Citation: Qiao Wang, Ziling Jiang, Chuang Yu, Liping Li, Guangshe Li. Research progress of inorganic sodium ion conductors for solid-state batteries[J]. Chinese Chemical Letters, ;2025, 36(6): 110006. doi: 10.1016/j.cclet.2024.110006 shu

Research progress of inorganic sodium ion conductors for solid-state batteries

    * Corresponding authors.
    E-mail addresses: cyu2020@hust.edu.cn (C. Yu), lipingli@jlu.edu.cn (L. Li), guangshe@jlu.edu.cn (G. Li).
    1 These authors contributed equally to this work.
  • Received Date: 8 February 2024
    Revised Date: 14 March 2024
    Accepted Date: 13 May 2024
    Available Online: 18 May 2024

Figures(29)

  • For large-scale energy storage devices, all-solid-state sodium-ion batteries (SIBs) have been revered for the abundant resources, low cost, safety performance and a wide operating temperature range. Na-ion solid-state electrolytes (Na-ion SSEs) are the critical parts and mostly determine the electrochemical performance of SIBs. Among the studied ones, inorganic Na-ion SSEs stand out for their good safety performance and high ionic conductivity. In this review, we outline the research progress of inorganic SSEs in SIBs based on the perspectives of crystal structure, performance optimization, synthesis methods, all-solid-state SIBs, interface modification and related characterization techniques. We hope to provide some ideas for the design of future high-performance Na-ion SSEs.
  • 加载中
    1. [1]

      K. Song, C. Liu, L. Mi, et al., Small 17 (2021) e1903194.

    2. [2]

      C. Yang, S. Xin, L. Mai, et al., Adv. Energy Mater. 11 (2020) 2000974.

    3. [3]

      J. Hwang, S. Myung, Y. Sun, Chem. Soc. Rev. 46 (2017) 3529–3614.

    4. [4]

      Z. Jiang, C. Yu, S. Chen, et al., Scripta Mater. 227 (2023) 115303.

    5. [5]

      Z. Wang, C. Tang, Z. Wang, et al., Energy Mater. Adv. 4 (2023) 1–13.

    6. [6]

      Q. Zhang, X. Shen, Q. Zhou, et al., Energy Mater. Adv. 2022 (2022) 1–11.

    7. [7]

      L. Shen, S. Deng, R. Jiang, et al., Energy Storage Mater. 46 (2022) 175–181.

    8. [8]

      H. Wan, J. Mwizerwa, F. Han, et al., Nano Energy 66 (2019) 104109.

    9. [9]

      H. Wan, W. Weng, F. Han, et al., Nano Today 33 (2020) 100860.

    10. [10]

      H. Wan, J. Mwizerwa, X. Qi, et al., ACS Appl. Mater. Interfaces 10 (2018) 12300–12304.  doi: 10.1021/acsami.8b01805

    11. [11]

      Y. Yuno fano, J. Kummer, J. Inorg, Nuclear Chem. 29 (1967) 2453–2466.

    12. [12]

      F. Colò, F. Bella, J.R. Nair, et al., J. Power Sources 365 (2017) 293–302.

    13. [13]

      J. Wu, R. Zhang, Q. Fu, et al., Adv. Funct. Mater. 31 (2020) 2008165.

    14. [14]

      G. Liu, X. Sun, X. Yu, et al., Chem. Engin. J. 420 (2021) 127692.

    15. [15]

      R. Zhao, Y. Wu, Z. Liang, et al., Energy Environ. Sci. 13 (2020) 2386–2403.  doi: 10.1039/d0ee00153h

    16. [16]

      W. Richards, L. Miara, Y. Wang, et al., Chem. Mater. 28 (2015) 266–273.

    17. [17]

      Z. Zhang, S. Wenzel, Y. Zhu, et al., ACS Appl. Energy Mater. 3 (2020) 7427–7437.  doi: 10.1021/acsaem.0c00820

    18. [18]

      L. Shen, J. Yang, G. Liu, et al., Mater. Today Energy 20 (2021) 100691.

    19. [19]

      Y. Wang, S. Song, C. Xu, et al., Nano Mater. Sci. 1 (2019) 91–100.

    20. [20]

      G. Huang, P. Zheng, W. Li, et al., Funct. Mater. Lett. 14 (2021) 2130005.  doi: 10.1142/s179360472130005x

    21. [21]

      X. Zhu, K. Wang, Y. Xu, et al., Energy Storage Mater. 36 (2021) 291–308.

    22. [22]

      E. Quartarone, P. Mustarelli, Chem. Soc. Rev. 40 (2011) 2525–2540.  doi: 10.1039/c0cs00081g

    23. [23]

      L. Ran, A. Baktash, M. Li, et al., Energy Storage Mater. 40 (2021) 282–291.

    24. [24]

      P. Ding, Z. Lin, X. Guo, et al., Mater. Today 51 (2021) 449–474.

    25. [25]

      L. Gao, B. Tang, H. Jiang, et al., Adv. Sustain. Syst. 6 (2021) 2100389.

    26. [26]

      A. Li, X. Liao, H. Zhang, et al., Adv. Mater. 32 (2020) e1905517.

    27. [27]

      L. Tian, Y. Liu, Z. Su, et al., J. Mater. Chem. A 9 (2021) 23882–23890.  doi: 10.1039/d1ta06269g

    28. [28]

      L. Yue, J. Ma, J. Zhang, et al., Energy Storage Mater. 5 (2016) 139–164.

    29. [29]

      Q. Zhao, P. Chen, S. Li, et al., J. Mater. Chem. A 7 (2019) 7823–7830.  doi: 10.1039/c8ta12008k

    30. [30]

      G. Wang, X. Zhu, A. Rashid, et al., J. Mater. Chem. A 8 (2020) 13351–13363.  doi: 10.1039/d0ta00335b

    31. [31]

      A. Manthiram, X. Yu, S. Wang, Nat. Rev. Mater. 2 (2017) 16103.

    32. [32]

      J. Zhang, J. Zhao, L. Yue, et al., Adv. Energy Mater. 5 (2015) 1501082.

    33. [33]

      H. Wang, Y. Chen, Z.D. Hood, et al., Angew. Chem. Int. Ed. 55 (2016) 8551–8555.  doi: 10.1002/anie.201601546

    34. [34]

      S. He, Y. Xu, Y. Chen, et al., J. Mater. Chem. A 8 (2020) 12594–12602.  doi: 10.1039/c9ta12213c

    35. [35]

      S. Takeuchi, K. Suzuki, M. Hirayama, et al., J. Solid State Chem. 265 (2018) 353–358.

    36. [36]

      Z. Wu, S. Chen, C. Yu, et al., Chem. Engin. J. 442 (2022) 136346.

    37. [37]

      H. Hong, Mat. Res. Bull. 11 (1976) 173–182.

    38. [38]

      J. Goodenough, H. Hong, A. Kafalas, Mat. Res. Bull. 11 (1976) 203–220.

    39. [39]

      M. Evstigneeva, V. Nalbandyan, A. Petrenko, et al., Chem. Mater. 23 (2011) 1174–1181.  doi: 10.1021/cm102629g

    40. [40]

      W. Xia, Y. Zhao, F. Zhao, et al., Chem. Rev. 122 (2022) 3763–3819.  doi: 10.1021/acs.chemrev.1c00594

    41. [41]

      Y. Sadikin, M. Brighi, P. Schouwink, et al., Adv. Energy Mater. 5 (2015) 1501016.

    42. [42]

      Y. Qie, S. Wang, S. Fu, et al., J. Phys. Chem. Lett. 11 (2020) 3376–3383.  doi: 10.1021/acs.jpclett.0c00010

    43. [43]

      X. He, Y. Zhu, Y. Mo, Nat. Commun. 8 (2017) 15893.

    44. [44]

      G. Liu, J. Yang, J. Wu, et al., Adv. Mater. 36 (2024) 2311475.  doi: 10.1002/adma.202311475

    45. [45]

      C. Delmas, Adv. Energy Mater. 8 (2018) 1703137.

    46. [46]

      K. Hueso, M. Armand, T. Rojo, Energy Environ. Sci. 6 (2013) 734–749.  doi: 10.1039/c3ee24086j

    47. [47]

      H. Li, H. Fan, Z. Liu, et al., Sens. Actuator. B: Chem. 255 (2018) 1445–1454.

    48. [48]

      X. Lu, G. Xia, J.P. Lemmon, et al., J. Power Sources 195 (2010) 2431–2442.

    49. [49]

      S. Lee, D. Lee, S. Lee, et al., Bull. Mater. Sci. 39 (2016) 729–735.  doi: 10.1007/s12034-016-1199-6

    50. [50]

      G. Yamaguchi, Bull. Chem. Soc. Jpn. 41 (1968) 93–99.  doi: 10.1246/bcsj.41.93

    51. [51]

      M. Peters, J. Phys. Chem. 73 (1969) 1774–1780.

    52. [52]

      L. Boyer, P. Edwardson, Ferroelectrics 104 (1990) 417–422.  doi: 10.1080/00150199008223849

    53. [53]

      R. Niewa, Z. Anorg. Allg. Chem. 639 (2013) 1699–1715.  doi: 10.1002/zaac.201300063

    54. [54]

      S. Fan, M. Lei, H. Wu, et al., Energy Storage Mater. 31 (2020) 87–94.

    55. [55]

      H. Nguyen, S. Hy, E. Wu, et al., J. Electrochem. Soc. 163 (2016) A2165–A2171.  doi: 10.1149/2.0091610jes

    56. [56]

      Y. Yu, Z. Wang, G. Shao, J. Mater. Chem. A 6 (2018) 19843–19852.  doi: 10.1039/c8ta08412b

    57. [57]

      C. Wei, R. Wang, Z. Wu, et al., Chem. Engin. J. 476 (2023) 146531.

    58. [58]

      C. Wei, C. Yu, R. Wang, et al., J. Power Sources 559 (2023) 232659.

    59. [59]

      C. Wei, S. Chen, C. Yu, et al., Appl. Mater. Today 31 (2023) 101770.

    60. [60]

      C. Wei, C. Liu, Y. Xiao, et al., Adv. Funct. Mater. 34 (2024) 2314306.

    61. [61]

      Q. Luo, C. Yu, C. Wei, et al., Ceram. Int. 49 (2023) 11485–11493.

    62. [62]

      Z. Zhang, E. Ramos, F. Lalère, et al., Energy Environ. Sci. 11 (2018) 87–93.  doi: 10.1039/c7ee03083e

    63. [63]

      H. Oguchi, M. Matsuo, S. Kuromoto, et al., J. Appl. Phys. 111 (2012) 036102.

    64. [64]

      M. Matsuo, S. Kuromoto, T. Sato, et al., Appl. Phys. Lett. 100 (2012) 203904.

    65. [65]

      T. Udovic, M. Matsuo, A. Unemoto, et al., Chem. Commun. 50 (2014) 3750–3752.

    66. [66]

      S. Shan, L. Yang, X. Liu, et al., J. Alloys Compd. 563 (2013) 176–179.

    67. [67]

      S. Butee, K. Kambale, M. Firodiya, Process. Appl. Ceram. 10 (2016) 67–72.

    68. [68]

      L. Ghadbeigi, A. Szendrei, P. Moreno, et al., Solid State Ionics 290 (2016) 77–82.

    69. [69]

      S. Naqash, F. Tietz, E. Yazhenskikh, et al., Solid State Ionics 336 (2019) 57–66.

    70. [70]

      Z. Zhang, S. Shi, Y. Hu, et al., J. Inorg. Mater. 28 (2013) 1255–1260.

    71. [71]

      S. Yubuchi, A. Hayashi, M. Tatsumisago, Chem. Lett. 44 (2015) 884–886.  doi: 10.1246/cl.150195

    72. [72]

      T. Kim, K. Park, Y. Choi, et al., J. Mater. Chem. A 6 (2018) 840–844.  doi: 10.1039/c7ta09242c

    73. [73]

      A. Virkar, R. Gordon, J. Am. Ceram. Soc. 60 (1977) 58–61.  doi: 10.1111/j.1151-2916.1977.tb16094.x

    74. [74]

      C. Zhu, J. Xue, J. Alloys Compd. 517 (2012) 182–185.

    75. [75]

      X. Wei, Y. Cao, L. Lu, et al., J. Alloys Compd. 509 (2011) 6222–6226.

    76. [76]

      D. Xu, H. Jiang, Y. Li, et al., Eur. Phys. J. Appl. Phys. 74 (2016) 10901.  doi: 10.1051/epjap/2016150466

    77. [77]

      L. Yang, S. Shan, X. Wei, et al., Ceram. Int. 40 (2014) 9055–9060.

    78. [78]

      H. Erkalfa, Z. Baykara, Ceram. Int. 24 (1998) 81–90.

    79. [79]

      G. Chen, J. Lu, X. Zhou, et al., Ceram. Int. 42 (2016) 16055–16062.

    80. [80]

      C. Zhu, Y. Hong, P. Huang, J. Alloys Compd. 688 (2016) 746–751.

    81. [81]

      Y. Viswanathan, A. Virkar, J. Mater. Sci. 18 (1983) 109–113.

    82. [82]

      K. Yuria Saito, T. Asai, H. Kageyama, et al., Solid State Ionics 58 (1992) 327–331.

    83. [83]

      A. Winand, P. Tarte, J. Mater. Sci. 25 (1990) 4008–4013.

    84. [84]

      T. Miyajim, J. Tamaki, M. Matsuoka, et al., Solid State Ionics 124 (1999) 201–211.

    85. [85]

      K. Koji Kawada, T. Okura, Funct. Mater. Lett. 14 (2021) 2141001.

    86. [86]

      M. Guin, F. Tietz, J. Power Sources 273 (2015) 1056–1064.

    87. [87]

      Q. Ma, M. Guin, S. Naqash, et al., Chem. Mater. 28 (2016) 4821–4828.  doi: 10.1021/acs.chemmater.6b02059

    88. [88]

      M. Samiee, B. Radhakrishnan, Z. Rice, et al., J. Power Sources 347 (2017) 229–237.

    89. [89]

      A. Jolley, G. Cohn, G. Hitz, et al., Ionics 21 (2015) 3031–3038.  doi: 10.1007/s11581-015-1498-8

    90. [90]

      L. Liu, X. Qi, Y. Shao, et al., Energy Storage Sci. Techonol. 6 (2017) 961–980.

    91. [91]

      S. He, Y. Xu, X. Ma, et al., ChemElectroChem 7 (2020) 2087–2094.  doi: 10.1002/celc.201902052

    92. [92]

      S. Pal, R. Saha, G. Kumar, et al., J. Phys. Chem. C 124 (2020) 9161–9169.  doi: 10.1021/acs.jpcc.0c00543

    93. [93]

      Y. Jing, G. Liu, M. Avdeev, et al., ACS Energy Lett. 5 (2020) 2835–2841.

    94. [94]

      R. Fuentes, F. Figueiredo, M. Soares, et al., J. Eur. Ceram. Soc. 25 (2005) 455–462.

    95. [95]

      A. Ignaszak, P. Pasierb, R. Gajerski, et al., Thermochim. Acta 426 (2005) 7–14.

    96. [96]

      B. Yan, L. Kang, M. Kotobuki, et al., Mater. Technol. 34 (2018) 356–360.

    97. [97]

      F. Ejehi, S. Marashi, M. Ghaani, et al., Ceram. Int. 38 (2012) 6857–6863.

    98. [98]

      H. Leng, J. Huang, J. Nie, et al., J. Power Sources 391 (2018) 170–179.

    99. [99]

      S. Liu, C. Zhou, Y. Wang, et al., ACS Appl. Mater. Interfaces 12 (2020) 3502–3509.  doi: 10.1021/acsami.9b11995

    100. [100]

      J. Oh, L. He, A. Plewa, et al., ACS Appl. Mater. Interfaces 11 (2019) 40125–40133.  doi: 10.1021/acsami.9b14986

    101. [101]

      Y. Shao, G. Zhong, Y. Lu, et al., Energy Storage Mater. 23 (2019) 514–521.

    102. [102]

      Y. Li, Z. Deng, J. Peng, et al., Chem. Eur. J. 24 (2018) 1057–1061.  doi: 10.1002/chem.201705466

    103. [103]

      J. Wu, Q. Wang, X. Guo, J. Power Sources 402 (2018) 513–518.

    104. [104]

      Z. Deng, J. Gu, Y. Li, et al., Electrochim. Acta 298 (2019) 121–126.

    105. [105]

      R. Smaha, J. Roudebush, J. Herb, et al., Inorg. Chem. 54 (2015) 7985–7991.  doi: 10.1021/acs.inorgchem.5b01186

    106. [106]

      Y. Wang, Q. Wang, Z. Liu, et al., J. Power Sources 293 (2015) 735–740.

    107. [107]

      P. Hong Fang, ACS Appl. Mater. Interfaces 11 (2019) 963–972.

    108. [108]

      Y. Sun, Y. Wang, X. Liang, et al., J. Am. Chem. Soc. 141 (2019) 5640–5644.  doi: 10.1021/jacs.9b01746

    109. [109]

      H. Zhang. Lei Gao, Y. Wang, et al., J. Mater. Chem. A 8 (2020) 21265–21272.

    110. [110]

      T. Wan, Z. Lu, Ciucci F, J. Power Sources 390 (2018) 61–70.

    111. [111]

      M. Clarke. B. Goldmann, J. Dawson, et al., J. Mater. Chem. A 10 (2022) 2249–2255.

    112. [112]

      C. Cazorla, D. Errandonea, Phys. Rev. Lett. 113 (2014) 235902.  doi: 10.1103/PhysRevLett.113.235902

    113. [113]

      A. Barriocanal, M. Varela, Z. Sefrioui, et al., Science 321 (2008) 676–680.

    114. [114]

      Y. Wang, T. Wen, C. Park, et al., J. Appl. Phys. 119 (2016) 025901.

    115. [115]

      N. Tanibata, K. Noi, A. Hayashi, et al., ChemElectroChem 1 (2014) 1130–1132.  doi: 10.1002/celc.201402016

    116. [116]

      A. Hayashi, N. Masuzawa, S. Yubuchi, et al., Nat. Commun. 10 (2019) 5266.

    117. [117]

      A. Banerjee, K.H. Park, J.W. Heo, et al., Angew. Chem. Int. Ed. 55 (2016) 9634–9638.  doi: 10.1002/anie.201604158

    118. [118]

      L. Zhang, D. Zhang, K. Yang, et al., Adv. Sci. 3 (2016) 1600089.

    119. [119]

      Z. Yu, S.L. Shang, J.H. Seo, et al., Adv. Mater. 29 (2017) 1605561.

    120. [120]

      W. Weng, G. Liu, Y. Li, et al., Appl. Mater. Today 27 (2022) 101448.

    121. [121]

      L. Zhang, K. Yang, J. Mi, et al., Adv. Energy Mater. 5 (2015) 1501294.

    122. [122]

      S. Bo, Y. Wang, J.C. Kim, et al., Chem. Mater. 28 (2015) 252–258.

    123. [123]

      I. Chu, C. Kompella, H. Nguyen, et al., Sci. Rep. 6 (2016) 33733.

    124. [124]

      C. Moon, H. Lee, K. Park, et al., ACS Energy Lett. 3 (2018) 2504–2512.  doi: 10.1021/acsenergylett.8b01479

    125. [125]

      M. Duchardt, S. Neuberger, U. Ruschewitz, et al., Chem. Mater. 30 (2018) 4134–4139.  doi: 10.1021/acs.chemmater.8b01656

    126. [126]

      H. Jia, X. Liang, T. An, et al., Chem. Mater. 32 (2020) 4065–4071.  doi: 10.1021/acs.chemmater.0c00872

    127. [127]

      S. Shang, Z. Yu, Y. Wang, et al., ACS Appl. Mater. Interfaces 9 (2017) 16261–16269.  doi: 10.1021/acsami.7b03606

    128. [128]

      M. Meyer, Z. Anorg, Allg. Chem. 621 (1995) 457–463.

    129. [129]

      T. Asano, A. Sakai, S. Ouchi, et al., Adv. Mater. 30 (2018) e1803075.

    130. [130]

      S. Wang, Q. Bai, A.M. Nolan, et al., Angew. Chem. Int. Ed. 58 (2019) 8039–8043.  doi: 10.1002/anie.201901938

    131. [131]

      M. Gombotz, H.M.R. Wilkening, ACS Sustain. Chem. Eng. 9 (2020) 743–755.

    132. [132]

      R. Schlem, A. Banik, S. Ohno, et al., Chem. Mater. 33 (2021) 327–337.  doi: 10.1021/acs.chemmater.0c04352

    133. [133]

      S. Chen, C. Yu, C. Wei, et al., Energy Mater. Adv. 4 (2023) 1–10.

    134. [134]

      E. Wu, S. Banerjee, H. Tang, et al., Nat. Commun. 12 (2021) 1256.

    135. [135]

      L. Li, J. Yao, R. Xu, et al., Energy Storage Mater. 63 (2023) 103016.

    136. [136]

      X. Xu, Y. Li, X. Wang, et al., J. Solid State Electrochem. 28 (2024) 3501–3507.  doi: 10.1007/s10008-024-05838-1

    137. [137]

      J. Fu, S. Wang, D. Wu, et al., Adv. Mater. 36 (2024) 2308012.

    138. [138]

      Y. Hu, J. Fu, J. Xu, et al., Matter 7 (2024) 1018–1034.

    139. [139]

      W. Tang, A. Unemoto, W. Zhou, et al., Energy Environ. Sci. 8 (2015) 3637–3645.

    140. [140]

      L. Duchene, R.S. Kuhnel, D. Rentsch, et al., Chem. Commun. 53 (2017) 4195–4198.

    141. [141]

      W. Tang, M. Matsuo, H. Wu, et al., Energy Storage Mater. 4 (2016) 79–83.

    142. [142]

      X. Luo, A. Rawal, M.S. Salman, et al., ACS Appl. Nano Mater. 5 (2022) 373–379.  doi: 10.1021/acsanm.1c03187

    143. [143]

      J. Oh, L. He, B. Chua, et al., Energy Storage Mater. 34 (2021) 28–44.

    144. [144]

      D. Reed, G. Coffey, E. Mast, et al., J. Power Sources 227 (2013) 94–100.

    145. [145]

      I. Kim, J. Park, C. Kim, et al., J. Power Sources 301 (2016) 332–337.

    146. [146]

      G. Zhang, Z. Wen, X. Wu, et al., J. Alloys Compd. 613 (2014) 80–86.

    147. [147]

      C. Zhao, L. Liu, X. Qi, et al., Adv. Energy Mater. 8 (2018) 1703012.

    148. [148]

      K. Zhao, Y. Liu, S. Zhang, et al., Electrochem. Commun. 69 (2016) 59–63.

    149. [149]

      H. Yang, B. Zhang, K. Konstantinov, et al., Adv. Energy Sustain. Res. 2 (2021) 2000057.

    150. [150]

      H. Lai, J. Wang, M. Cai, et al., Chem. Engin. J. 433 (2022) 133545.

    151. [151]

      M. Bay, M. Wang, R. Grissa, et al., Adv. Energy Mater. 10 (2019) 1902899.

    152. [152]

      L. Liu, X. Qi, Q. Ma, et al., ACS Appl. Mater. Interfaces 8 (2016) 32631–32636.  doi: 10.1021/acsami.6b11773

    153. [153]

      P. Kehne, C. Guhl, L. Alff, et al., Solid State Ionics 341 (2019) 115041.

    154. [154]

      C. Li, R. Li, K. Liu, et al., Interdisciplinary Mater. 1 (2022) 396–416.  doi: 10.1002/idm2.12044

    155. [155]

      Z. Zhang, Q. Zhang, J. Shi, et al., Adv. Energy Mater. 7 (2017) 1601196.

    156. [156]

      Y. Li, M. Li, Z. Sun, et al., Energy Storage Mater. 56 (2023) 582–599.

    157. [157]

      H. Gao, L. Xue, S. Xin, et al., Angew. Chem. Int. Ed. 56 (2017) 5541–5545.  doi: 10.1002/anie.201702003

    158. [158]

      W. Zhou, Y. Li, S. Xin, et al., ACS Cent. Sci. 3 (2017) 52–57.  doi: 10.1021/acscentsci.6b00321

    159. [159]

      L. Ran, M. Li, E. Cooper, et al., Energy Storage Mater. 41 (2021) 8–13.

    160. [160]

      X. Miao, H. Di, X. Ge, et al., Energy Storage Mater. 30 (2020) 170–178.

    161. [161]

      X. Wang, J. Chen, Z. Mao, et al., J. Mater. Chem. A 9 (2021) 16039–16045.  doi: 10.1039/d1ta04869d

    162. [162]

      H. Fu, Q. Yin, Y. Huang, et al., ACS Mater. Lett. 2 (2019) 127–132.  doi: 10.1109/icme.2019.00030

    163. [163]

      X. Yu, Y. Yao, X. Wang, et al., Energy Storage Mater. 54 (2023) 221–226.

    164. [164]

      Q. Ni, Y. Xiong, Z. Sun, et al., Adv. Energy Mater. 13 (2023) 2300271.

    165. [165]

      Y. Lu, J.A. Alonso, Q. Yi, et al., Adv. Energy Mater. 9 (2019) 1901205.

    166. [166]

      C. Wang, Z. Sun, Y. Zhao, et al., Small 17 (2021) e2103819.

    167. [167]

      Y. Zhao, C. Wang, Y. Dai, et al., Nano Energy 88 (2021) 106293.

    168. [168]

      D. Li, C. Sun, C. Wang, et al., Energy Storage Mater. 54 (2023) 403–409.

    169. [169]

      J. Yang, G. Liu, M. Avdeev, et al., ACS Energy Lett. 5 (2020) 2835–2841.  doi: 10.1021/acsenergylett.0c01432

    170. [170]

      Z. Jiang, S. Chen, C. Wei, et al., Chin. Chem. Lett. 35 (2024) 108561.

    171. [171]

      J. Liang, X. Li, C. Wang, et al., Energy Mater. Adv. 4 (2023) 1–14.

    172. [172]

      Q. Luo, L. Ming, D. Zhang, et al., Energy Mater. Adv. 4 (2023) 1–12.  doi: 10.53819/81018102t4181

    173. [173]

      L. Ming, D. Liu, Q. Luo, et al., Chin. Chem. Lett. (2023) 109087.

    174. [174]

      B. Tang, P. Jaschin, X. Li, et al., Mater. Today 41 (2020) 200–218.

    175. [175]

      J. Yue, F. Han, X. Fan, et al., ACS Nano 11 (2017) 4885–4891.  doi: 10.1021/acsnano.7b01445

    176. [176]

      R. Rao, H. Chen, L. Wong, et al., J. Mater. Chem. A 5 (2017) 3377–3388.

    177. [177]

      Z. Yu, S.L. Shang, J. Seo, et al., Adv. Mater. 29 (2017) 1605561.

    178. [178]

      Q. Liu, X. Zhao, Q. Yang, et al., Adv. Mater. Technol. 8 (2023) 2200822.

    179. [179]

      Z. Zhang, H. Cao, M. Yang, et al., J. Energy Chem. 48 (2020) 250–258.

    180. [180]

      Y. Nagata, K. Nagao, M. Deguchi, et al., Chem. Mater. 30 (2018) 6998–7004.  doi: 10.1021/acs.chemmater.8b01872

    181. [181]

      F. Hao, X. Chi, Y. Liang, et al., Joule 3 (2019) 1349–1359.

    182. [182]

      H. Tang, Z. Deng, Z. Lin, et al., Chem. Mater. 30 (2017) 163–173.

    183. [183]

      Y. Li, W. Arnold, S. Halacoglu, et al., Adv. Funct. Mater. (2021) 31.

    184. [184]

      Y. Tian, Y. Sun, D.C. Hannah, et al., Joule 3 (2019) 1037–1050.

    185. [185]

      Z. Wang, L. Zhang, X. Shang, et al., Chem. Eng. J. 428 (2022) 123094.

    186. [186]

      L. Li, R. Xu, L. Zhang, et al., Adv. Funct. Mater. 32 (2022) 2203095.

    187. [187]

      H. Wan, J.P. Mwizerwa, X. Qi, et al., ACS Nano 12 (2018) 2809–2817.  doi: 10.1021/acsnano.8b00073

    188. [188]

      H. Wan, J.P. Mwizerwa, X. Qi, et al., ACS Appl. Mater Interfaces 10 (2018) 12300–12304.  doi: 10.1021/acsami.8b01805

    189. [189]

      J. Yue, X. Zhu, F. Han, et al., ACS Appl. Mater Interfaces 10 (2018) 39645–39650.  doi: 10.1021/acsami.8b12610

    190. [190]

      X. Chi, Y. Liang, F. Hao, et al., Angew. Chem. Int. Ed. 57 (2018) 2630–2634.  doi: 10.1002/anie.201712895

    191. [191]

      T. An, H. Jia, L. Peng, et al., ACS Appl. Mater. Interfaces 12 (2020) 20563–20569.  doi: 10.1021/acsami.0c03899

    192. [192]

      Z. Zhang, Z. Wang, L. Zhang, et al., Adv. Sci. 9 (2022) e2200744.

    193. [193]

      J. Park, J.P. Son, W. Ko, et al., ACS Energy Lett. 7 (2022) 3293–3301.  doi: 10.1021/acsenergylett.2c01514

    194. [194]

      X. Chi, Y. Zhang, F. Hao, et al., Nat. Commun. 13 (2022) 2854.

    195. [195]

      M. Braga, N. Grundish, A. Murchison, et al., Energy Environ. Sci. 10 (2017) 331–336.

    196. [196]

      R. Jiang, C. Song, J. Yang, et al., Adv. Funct. Mater. 33 (2023) 2301635.

    197. [197]

      Y. Pang, Y. Liu, J. Yang, et al., Mater. Today Nano 18 (2022) 100194.

    198. [198]

      L. de Kort, O. Brandt Corstius, V. Gulino, et al., Adv. Funct. Mater. 33 (2023) 2209122.

    199. [199]

      J. Cuan, Y. Zhou, T. Zhou, et al., Adv. Mater. 31 (2019) e1803533.

    200. [200]

      D. Souza, A. D'Angelo, T. Humphries, et al., Dalton Trans. 51 (2022) 13848–13857.  doi: 10.1039/d2dt01943d

    201. [201]

      W. Tang, K. Yoshida, A. Soloninin, et al., ACS Energy Lett. 1 (2016) 659– 664.  doi: 10.1021/acsenergylett.6b00310

    202. [202]

      T.K. Yoshida, A. Unemoto, M. Matsuo, et al., Appl. Phys. Lett. 110 (2017) 103901.

    203. [203]

      L. Duchêne, R. Kühnel, E. Stilp, et al., Energy Environ. Sci. 10 (2017) 2609–2615.

    204. [204]

      L. Duchene, D.H. Kim, Y.B. Song, et al., Energy Storage Mater. 26 (2020) 543–549.

    205. [205]

      F. Murgia, M. Brighi, R. Černý, Electrochem. Commun. 106 (2019) 106534.

    206. [206]

      M. Brighi, F. Murgia, Z. Łodziana, et al., J. Power Sources 404 (2018) 7–12.

    207. [207]

      L. He, H. Lin, H. Li, et al., J. Power Sources 396 (2018) 574–579.

    208. [208]

      R. Asakura, D. Reber, L. Duchêne, et al., Energy Environ. Sci. 13 (2020) 5048–5058.  doi: 10.1039/d0ee01569e

    209. [209]

      M. Jin, S. Cheng, Z. Yang, et al., Chem. Engin. J. 455 (2023) 140904.

    210. [210]

      L. Duchêne, D.H. Kim, Y.B. Song, et al., Energy Storage Mater. 26 (2020) 543–549.

    211. [211]

      K. Niitani, S. Ushiroda, H. Kuwata, et al., ACS Energy Lett. 7 (2021) 145–149.

    212. [212]

      J. Fu, S. Wang, D. Wu, et al., Adv. Mater. 36 (2024) e2308012.

    213. [213]

      L. Geng, C. Zhao, J. Yan, et al., J. Mater. Chem. A 10 (2022) 14875–14883.  doi: 10.1039/d2ta02513b

    214. [214]

      L. Geng, D. Xue, J. Yao, et al., Energy Environ. Sci. 16 (2023) 2658–2668.  doi: 10.1039/d3ee00237c

    215. [215]

      Q. Liu, L. Zhang, H. Sun, et al., ACS Energy Lett. 5 (2020) 2546–2559.  doi: 10.1021/acsenergylett.0c01214

    216. [216]

      Y. Li, Q. Liu, S. Wu, et al., J. Am. Chem. Soc. 19 (2023) 10576–10583.  doi: 10.1021/jacs.2c13589

    217. [217]

      G. Rees, D. Spencer Jolly, Z. Ning, et al., Angew. Chem. Int. Ed. 60 (2021) 2110–2115.  doi: 10.1002/anie.202013066

  • 加载中
    1. [1]

      Fan WuShaoyang WuXin YeYurong RenPeng Wei . Research progress of high-entropy cathode materials for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(4): 109851-. doi: 10.1016/j.cclet.2024.109851

    2. [2]

      Liang MingDan LiuQiyue LuoChaochao WeiChen LiuZiling JiangZhongkai WuLin LiLong ZhangShijie ChengChuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387

    3. [3]

      Ziling JiangChen LiuJie YangXia LiChaochao WeiQiyue LuoZhongkai WuLin LiLiping LiShijie ChengChuang Yu . Designing F-doped Li3InCl6 electrolyte with enhanced stability for all-solid-state lithium batteries in a wide voltage window. Chinese Chemical Letters, 2025, 36(6): 109741-. doi: 10.1016/j.cclet.2024.109741

    4. [4]

      Kailong ZhangChao ZhangLuanhui WuQidong YangJiadong ZhangGuang HuLiang SongGaoran LiWenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618

    5. [5]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    6. [6]

      Hongyu TangDongming LiuJinfu HuangLiang ZhangYang TangBin HuangYanwei LiShunhua XiaoYiling SunRenheng Wang . Excellent structural stability and electrochemical properties of LiNi0.9Co0.05Mn0.05O2 material by surface Ni2+ anchoring and Cs+ doping. Chinese Chemical Letters, 2025, 36(6): 109987-. doi: 10.1016/j.cclet.2024.109987

    7. [7]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

    8. [8]

      Fengshun WangHuachao JiZefei WuKang ChenWenqi GaoChen WangLonglu WangJianmei ChenDafeng Yan . The advanced development of one-dimensional transition metal dichalcogenide nanotubes: From preparation to application. Chinese Chemical Letters, 2025, 36(5): 109898-. doi: 10.1016/j.cclet.2024.109898

    9. [9]

      Yue Zheng Tianpeng Huang Pengxian Han Jun Ma Guanglei Cui . Cathodal Li-ion interfacial transport in sulfide-based all-solid-state batteries: Challenges and improvement strategies. Chinese Journal of Structural Chemistry, 2024, 43(10): 100390-100390. doi: 10.1016/j.cjsc.2024.100390

    10. [10]

      Ruofan YinZhaoxin GuoRui LiuXian-Sen Tao . Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109643-. doi: 10.1016/j.cclet.2024.109643

    11. [11]

      Shengyu ZhaoQinhao ShiWuliang FengYang LiuXinxin YangXingli ZouXionggang LuYufeng Zhao . Suppression of multistep phase transitions of O3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(5): 108606-. doi: 10.1016/j.cclet.2023.108606

    12. [12]

      Xiping DongXuan WangZhixiu LuQinhao ShiZhengyi YangXuan YuWuliang FengXingli ZouYang LiuYufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605

    13. [13]

      Shengyu ZhaoXuan YuYufeng Zhao . A water-stable high-voltage P3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109933-. doi: 10.1016/j.cclet.2024.109933

    14. [14]

      Xuan WangPeng SunSiteng YuanLu YueYufeng Zhao . P2-type low-cost and moisture-stable cathode for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(5): 110015-. doi: 10.1016/j.cclet.2024.110015

    15. [15]

      Fengyu ZhangYali LiangZhangran YeLei DengYunna GuoPing QiuPeng JiaQiaobao ZhangLiqiang Zhang . Enhanced electrochemical performance of nanoscale single crystal NMC811 modification by coating LiNbO3. Chinese Chemical Letters, 2024, 35(5): 108655-. doi: 10.1016/j.cclet.2023.108655

    16. [16]

      Zeyu XUTongzhou LUHaibo SHAOJianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164

    17. [17]

      Yue PanWenping SiYahao LiHaotian TanJi LiangFeng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877

    18. [18]

      Fanjun KongYixin GeShi TaoZhengqiu YuanChen LuZhida HanLianghao YuBin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552

    19. [19]

      Huixin ChenChen ZhaoHongjun YueGuiming ZhongXiang HanLiang YinDing Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650

    20. [20]

      Yue Wang Caixia Xu Xingtao Tian Siyu Wang Yan Zhao . Challenges and Modification Strategies of High-Voltage Cathode Materials for Li-ion Batteries. Chinese Journal of Structural Chemistry, 2023, 42(10): 100167-100167. doi: 10.1016/j.cjsc.2023.100167

Metrics
  • PDF Downloads(0)
  • Abstract views(161)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return