Solid-acid-Lewis-base interaction accelerates lithium ion transport for uniform lithium deposition
-
* Corresponding author.
E-mail address: wangzh@bit.edu.cn (Z. Wang).
Citation:
Ruofan Qi, Jing Zhang, Wang Sun, Bai Yu, Zhenhua Wang, Kening Sun. Solid-acid-Lewis-base interaction accelerates lithium ion transport for uniform lithium deposition[J]. Chinese Chemical Letters,
;2025, 36(6): 110009.
doi:
10.1016/j.cclet.2024.110009
X. Cheng, C. Zhao, Y. Yao, et al., Chem 5 (2019) 74–96.
doi: 10.1016/j.chempr.2018.12.002
J. Wang, B. Ge, H. Li, et al., Chem. Eng. J. 420 (2021) 129739.
doi: 10.1016/j.cej.2021.129739
L. Zhang, C. Zhu, S. Yu, et al., J. Energy Chem. 66 (2022) 260–294.
doi: 10.1016/j.jechem.2021.08.001
Z. Piao, R. Gao, Y. Liu, et al., Adv. Mater. 35 (2022) 2206009.
Y. Liu, Z. Yu, J. Chen, et al., Chin. Chem. Lett. 33 (2022) 1817–1830.
doi: 10.1016/j.cclet.2021.09.023
J. Du, X. Duan, W. Wang, et al., Nano Lett. 23 (2023) 3369–3376.
doi: 10.1021/acs.nanolett.3c00258
X. Mao, L. Shi, H. Zhang, et al., J. Power Sources 342 (2017) 816–824.
doi: 10.1016/j.jpowsour.2017.01.006
X. Cheng, S. Yang, Z. Liu, et al., Adv. Mater. 36 (2024) e2307370.
doi: 10.1002/adma.202307370
M. Su, Y. Chen, S. Wang, et al., Chin. Chem. Lett. 34 (2023) 107553.
doi: 10.1016/j.cclet.2022.05.067
F. Jiang, S. Yang, X. Cheng, et al., J. Energy Chem. 72 (2022) 158–165.
doi: 10.1016/j.jechem.2022.05.005
S. Zhang, B. Cheng, Y. Fang, et al., Chin. Chem. Lett. 33 (2022) 3951–3954.
doi: 10.1016/j.cclet.2021.11.024
Q. Zhao, R. Zhou, C. Wang, et al., Adv. Funct. Mater. 32 (2022) 2112711.
doi: 10.1002/adfm.202112711
T. Li, H. Liu, P. Shi, et al., Rare Metals 37 (2018) 449–458.
doi: 10.1007/s12598-018-1049-3
X. Xu, S. Wang, H. Wang, et al., J. Energy Chem. 27 (2018) 513–527.
doi: 10.1016/j.jechem.2017.11.010
M. Yang, Y. Ji, Y. Dong, et al., Chin. Chem. Lett. 34 (2023) 107087.
doi: 10.1016/j.cclet.2021.12.079
J. Li, H. Jia, H. Li, et al., J. Energy Chem. 57 (2021) 61–68.
doi: 10.1117/12.2606689
M. Wang, J. Wang, J. Si, et al., Chem. Eng. J. 430 (2022) 132971.
doi: 10.1016/j.cej.2021.132971
W. Ren, K. Zhu, W. Zhang, et al., Adv. Funct. Mater. 33 (2023) 2301586.
doi: 10.1002/adfm.202301586
T. Wei, J. Lu, P. Zhang, et al., Chin. Chem. Lett. 34 (2023) 107947.
doi: 10.1016/j.cclet.2022.107947
S.H. Choi, S.J. Lee, D.J. Yoo, et al., Adv. Energy Mater. 9 (2019) 1902278.
doi: 10.1002/aenm.201902278
W. Zhang, L. Wang, G. Ding, et al., Chin. Chem. Lett. 34 (2023) 107328.
doi: 10.1016/j.cclet.2022.03.051
L. Xu, J. Yang, M. Huang, et al., Chem. Eng. J. 419 (2021) 129494.
doi: 10.1016/j.cej.2021.129494
M. Zhang, R. Liu, Z. Wang, et al., Chin. Chem. Lett. 31 (2020) 1217–1220.
doi: 10.1016/j.cclet.2019.07.055
M. Ge, X. Zhou, Y. Qin, et al., Chin. Chem. Lett. 33 (2022) 3894–3898.
doi: 10.1016/j.cclet.2021.11.073
Q. Cheng, A. Li, N. Li, et al., Joule 3 (2019) 1510–1522.
doi: 10.1016/j.joule.2019.03.022
H. Xu, Y. Li, A. Zhou, et al., Nano Lett. 18 (2018) 7414–7418.
doi: 10.1021/acs.nanolett.8b03902
X. Fan, X. Ji, F. Han, et al., Sci. Adv. 4 (2018) eaau9245.
doi: 10.1126/sciadv.aau9245
P. Wang, W. Qu, W. Song, et al., Adv. Funct. Mater. 29 (2019) 1900950.
doi: 10.1002/adfm.201900950
J. Liu, Y. Mo, S. Wang, et al., ACS Appl. Energy Mater. 2 (2019) 3886–3895.
doi: 10.1021/acsaem.9b00568
Z. Rong, Y. Sun, Q. Zhao, et al., Chem. Eng. J. 437 (2022) 135329.
doi: 10.1016/j.cej.2022.135329
T. Lee, W.K. Kim, Y. Lee, et al., Macromol. Res. 22 (2014) 1190–1195.
doi: 10.1007/s13233-014-2163-1
B.K. Park, H.S. Kim, S.A. Han, et al., ACS Appl. Mater. Interfaces 15 (2023) 6923–6932.
doi: 10.1021/acsami.2c20651
H. Huo, X. Li, Y. Chen, et al., Energy Stor. Mater. 29 (2020) 361–366.
L. Zhai, K. Yang, F. Jiang, et al., J. Energy Chem. 79 (2023) 357–364.
doi: 10.1016/j.jechem.2023.01.022
X. Fu, C. Shang, M. Yang, et al., J. Power Sources 475 (2020) 228687.
doi: 10.1016/j.jpowsour.2020.228687
Y. Du, X. Gao, S. Li, et al., Chin. Chem. Lett. 31 (2020) 609–616.
doi: 10.1016/j.cclet.2019.06.013
Y. Yang, S. Yao, Z. Liang, et al., ACS Energy Lett. 7 (2022) 885–896.
doi: 10.1021/acsenergylett.1c02719
X. Han, T. Wu, L. Gu, et al., Chin. Chem. Lett. 34 (2023) 107594.
doi: 10.1016/j.cclet.2022.06.017
L. Chen, X. Lin, W. Dang, et al., Adv. Compos. Hybrid Mater. 6 (2022) 12.
doi: 10.21037/atm-21-6113
C. Zhao, P. Chen, R. Zhang, et al., Sci. Adv. 4 (2018) eaat3446.
doi: 10.1126/sciadv.aat3446
L. Zhao, Z. Wu, Z. Wang, et al., ACS Nano 16 (2022) 20891–20901.
doi: 10.1021/acsnano.2c08441
C. Zhang, L. Shen, J. Shen, et al., Adv. Mater. 31 (2019) 1808338.
doi: 10.1002/adma.201808338
S.G. Woo, E.K. Hwang, H.K. Kang, et al., Energy Environ. Sci. 14 (2021) 1420–1428.
doi: 10.1039/d0ee03967e
Y. Lu, K. Korf, Y. Kambe, et al., Angew. Chem. Int. Ed. 53 (2014) 488–492.
doi: 10.1002/anie.201307137
M.D. Tikekar, L.A. Archer, D.L. Koch, J. Electrochem. Soc. 161 (2014) A847.
doi: 10.1149/2.085405jes
C. Zhao, X. Zhang, X. Cheng, et al., Proc. Natl. Acad. Sci. U. S. A. 114 (2017) 11069–11074.
doi: 10.1073/pnas.1708489114
Y. Chen, P. Mickel, H. Pei, et al., ACS Appl. Mater. Interfaces 15 (2023) 18333–18342.
doi: 10.1021/acsami.3c01311
Y. Hu, C. Wang, Y. Wu, et al., J. Mater. Chem. A 11 (2023) 12052–12061.
doi: 10.1039/d3ta01684f
P. Dong, X. Zhang, W. Hiscox, et al., Adv. Mater. 35 (2023) 2211841.
doi: 10.1002/adma.202211841
Z. Hu, X. Zhang, S. Chen, J. Power Sources 477 (2020) 228754.
doi: 10.1016/j.jpowsour.2020.228754
Y. Nie, T. Yang, D. Luo, et al., Adv. Energy Mater. 13 (2023) 2204218.
doi: 10.1002/aenm.202204218
J. Zhang, Q. Fu, P. Li, et al., Particuology 89 (2024) 238–245.
doi: 10.1016/j.partic.2023.11.006
H. Su, H. Zhang, Z. Chen, et al., Chin. Chem. Lett. 34 (2023) 108640.
doi: 10.1016/j.cclet.2023.108640
J. Liang, S. Sun, N. Yao, et al., Sci. China Chem. 66 (2023) 3620–3627.
doi: 10.1007/s11426-023-1730-x
J.X. Chen, J.H. Zhang, X.Z. Fan, et al., Energy Environ. Sci. 17 (2024) 4036–4043.
doi: 10.1039/d3ee03809b
A. Eftekhari, Micropor. Mesopor. Mat. 243 (2017) 355–369.
doi: 10.1016/j.micromeso.2017.02.055
H. Xie, Z. Hao, S. Xie, et al., Nano Res. 15 (2022) 5143–5152.
doi: 10.1007/s12274-022-4181-1
J. Xiao, Q. Li, Y. Bi, et al., Nat Energy 5 (2020) 561–568.
doi: 10.1038/s41560-020-0648-z
Qianqian Song , Yunting Zhang , Jianli Liang , Si Liu , Jian Zhu , Xingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797
Qiangwei Wang , Huijiao Liu , Mengjie Wang , Haojie Zhang , Jianda Xie , Xuanwei Hu , Shiming Zhou , Weitai Wu . Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions. Chinese Chemical Letters, 2024, 35(4): 108743-. doi: 10.1016/j.cclet.2023.108743
Yu ZHANG , Fangfang ZHAO , Cong PAN , Peng WANG , Liangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412
Fangling Cui , Zongjie Hu , Jiayu Huang , Xiaoju Li , Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337
Ningning Zhao , Yuyan Liang , Wenjie Huo , Xinyan Zhu , Zhangxing He , Zekun Zhang , Youtuo Zhang , Xianwen Wu , Lei Dai , Jing Zhu , Ling Wang , Qiaobao Zhang . Separator functionalization enables high-performance zinc anode via ion-migration regulation and interfacial engineering. Chinese Chemical Letters, 2024, 35(9): 109332-. doi: 10.1016/j.cclet.2023.109332
Caiyun Jin , Zexuan Wu , Guopeng Li , Zhan Luo , Nian-Wu Li . 用于金属锂电池的磷腈基阻燃人工界面层. Acta Physico-Chimica Sinica, 2025, 41(8): 100094-. doi: 10.1016/j.actphy.2025.100094
Hengyi ZHU , Liyun JU , Haoyue ZHANG , Jiaxin DU , Yutong XIE , Li SONG , Yachao JIN , Mingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358
Haixia Wu , Kailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550
Yue Qian , Zhoujia Liu , Haixin Song , Ruize Yin , Hanni Yang , Siyang Li , Weiwei Xiong , Saisai Yuan , Junhao Zhang , Huan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785
Dong Sui , Jiayi Liu . Constriction-susceptible lithium support for fast cycling of solid-state lithium metal battery. Chinese Chemical Letters, 2025, 36(2): 110417-. doi: 10.1016/j.cclet.2024.110417
Xingang Kong , Yabei Su , Cuijuan Xing , Weijie Cheng , Jianfeng Huang , Lifeng Zhang , Haibo Ouyang , Qi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428
Huanyan Liu , Jiajun Long , Hua Yu , Shichao Zhang , Wenbo Liu . Rational design of highly conductive and stable 3D flexible composite current collector for high performance lithium-ion battery electrodes. Chinese Chemical Letters, 2025, 36(3): 109712-. doi: 10.1016/j.cclet.2024.109712
Ying Li , Yanjun Xu , Xingqi Han , Di Han , Xuesong Wu , Xinlong Wang , Zhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189
Yongjian Li , Xinyu Zhu , Chenxi Wei , Youyou Fang , Xinyu Wang , Yizhi Zhai , Wenlong Kang , Lai Chen , Duanyun Cao , Meng Wang , Yun Lu , Qing Huang , Yuefeng Su , Hong Yuan , Ning Li , Feng Wu . Unraveling the chemical and structural evolution of novel Li-rich layered/rocksalt intergrown cathode for Li-ion batteries. Chinese Chemical Letters, 2024, 35(12): 109536-. doi: 10.1016/j.cclet.2024.109536
Yue Wang , Caixia Xu , Xingtao Tian , Siyu Wang , Yan Zhao . Challenges and Modification Strategies of High-Voltage Cathode Materials for Li-ion Batteries. Chinese Journal of Structural Chemistry, 2023, 42(10): 100167-100167. doi: 10.1016/j.cjsc.2023.100167
Qingyan JIANG , Yanyong SHA , Chen CHEN , Xiaojuan CHEN , Wenlong LIU , Hao HUANG , Hongjiang LIU , Qi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004
Guihuang Fang , Ying Liu , Yangyang Feng , Ying Pan , Hongwei Yang , Yongchuan Liu , Maoxiang Wu . Tuning the ion-dipole interactions between fluoro and carbonyl (EC) by electrolyte design for stable lithium metal batteries. Chinese Chemical Letters, 2025, 36(1): 110385-. doi: 10.1016/j.cclet.2024.110385
Hengying Xiang , Nanping Deng , Lu Gao , Wen Yu , Bowen Cheng , Weimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182
Yue Zheng , Tianpeng Huang , Pengxian Han , Jun Ma , Guanglei Cui . Cathodal Li-ion interfacial transport in sulfide-based all-solid-state batteries: Challenges and improvement strategies. Chinese Journal of Structural Chemistry, 2024, 43(10): 100390-100390. doi: 10.1016/j.cjsc.2024.100390
Xinpin Pan , Yongjian Cui , Zhe Wang , Bowen Li , Hailong Wang , Jian Hao , Feng Li , Jing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567