, H. Yoon, F. Chen, et al., J. Phys. Chem. C 120 (2016) 4276–4286.
doi: 10.1021/acs.jpcc.5b11746
F. Chen, P. Howlett, M. Forsyth, J. Phys. Chem. C 122 (2018) 105–114.
doi: 10.1021/acs.jpcc.7b09322
K. Matsumoto, Y. Okamoto, T. Nohira, R. Hagiwara, J. Phys. Chem. C 119 (2015) 7648–7655.
doi: 10.1021/acs.jpcc.5b01373
C. Ding, T. Nohira, R. Hagiwara, et al., J. Power Sources 269 (2014) 124–128.
doi: 10.1016/j.jpowsour.2014.06.033
C.Y. Chen, T. Kiko, T. Hosokawa, et al., J. Power Sources 332 (2016) 51–59.
doi: 10.1016/j.jpowsour.2016.09.099
R. Hagiwara, K. Matsumoto, J. Hwang, T. Nohira, Chem. Record 19 (2019) 758–770.
doi: 10.1002/tcr.201800119
M. Galinski, A. Lewandowski, I. St ˛ ´ epniak, Electrochim. Acta 51 (2006) 5567–5580.
doi: 10.1016/j.electacta.2006.03.016
N. Sánchez-Ramírez, B.D. Assresahegn, D. Bélanger, R.M. Torresi, J. Chem. Eng. Data 62 (2017) 3437–3444.
doi: 10.1021/acs.jced.7b00458
H.K. Kashyap, H.V.R. Annapureddy, F.O. Raineri, C.J. Margulis, J. Phys. Chem. B 115 (2011) 13212–13221.
doi: 10.1021/jp204182c
P. Kubisiak, P. Wróbel, A. Eilmes, J. Phys. Chem. B 124 (2020) 413–421.
doi: 10.1021/acs.jpcb.9b10391
K. Matsumoto, T. Hosokawa, T. Nohira, et al., J. Power Sources 265 (2014) 36–39.
doi: 10.1016/j.jpowsour.2014.04.112
X. Zhang, M.V.M. Nitou, W. Li, et al., Chin. Chem. Lett. 34 (2023) 108245.
doi: 10.1016/j.cclet.2023.108245
Y. Shao, K. Shigenobu, M. Watanabe, C. Zhang, J. Phys. Chem. B 124 (2020) 4774–4780.
doi: 10.1021/acs.jpcb.0c02544
M. Gouverneur, F. Schmidt, M. Schönhoff, Phys. Chem. Chem. Phys. 20 (2018) 7470–7478.
doi: 10.1039/c7cp08580j
P. Wróbel, P. Kubisiak, A. Eilmes, J. Phys. Chem. B 125 (2021) 10293–10303.
doi: 10.1021/acs.jpcb.1c05793
J. Tong, S. Wu, N. von Solms, et al., Front. Chem. 7 (2020) 945–954.
doi: 10.3389/fchem.2019.00945
Shengyu Zhao , Qinhao Shi , Wuliang Feng , Yang Liu , Xinxin Yang , Xingli Zou , Xionggang Lu , Yufeng Zhao . Suppression of multistep phase transitions of O3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(5): 108606-. doi: 10.1016/j.cclet.2023.108606
Shengyu Zhao , Xuan Yu , Yufeng Zhao . A water-stable high-voltage P3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109933-. doi: 10.1016/j.cclet.2024.109933
Fanjun Kong , Yixin Ge , Shi Tao , Zhengqiu Yuan , Chen Lu , Zhida Han , Lianghao Yu , Bin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552
Binyang Qin , Mengqi Wang , Shimei Wu , Yining Li , Chilin Liu , Yufei Zhang , Haosen Fan . Carbon dots confined nanosheets assembled NiCo2S4@CDs cross-stacked architecture for enhanced sodium ion storage. Chinese Chemical Letters, 2024, 35(7): 108921-. doi: 10.1016/j.cclet.2023.108921
Dongmei Dai , Xiaobing Lai , Xiaojuan Wang , Yunting Yao , Mengmin Jia , Liang Wang , Pengyao Yan , Yaru Qiao , Zhuangzhuang Zhang , Bao Li , Dai-Huo Liu . Increasing (010) active plane of P2-type layered cathodes with hexagonal prism towards improved sodium-storage. Chinese Chemical Letters, 2024, 35(10): 109405-. doi: 10.1016/j.cclet.2023.109405
Dongmei Yao , Junsheng Zheng , Liming Jin , Xiaomin Meng , Zize Zhan , Runlin Fan , Cong Feng , Pingwen Ming . Effect of surface oxidation on the interfacial and mechanical properties in graphite/epoxy composites composite bipolar plates. Chinese Chemical Letters, 2024, 35(11): 109382-. doi: 10.1016/j.cclet.2023.109382
Guangying Wang , Qinglong Qiao , Wenhao Jia , Yiyan Ruan , Kai An , Wenchao Jiang , Xuelian Zhou , Zhaochao Xu . Adaptive emission profile of transformable fluorescent probes as fingerprints: A typical application in distinguishing different surfactants. Chinese Chemical Letters, 2025, 36(5): 110130-. doi: 10.1016/j.cclet.2024.110130
Ruofan Yin , Zhaoxin Guo , Rui Liu , Xian-Sen Tao . Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109643-. doi: 10.1016/j.cclet.2024.109643
Jiayu Tang , Jichuan Pang , Shaohua Xiao , Xinhua Xu , Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021
Qiao Wang , Ziling Jiang , Chuang Yu , Liping Li , Guangshe Li . Research progress of inorganic sodium ion conductors for solid-state batteries. Chinese Chemical Letters, 2025, 36(6): 110006-. doi: 10.1016/j.cclet.2024.110006
Ying Li , Yanjun Xu , Xingqi Han , Di Han , Xuesong Wu , Xinlong Wang , Zhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189
Xiping Dong , Xuan Wang , Zhixiu Lu , Qinhao Shi , Zhengyi Yang , Xuan Yu , Wuliang Feng , Xingli Zou , Yang Liu , Yufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605
Fan Wu , Shaoyang Wu , Xin Ye , Yurong Ren , Peng Wei . Research progress of high-entropy cathode materials for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(4): 109851-. doi: 10.1016/j.cclet.2024.109851
Xuan Wang , Peng Sun , Siteng Yuan , Lu Yue , Yufeng Zhao . P2-type low-cost and moisture-stable cathode for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(5): 110015-. doi: 10.1016/j.cclet.2024.110015
Ya Song , Mingxia Zhou , Zhu Chen , Huali Nie , Jiao-Jing Shao , Guangmin Zhou . Integrated interconnected porous and lamellar structures realized fast ion/electron conductivity in high-performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(6): 109200-. doi: 10.1016/j.cclet.2023.109200
Bin Feng , Tao Long , Ruotong Li , Yuan-Li Ding . Rationally constructing metallic Sn-ZnO heterostructure via in-situ Mn doping for high-rate Na-ion batteries. Chinese Chemical Letters, 2025, 36(2): 110273-. doi: 10.1016/j.cclet.2024.110273
Huixin Chen , Chen Zhao , Hongjun Yue , Guiming Zhong , Xiang Han , Liang Yin , Ding Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650
Jiajia Lv , Jie Gao , Hongyu Li , Zeli Yuan , Nan Dong . Rational design of hydroxytricyanopyrrole-based probes with high affinity and rapid visualization for amyloid-β aggregates in vitro and in vivo. Chinese Chemical Letters, 2024, 35(5): 108940-. doi: 10.1016/j.cclet.2023.108940
Lulu Cao , Yikun Li , Dongxiang Zhang , Shuai Yue , Rong Shang , Xin-Dong Jiang , Jianjun Du . Engineering aggregates of julolidine-substituted aza-BODIPY nanoparticles for NIR-II photothermal therapy. Chinese Chemical Letters, 2024, 35(12): 109735-. doi: 10.1016/j.cclet.2024.109735
Tao Long , Peng Chen , Bin Feng , Caili Yang , Kairong Wang , Yulei Wang , Can Chen , Yaping Wang , Ruotong Li , Meng Wu , Minhuan Lan , Wei Kong Pang , Jian-Fang Wu , Yuan-Li Ding . Reinforced concrete-like Na3.5V1.5Mn0.5(PO4)3@graphene hybrids with hierarchical porosity as durable and high-rate sodium-ion battery cathode. Chinese Chemical Letters, 2024, 35(4): 109267-. doi: 10.1016/j.cclet.2023.109267