-
[1]
K. Song, C. Liu, L. Mi, et al., Small 17 (2021) e1903194.
-
[2]
C. Yang, S. Xin, L. Mai, et al., Adv. Energy Mater. 11 (2020) 2000974.
-
[3]
J. Hwang, S. Myung, Y. Sun, Chem. Soc. Rev. 46 (2017) 3529–3614.
-
[4]
Z. Jiang, C. Yu, S. Chen, et al., Scripta Mater. 227 (2023) 115303.
-
[5]
Z. Wang, C. Tang, Z. Wang, et al., Energy Mater. Adv. 4 (2023) 1–13.
-
[6]
Q. Zhang, X. Shen, Q. Zhou, et al., Energy Mater. Adv. 2022 (2022) 1–11.
-
[7]
L. Shen, S. Deng, R. Jiang, et al., Energy Storage Mater. 46 (2022) 175–181.
-
[8]
H. Wan, J. Mwizerwa, F. Han, et al., Nano Energy 66 (2019) 104109.
-
[9]
H. Wan, W. Weng, F. Han, et al., Nano Today 33 (2020) 100860.
-
[10]
H. Wan, J. Mwizerwa, X. Qi, et al., ACS Appl. Mater. Interfaces 10 (2018) 12300–12304.
doi: 10.1021/acsami.8b01805
-
[11]
Y. Yuno fano, J. Kummer, J. Inorg, Nuclear Chem. 29 (1967) 2453–2466.
-
[12]
F. Colò, F. Bella, J.R. Nair, et al., J. Power Sources 365 (2017) 293–302.
-
[13]
J. Wu, R. Zhang, Q. Fu, et al., Adv. Funct. Mater. 31 (2020) 2008165.
-
[14]
G. Liu, X. Sun, X. Yu, et al., Chem. Engin. J. 420 (2021) 127692.
-
[15]
R. Zhao, Y. Wu, Z. Liang, et al., Energy Environ. Sci. 13 (2020) 2386–2403.
doi: 10.1039/d0ee00153h
-
[16]
W. Richards, L. Miara, Y. Wang, et al., Chem. Mater. 28 (2015) 266–273.
-
[17]
Z. Zhang, S. Wenzel, Y. Zhu, et al., ACS Appl. Energy Mater. 3 (2020) 7427–7437.
doi: 10.1021/acsaem.0c00820
-
[18]
L. Shen, J. Yang, G. Liu, et al., Mater. Today Energy 20 (2021) 100691.
-
[19]
Y. Wang, S. Song, C. Xu, et al., Nano Mater. Sci. 1 (2019) 91–100.
-
[20]
G. Huang, P. Zheng, W. Li, et al., Funct. Mater. Lett. 14 (2021) 2130005.
doi: 10.1142/s179360472130005x
-
[21]
X. Zhu, K. Wang, Y. Xu, et al., Energy Storage Mater. 36 (2021) 291–308.
-
[22]
E. Quartarone, P. Mustarelli, Chem. Soc. Rev. 40 (2011) 2525–2540.
doi: 10.1039/c0cs00081g
-
[23]
L. Ran, A. Baktash, M. Li, et al., Energy Storage Mater. 40 (2021) 282–291.
-
[24]
P. Ding, Z. Lin, X. Guo, et al., Mater. Today 51 (2021) 449–474.
-
[25]
L. Gao, B. Tang, H. Jiang, et al., Adv. Sustain. Syst. 6 (2021) 2100389.
-
[26]
A. Li, X. Liao, H. Zhang, et al., Adv. Mater. 32 (2020) e1905517.
-
[27]
L. Tian, Y. Liu, Z. Su, et al., J. Mater. Chem. A 9 (2021) 23882–23890.
doi: 10.1039/d1ta06269g
-
[28]
L. Yue, J. Ma, J. Zhang, et al., Energy Storage Mater. 5 (2016) 139–164.
-
[29]
Q. Zhao, P. Chen, S. Li, et al., J. Mater. Chem. A 7 (2019) 7823–7830.
doi: 10.1039/c8ta12008k
-
[30]
G. Wang, X. Zhu, A. Rashid, et al., J. Mater. Chem. A 8 (2020) 13351–13363.
doi: 10.1039/d0ta00335b
-
[31]
A. Manthiram, X. Yu, S. Wang, Nat. Rev. Mater. 2 (2017) 16103.
-
[32]
J. Zhang, J. Zhao, L. Yue, et al., Adv. Energy Mater. 5 (2015) 1501082.
-
[33]
H. Wang, Y. Chen, Z.D. Hood, et al., Angew. Chem. Int. Ed. 55 (2016) 8551–8555.
doi: 10.1002/anie.201601546
-
[34]
S. He, Y. Xu, Y. Chen, et al., J. Mater. Chem. A 8 (2020) 12594–12602.
doi: 10.1039/c9ta12213c
-
[35]
S. Takeuchi, K. Suzuki, M. Hirayama, et al., J. Solid State Chem. 265 (2018) 353–358.
-
[36]
Z. Wu, S. Chen, C. Yu, et al., Chem. Engin. J. 442 (2022) 136346.
-
[37]
H. Hong, Mat. Res. Bull. 11 (1976) 173–182.
-
[38]
J. Goodenough, H. Hong, A. Kafalas, Mat. Res. Bull. 11 (1976) 203–220.
-
[39]
M. Evstigneeva, V. Nalbandyan, A. Petrenko, et al., Chem. Mater. 23 (2011) 1174–1181.
doi: 10.1021/cm102629g
-
[40]
W. Xia, Y. Zhao, F. Zhao, et al., Chem. Rev. 122 (2022) 3763–3819.
doi: 10.1021/acs.chemrev.1c00594
-
[41]
Y. Sadikin, M. Brighi, P. Schouwink, et al., Adv. Energy Mater. 5 (2015) 1501016.
-
[42]
Y. Qie, S. Wang, S. Fu, et al., J. Phys. Chem. Lett. 11 (2020) 3376–3383.
doi: 10.1021/acs.jpclett.0c00010
-
[43]
X. He, Y. Zhu, Y. Mo, Nat. Commun. 8 (2017) 15893.
-
[44]
G. Liu, J. Yang, J. Wu, et al., Adv. Mater. 36 (2024) 2311475.
doi: 10.1002/adma.202311475
-
[45]
C. Delmas, Adv. Energy Mater. 8 (2018) 1703137.
-
[46]
K. Hueso, M. Armand, T. Rojo, Energy Environ. Sci. 6 (2013) 734–749.
doi: 10.1039/c3ee24086j
-
[47]
H. Li, H. Fan, Z. Liu, et al., Sens. Actuator. B: Chem. 255 (2018) 1445–1454.
-
[48]
X. Lu, G. Xia, J.P. Lemmon, et al., J. Power Sources 195 (2010) 2431–2442.
-
[49]
S. Lee, D. Lee, S. Lee, et al., Bull. Mater. Sci. 39 (2016) 729–735.
doi: 10.1007/s12034-016-1199-6
-
[50]
G. Yamaguchi, Bull. Chem. Soc. Jpn. 41 (1968) 93–99.
doi: 10.1246/bcsj.41.93
-
[51]
M. Peters, J. Phys. Chem. 73 (1969) 1774–1780.
-
[52]
L. Boyer, P. Edwardson, Ferroelectrics 104 (1990) 417–422.
doi: 10.1080/00150199008223849
-
[53]
R. Niewa, Z. Anorg. Allg. Chem. 639 (2013) 1699–1715.
doi: 10.1002/zaac.201300063
-
[54]
S. Fan, M. Lei, H. Wu, et al., Energy Storage Mater. 31 (2020) 87–94.
-
[55]
H. Nguyen, S. Hy, E. Wu, et al., J. Electrochem. Soc. 163 (2016) A2165–A2171.
doi: 10.1149/2.0091610jes
-
[56]
Y. Yu, Z. Wang, G. Shao, J. Mater. Chem. A 6 (2018) 19843–19852.
doi: 10.1039/c8ta08412b
-
[57]
C. Wei, R. Wang, Z. Wu, et al., Chem. Engin. J. 476 (2023) 146531.
-
[58]
C. Wei, C. Yu, R. Wang, et al., J. Power Sources 559 (2023) 232659.
-
[59]
C. Wei, S. Chen, C. Yu, et al., Appl. Mater. Today 31 (2023) 101770.
-
[60]
C. Wei, C. Liu, Y. Xiao, et al., Adv. Funct. Mater. 34 (2024) 2314306.
-
[61]
Q. Luo, C. Yu, C. Wei, et al., Ceram. Int. 49 (2023) 11485–11493.
-
[62]
Z. Zhang, E. Ramos, F. Lalère, et al., Energy Environ. Sci. 11 (2018) 87–93.
doi: 10.1039/c7ee03083e
-
[63]
H. Oguchi, M. Matsuo, S. Kuromoto, et al., J. Appl. Phys. 111 (2012) 036102.
-
[64]
M. Matsuo, S. Kuromoto, T. Sato, et al., Appl. Phys. Lett. 100 (2012) 203904.
-
[65]
T. Udovic, M. Matsuo, A. Unemoto, et al., Chem. Commun. 50 (2014) 3750–3752.
-
[66]
S. Shan, L. Yang, X. Liu, et al., J. Alloys Compd. 563 (2013) 176–179.
-
[67]
S. Butee, K. Kambale, M. Firodiya, Process. Appl. Ceram. 10 (2016) 67–72.
-
[68]
L. Ghadbeigi, A. Szendrei, P. Moreno, et al., Solid State Ionics 290 (2016) 77–82.
-
[69]
S. Naqash, F. Tietz, E. Yazhenskikh, et al., Solid State Ionics 336 (2019) 57–66.
-
[70]
Z. Zhang, S. Shi, Y. Hu, et al., J. Inorg. Mater. 28 (2013) 1255–1260.
-
[71]
S. Yubuchi, A. Hayashi, M. Tatsumisago, Chem. Lett. 44 (2015) 884–886.
doi: 10.1246/cl.150195
-
[72]
T. Kim, K. Park, Y. Choi, et al., J. Mater. Chem. A 6 (2018) 840–844.
doi: 10.1039/c7ta09242c
-
[73]
A. Virkar, R. Gordon, J. Am. Ceram. Soc. 60 (1977) 58–61.
doi: 10.1111/j.1151-2916.1977.tb16094.x
-
[74]
C. Zhu, J. Xue, J. Alloys Compd. 517 (2012) 182–185.
-
[75]
X. Wei, Y. Cao, L. Lu, et al., J. Alloys Compd. 509 (2011) 6222–6226.
-
[76]
D. Xu, H. Jiang, Y. Li, et al., Eur. Phys. J. Appl. Phys. 74 (2016) 10901.
doi: 10.1051/epjap/2016150466
-
[77]
L. Yang, S. Shan, X. Wei, et al., Ceram. Int. 40 (2014) 9055–9060.
-
[78]
H. Erkalfa, Z. Baykara, Ceram. Int. 24 (1998) 81–90.
-
[79]
G. Chen, J. Lu, X. Zhou, et al., Ceram. Int. 42 (2016) 16055–16062.
-
[80]
C. Zhu, Y. Hong, P. Huang, J. Alloys Compd. 688 (2016) 746–751.
-
[81]
Y. Viswanathan, A. Virkar, J. Mater. Sci. 18 (1983) 109–113.
-
[82]
K. Yuria Saito, T. Asai, H. Kageyama, et al., Solid State Ionics 58 (1992) 327–331.
-
[83]
A. Winand, P. Tarte, J. Mater. Sci. 25 (1990) 4008–4013.
-
[84]
T. Miyajim, J. Tamaki, M. Matsuoka, et al., Solid State Ionics 124 (1999) 201–211.
-
[85]
K. Koji Kawada, T. Okura, Funct. Mater. Lett. 14 (2021) 2141001.
-
[86]
M. Guin, F. Tietz, J. Power Sources 273 (2015) 1056–1064.
-
[87]
Q. Ma, M. Guin, S. Naqash, et al., Chem. Mater. 28 (2016) 4821–4828.
doi: 10.1021/acs.chemmater.6b02059
-
[88]
M. Samiee, B. Radhakrishnan, Z. Rice, et al., J. Power Sources 347 (2017) 229–237.
-
[89]
A. Jolley, G. Cohn, G. Hitz, et al., Ionics 21 (2015) 3031–3038.
doi: 10.1007/s11581-015-1498-8
-
[90]
L. Liu, X. Qi, Y. Shao, et al., Energy Storage Sci. Techonol. 6 (2017) 961–980.
-
[91]
S. He, Y. Xu, X. Ma, et al., ChemElectroChem 7 (2020) 2087–2094.
doi: 10.1002/celc.201902052
-
[92]
S. Pal, R. Saha, G. Kumar, et al., J. Phys. Chem. C 124 (2020) 9161–9169.
doi: 10.1021/acs.jpcc.0c00543
-
[93]
Y. Jing, G. Liu, M. Avdeev, et al., ACS Energy Lett. 5 (2020) 2835–2841.
-
[94]
R. Fuentes, F. Figueiredo, M. Soares, et al., J. Eur. Ceram. Soc. 25 (2005) 455–462.
-
[95]
A. Ignaszak, P. Pasierb, R. Gajerski, et al., Thermochim. Acta 426 (2005) 7–14.
-
[96]
B. Yan, L. Kang, M. Kotobuki, et al., Mater. Technol. 34 (2018) 356–360.
-
[97]
F. Ejehi, S. Marashi, M. Ghaani, et al., Ceram. Int. 38 (2012) 6857–6863.
-
[98]
H. Leng, J. Huang, J. Nie, et al., J. Power Sources 391 (2018) 170–179.
-
[99]
S. Liu, C. Zhou, Y. Wang, et al., ACS Appl. Mater. Interfaces 12 (2020) 3502–3509.
doi: 10.1021/acsami.9b11995
-
[100]
J. Oh, L. He, A. Plewa, et al., ACS Appl. Mater. Interfaces 11 (2019) 40125–40133.
doi: 10.1021/acsami.9b14986
-
[101]
Y. Shao, G. Zhong, Y. Lu, et al., Energy Storage Mater. 23 (2019) 514–521.
-
[102]
Y. Li, Z. Deng, J. Peng, et al., Chem. Eur. J. 24 (2018) 1057–1061.
doi: 10.1002/chem.201705466
-
[103]
J. Wu, Q. Wang, X. Guo, J. Power Sources 402 (2018) 513–518.
-
[104]
Z. Deng, J. Gu, Y. Li, et al., Electrochim. Acta 298 (2019) 121–126.
-
[105]
R. Smaha, J. Roudebush, J. Herb, et al., Inorg. Chem. 54 (2015) 7985–7991.
doi: 10.1021/acs.inorgchem.5b01186
-
[106]
Y. Wang, Q. Wang, Z. Liu, et al., J. Power Sources 293 (2015) 735–740.
-
[107]
P. Hong Fang, ACS Appl. Mater. Interfaces 11 (2019) 963–972.
-
[108]
Y. Sun, Y. Wang, X. Liang, et al., J. Am. Chem. Soc. 141 (2019) 5640–5644.
doi: 10.1021/jacs.9b01746
-
[109]
H. Zhang. Lei Gao, Y. Wang, et al., J. Mater. Chem. A 8 (2020) 21265–21272.
-
[110]
T. Wan, Z. Lu, Ciucci F, J. Power Sources 390 (2018) 61–70.
-
[111]
M. Clarke. B. Goldmann, J. Dawson, et al., J. Mater. Chem. A 10 (2022) 2249–2255.
-
[112]
C. Cazorla, D. Errandonea, Phys. Rev. Lett. 113 (2014) 235902.
doi: 10.1103/PhysRevLett.113.235902
-
[113]
A. Barriocanal, M. Varela, Z. Sefrioui, et al., Science 321 (2008) 676–680.
-
[114]
Y. Wang, T. Wen, C. Park, et al., J. Appl. Phys. 119 (2016) 025901.
-
[115]
N. Tanibata, K. Noi, A. Hayashi, et al., ChemElectroChem 1 (2014) 1130–1132.
doi: 10.1002/celc.201402016
-
[116]
A. Hayashi, N. Masuzawa, S. Yubuchi, et al., Nat. Commun. 10 (2019) 5266.
-
[117]
A. Banerjee, K.H. Park, J.W. Heo, et al., Angew. Chem. Int. Ed. 55 (2016) 9634–9638.
doi: 10.1002/anie.201604158
-
[118]
L. Zhang, D. Zhang, K. Yang, et al., Adv. Sci. 3 (2016) 1600089.
-
[119]
Z. Yu, S.L. Shang, J.H. Seo, et al., Adv. Mater. 29 (2017) 1605561.
-
[120]
W. Weng, G. Liu, Y. Li, et al., Appl. Mater. Today 27 (2022) 101448.
-
[121]
L. Zhang, K. Yang, J. Mi, et al., Adv. Energy Mater. 5 (2015) 1501294.
-
[122]
S. Bo, Y. Wang, J.C. Kim, et al., Chem. Mater. 28 (2015) 252–258.
-
[123]
I. Chu, C. Kompella, H. Nguyen, et al., Sci. Rep. 6 (2016) 33733.
-
[124]
C. Moon, H. Lee, K. Park, et al., ACS Energy Lett. 3 (2018) 2504–2512.
doi: 10.1021/acsenergylett.8b01479
-
[125]
M. Duchardt, S. Neuberger, U. Ruschewitz, et al., Chem. Mater. 30 (2018) 4134–4139.
doi: 10.1021/acs.chemmater.8b01656
-
[126]
H. Jia, X. Liang, T. An, et al., Chem. Mater. 32 (2020) 4065–4071.
doi: 10.1021/acs.chemmater.0c00872
-
[127]
S. Shang, Z. Yu, Y. Wang, et al., ACS Appl. Mater. Interfaces 9 (2017) 16261–16269.
doi: 10.1021/acsami.7b03606
-
[128]
M. Meyer, Z. Anorg, Allg. Chem. 621 (1995) 457–463.
-
[129]
T. Asano, A. Sakai, S. Ouchi, et al., Adv. Mater. 30 (2018) e1803075.
-
[130]
S. Wang, Q. Bai, A.M. Nolan, et al., Angew. Chem. Int. Ed. 58 (2019) 8039–8043.
doi: 10.1002/anie.201901938
-
[131]
M. Gombotz, H.M.R. Wilkening, ACS Sustain. Chem. Eng. 9 (2020) 743–755.
-
[132]
R. Schlem, A. Banik, S. Ohno, et al., Chem. Mater. 33 (2021) 327–337.
doi: 10.1021/acs.chemmater.0c04352
-
[133]
S. Chen, C. Yu, C. Wei, et al., Energy Mater. Adv. 4 (2023) 1–10.
-
[134]
E. Wu, S. Banerjee, H. Tang, et al., Nat. Commun. 12 (2021) 1256.
-
[135]
L. Li, J. Yao, R. Xu, et al., Energy Storage Mater. 63 (2023) 103016.
-
[136]
X. Xu, Y. Li, X. Wang, et al., J. Solid State Electrochem. 28 (2024) 3501–3507.
doi: 10.1007/s10008-024-05838-1
-
[137]
J. Fu, S. Wang, D. Wu, et al., Adv. Mater. 36 (2024) 2308012.
-
[138]
Y. Hu, J. Fu, J. Xu, et al., Matter 7 (2024) 1018–1034.
-
[139]
W. Tang, A. Unemoto, W. Zhou, et al., Energy Environ. Sci. 8 (2015) 3637–3645.
-
[140]
L. Duchene, R.S. Kuhnel, D. Rentsch, et al., Chem. Commun. 53 (2017) 4195–4198.
-
[141]
W. Tang, M. Matsuo, H. Wu, et al., Energy Storage Mater. 4 (2016) 79–83.
-
[142]
X. Luo, A. Rawal, M.S. Salman, et al., ACS Appl. Nano Mater. 5 (2022) 373–379.
doi: 10.1021/acsanm.1c03187
-
[143]
J. Oh, L. He, B. Chua, et al., Energy Storage Mater. 34 (2021) 28–44.
-
[144]
D. Reed, G. Coffey, E. Mast, et al., J. Power Sources 227 (2013) 94–100.
-
[145]
I. Kim, J. Park, C. Kim, et al., J. Power Sources 301 (2016) 332–337.
-
[146]
G. Zhang, Z. Wen, X. Wu, et al., J. Alloys Compd. 613 (2014) 80–86.
-
[147]
C. Zhao, L. Liu, X. Qi, et al., Adv. Energy Mater. 8 (2018) 1703012.
-
[148]
K. Zhao, Y. Liu, S. Zhang, et al., Electrochem. Commun. 69 (2016) 59–63.
-
[149]
H. Yang, B. Zhang, K. Konstantinov, et al., Adv. Energy Sustain. Res. 2 (2021) 2000057.
-
[150]
H. Lai, J. Wang, M. Cai, et al., Chem. Engin. J. 433 (2022) 133545.
-
[151]
M. Bay, M. Wang, R. Grissa, et al., Adv. Energy Mater. 10 (2019) 1902899.
-
[152]
L. Liu, X. Qi, Q. Ma, et al., ACS Appl. Mater. Interfaces 8 (2016) 32631–32636.
doi: 10.1021/acsami.6b11773
-
[153]
P. Kehne, C. Guhl, L. Alff, et al., Solid State Ionics 341 (2019) 115041.
-
[154]
C. Li, R. Li, K. Liu, et al., Interdisciplinary Mater. 1 (2022) 396–416.
doi: 10.1002/idm2.12044
-
[155]
Z. Zhang, Q. Zhang, J. Shi, et al., Adv. Energy Mater. 7 (2017) 1601196.
-
[156]
Y. Li, M. Li, Z. Sun, et al., Energy Storage Mater. 56 (2023) 582–599.
-
[157]
H. Gao, L. Xue, S. Xin, et al., Angew. Chem. Int. Ed. 56 (2017) 5541–5545.
doi: 10.1002/anie.201702003
-
[158]
W. Zhou, Y. Li, S. Xin, et al., ACS Cent. Sci. 3 (2017) 52–57.
doi: 10.1021/acscentsci.6b00321
-
[159]
L. Ran, M. Li, E. Cooper, et al., Energy Storage Mater. 41 (2021) 8–13.
-
[160]
X. Miao, H. Di, X. Ge, et al., Energy Storage Mater. 30 (2020) 170–178.
-
[161]
X. Wang, J. Chen, Z. Mao, et al., J. Mater. Chem. A 9 (2021) 16039–16045.
doi: 10.1039/d1ta04869d
-
[162]
H. Fu, Q. Yin, Y. Huang, et al., ACS Mater. Lett. 2 (2019) 127–132.
doi: 10.1109/icme.2019.00030
-
[163]
X. Yu, Y. Yao, X. Wang, et al., Energy Storage Mater. 54 (2023) 221–226.
-
[164]
Q. Ni, Y. Xiong, Z. Sun, et al., Adv. Energy Mater. 13 (2023) 2300271.
-
[165]
Y. Lu, J.A. Alonso, Q. Yi, et al., Adv. Energy Mater. 9 (2019) 1901205.
-
[166]
C. Wang, Z. Sun, Y. Zhao, et al., Small 17 (2021) e2103819.
-
[167]
Y. Zhao, C. Wang, Y. Dai, et al., Nano Energy 88 (2021) 106293.
-
[168]
D. Li, C. Sun, C. Wang, et al., Energy Storage Mater. 54 (2023) 403–409.
-
[169]
J. Yang, G. Liu, M. Avdeev, et al., ACS Energy Lett. 5 (2020) 2835–2841.
doi: 10.1021/acsenergylett.0c01432
-
[170]
Z. Jiang, S. Chen, C. Wei, et al., Chin. Chem. Lett. 35 (2024) 108561.
-
[171]
J. Liang, X. Li, C. Wang, et al., Energy Mater. Adv. 4 (2023) 1–14.
-
[172]
Q. Luo, L. Ming, D. Zhang, et al., Energy Mater. Adv. 4 (2023) 1–12.
doi: 10.53819/81018102t4181
-
[173]
L. Ming, D. Liu, Q. Luo, et al., Chin. Chem. Lett. (2023) 109087.
-
[174]
B. Tang, P. Jaschin, X. Li, et al., Mater. Today 41 (2020) 200–218.
-
[175]
J. Yue, F. Han, X. Fan, et al., ACS Nano 11 (2017) 4885–4891.
doi: 10.1021/acsnano.7b01445
-
[176]
R. Rao, H. Chen, L. Wong, et al., J. Mater. Chem. A 5 (2017) 3377–3388.
-
[177]
Z. Yu, S.L. Shang, J. Seo, et al., Adv. Mater. 29 (2017) 1605561.
-
[178]
Q. Liu, X. Zhao, Q. Yang, et al., Adv. Mater. Technol. 8 (2023) 2200822.
-
[179]
Z. Zhang, H. Cao, M. Yang, et al., J. Energy Chem. 48 (2020) 250–258.
-
[180]
Y. Nagata, K. Nagao, M. Deguchi, et al., Chem. Mater. 30 (2018) 6998–7004.
doi: 10.1021/acs.chemmater.8b01872
-
[181]
F. Hao, X. Chi, Y. Liang, et al., Joule 3 (2019) 1349–1359.
-
[182]
H. Tang, Z. Deng, Z. Lin, et al., Chem. Mater. 30 (2017) 163–173.
-
[183]
Y. Li, W. Arnold, S. Halacoglu, et al., Adv. Funct. Mater. (2021) 31.
-
[184]
Y. Tian, Y. Sun, D.C. Hannah, et al., Joule 3 (2019) 1037–1050.
-
[185]
Z. Wang, L. Zhang, X. Shang, et al., Chem. Eng. J. 428 (2022) 123094.
-
[186]
L. Li, R. Xu, L. Zhang, et al., Adv. Funct. Mater. 32 (2022) 2203095.
-
[187]
H. Wan, J.P. Mwizerwa, X. Qi, et al., ACS Nano 12 (2018) 2809–2817.
doi: 10.1021/acsnano.8b00073
-
[188]
H. Wan, J.P. Mwizerwa, X. Qi, et al., ACS Appl. Mater Interfaces 10 (2018) 12300–12304.
doi: 10.1021/acsami.8b01805
-
[189]
J. Yue, X. Zhu, F. Han, et al., ACS Appl. Mater Interfaces 10 (2018) 39645–39650.
doi: 10.1021/acsami.8b12610
-
[190]
X. Chi, Y. Liang, F. Hao, et al., Angew. Chem. Int. Ed. 57 (2018) 2630–2634.
doi: 10.1002/anie.201712895
-
[191]
T. An, H. Jia, L. Peng, et al., ACS Appl. Mater. Interfaces 12 (2020) 20563–20569.
doi: 10.1021/acsami.0c03899
-
[192]
Z. Zhang, Z. Wang, L. Zhang, et al., Adv. Sci. 9 (2022) e2200744.
-
[193]
J. Park, J.P. Son, W. Ko, et al., ACS Energy Lett. 7 (2022) 3293–3301.
doi: 10.1021/acsenergylett.2c01514
-
[194]
X. Chi, Y. Zhang, F. Hao, et al., Nat. Commun. 13 (2022) 2854.
-
[195]
M. Braga, N. Grundish, A. Murchison, et al., Energy Environ. Sci. 10 (2017) 331–336.
-
[196]
R. Jiang, C. Song, J. Yang, et al., Adv. Funct. Mater. 33 (2023) 2301635.
-
[197]
Y. Pang, Y. Liu, J. Yang, et al., Mater. Today Nano 18 (2022) 100194.
-
[198]
L. de Kort, O. Brandt Corstius, V. Gulino, et al., Adv. Funct. Mater. 33 (2023) 2209122.
-
[199]
J. Cuan, Y. Zhou, T. Zhou, et al., Adv. Mater. 31 (2019) e1803533.
-
[200]
D. Souza, A. D'Angelo, T. Humphries, et al., Dalton Trans. 51 (2022) 13848–13857.
doi: 10.1039/d2dt01943d
-
[201]
W. Tang, K. Yoshida, A. Soloninin, et al., ACS Energy Lett. 1 (2016) 659– 664.
doi: 10.1021/acsenergylett.6b00310
-
[202]
T.K. Yoshida, A. Unemoto, M. Matsuo, et al., Appl. Phys. Lett. 110 (2017) 103901.
-
[203]
L. Duchêne, R. Kühnel, E. Stilp, et al., Energy Environ. Sci. 10 (2017) 2609–2615.
-
[204]
L. Duchene, D.H. Kim, Y.B. Song, et al., Energy Storage Mater. 26 (2020) 543–549.
-
[205]
F. Murgia, M. Brighi, R. Černý, Electrochem. Commun. 106 (2019) 106534.
-
[206]
M. Brighi, F. Murgia, Z. Łodziana, et al., J. Power Sources 404 (2018) 7–12.
-
[207]
L. He, H. Lin, H. Li, et al., J. Power Sources 396 (2018) 574–579.
-
[208]
R. Asakura, D. Reber, L. Duchêne, et al., Energy Environ. Sci. 13 (2020) 5048–5058.
doi: 10.1039/d0ee01569e
-
[209]
M. Jin, S. Cheng, Z. Yang, et al., Chem. Engin. J. 455 (2023) 140904.
-
[210]
L. Duchêne, D.H. Kim, Y.B. Song, et al., Energy Storage Mater. 26 (2020) 543–549.
-
[211]
K. Niitani, S. Ushiroda, H. Kuwata, et al., ACS Energy Lett. 7 (2021) 145–149.
-
[212]
J. Fu, S. Wang, D. Wu, et al., Adv. Mater. 36 (2024) e2308012.
-
[213]
L. Geng, C. Zhao, J. Yan, et al., J. Mater. Chem. A 10 (2022) 14875–14883.
doi: 10.1039/d2ta02513b
-
[214]
L. Geng, D. Xue, J. Yao, et al., Energy Environ. Sci. 16 (2023) 2658–2668.
doi: 10.1039/d3ee00237c
-
[215]
Q. Liu, L. Zhang, H. Sun, et al., ACS Energy Lett. 5 (2020) 2546–2559.
doi: 10.1021/acsenergylett.0c01214
-
[216]
Y. Li, Q. Liu, S. Wu, et al., J. Am. Chem. Soc. 19 (2023) 10576–10583.
doi: 10.1021/jacs.2c13589
-
[217]
G. Rees, D. Spencer Jolly, Z. Ning, et al., Angew. Chem. Int. Ed. 60 (2021) 2110–2115.
doi: 10.1002/anie.202013066