Citation: Zhenyang Yu, Yueyue Gu, Qi Sun, Yang Zheng, Yifang Zhang, Mengmeng Zhang, Delin Zhang, Zhijia Zhang, Yong Jiang. Research progress of modified metal current collectors in sodium metal anodes[J]. Chinese Chemical Letters, ;2025, 36(6): 109997. doi: 10.1016/j.cclet.2024.109997 shu

Research progress of modified metal current collectors in sodium metal anodes

Figures(6)

  • Sodium metal has been widely studied in the field of batteries due to its high theoretical specific capacity (~1,166 mAh/g), low redox potential (-2.71 V compared to standard hydrogen electrode), and low-cost advantages. However, problems such as unstable solid electrolyte interface (SEI), uncontrolled dendrite growth, and side reactions between solid-liquid interfaces have hindered the practical application of sodium metal anodes (SMAs). Currently, lots of strategies have been developed to achieve stabilized sodium metal anodes. Among these strategies, modified metal current collectors (MCCs) stand out due to their unique role in accommodating volumetric fluctuations with superior structure, lowering the energy barrier for sodium nucleation, and providing guided uniform sodium deposition. In this review, we first introduced three common metal-based current collectors applied to SMAs. Then, we summarized strategies to improve sodium deposition behavior by optimally engineering the surface of MCCs, including surface loading, surface structural design, and surface engineering for functional modification. We have followed the latest research progress and summarized surface optimization cases on different MCCs and their applications in battery systems.
  • 加载中
    1. [1]

      J.J. Long, H. Yu, W.B. Liu, Rare Met. 43 (2024) 1370–1389.  doi: 10.1007/s12598-023-02378-x

    2. [2]

      H. Li, S.H. Chang, M.M. Zhang, Copper Eng. 6 (2023) 38–50.

    3. [3]

      Y. Niu, Y. Zhao, M. Xu, Carbon Neut. 2 (2023) 150–168.  doi: 10.1002/cnl2.48

    4. [4]

      Y. Ouyang, W. Zong, J. Wang, et al., Energy Storage Mater. 42 (2021) 68–77.

    5. [5]

      C. Ding, L. Huang, J. Lan, et al., Small 16 (2020) e1906883.

    6. [6]

      L.J. Xie, C. Tang, Z.H. Bi, et al., Adv. Energy Mater. 11 (2021) 2101650.

    7. [7]

      H. Kim, J.C. Hyun, D.H. Kim, et al., Adv. Mater. 35 (2023) e2209128.

    8. [8]

      Y.Y. Guo, Y.H. Cao, J.D. Lu, et al., Microstructures 3 (2023) 2023038.

    9. [9]

      M.Q. Gao, W.Y. Zhou, Y.X. Mo, et al., Adv. Fiber Mater. 1 (2022) 100006.

    10. [10]

      Y. Zhang, W.Y. Wang, Y.P. Wang, et al., Copper Eng. 4 (2023) 23–31.

    11. [11]

      Q. Yang, Q. Fan, J. Peng, et al., Microstructures 3 (2023) 2023013.

    12. [12]

      D.Q. Liu, J. Shen, Z.Z. Jian, et al., Energy Mater. 3 (2023) 300028.

    13. [13]

      Z.Q. Zhao, X.Y. Zhao, Y.M. Zhou, et al., Adv. Powder Mater. 2 (2023) 100139.

    14. [14]

      Z.J. Zhang, J.P. Guo, S.H. Sun, et al., Rare Met. 42 (2023) 3607–3613.

    15. [15]

      C. Li, H. Xu, L. Ni, et al., Adv. Energy Mater. 13 (2023) 2301758.

    16. [16]

      K.C. Pu, X. Zhang, X.L. Qu, et al., Rare Met. 39 (2020) 616–635.  doi: 10.1007/s12598-020-01432-2

    17. [17]

      F.Y. Shi, C.H. Chen, Z.L. Xu, Adv. Fiber Mater. 3 (2021) 275–301.  doi: 10.1007/s42765-021-00070-2

    18. [18]

      Z.L. Li, T.T. Liu, C.Q. Duan, et al., Copper Eng. 4 (2023) 1–13.

    19. [19]

      Y. Zhao, W. Cheng, J.H. Wu, et al., Chin. Chem Lett. 34 (2023) 107413.

    20. [20]

      J. Xu, J. Yang, Y. Qiu, et al., Nano Res. 17 (2024) 1288–1312.  doi: 10.1007/s12274-023-5889-2

    21. [21]

      T.Y. Song, C.C. Wang, C.S. Lee, Carbon Neut. 1 (2022) 68–92.  doi: 10.1002/cnl2.7

    22. [22]

      T. Li, H. Liu, P. Shi, et al., Rare Met. 37 (2018) 449–458.  doi: 10.1007/s12598-018-1049-3

    23. [23]

      J.Y. Hu, H.W. Wang, S.W. Wang, et al., Energy Storage Mater. 36 (2021) 91–98.

    24. [24]

      Q. Ni, Y.J. Yang, H.S. Du, et al., Batteries 8 (2022) 272.  doi: 10.3390/batteries8120272

    25. [25]

      P. Molaiyan, M. Abdollahifar, B. Boz, et al., Adv. Funct. Mater. 34 (2024) 2311301.

    26. [26]

      C.Y. Zhang, A.X. Wang, J.H. Zhang, et al., Adv. Energy Mater. 8 (2018) 1802833.

    27. [27]

      B.L. Wu, C.G. Chen, L.H.J. Raijmakers, et al., Energy Storage Mater. 57 (2023) 508–539.

    28. [28]

      H. Wang, E. Matios, J. Luo, et al., Chem. Soc. Rev. 49 (2020) 3783–3805.  doi: 10.1039/d0cs00033g

    29. [29]

      B. Qin, Y. Ma, C. Li, et al., Energy Storage Mater. 61 (2023) 102891.

    30. [30]

      J. Lee, Y. Lee, J. Lee, et al., ACS Appl. Mater. Interface 9 (2017) 3723–3732.  doi: 10.1021/acsami.6b14878

    31. [31]

      L. Yang, J.W. Chen, S. Park, et al., Energy Mater. 3 (2023) 300042.

    32. [32]

      Z.G. Tian, Y.G. Zou, G. Liu, et al., Adv. Sci. 9 (2022) 2201207.

    33. [33]

      W. Fang, R. Jiang, H. Zheng, et al., Rare Met. 40 (2020) 433–439.

    34. [34]

      M. Moorthy, B. Moorthy, B.K. Ganesan, et al., Adv. Funct. Mater. 33 (2023) 2300135.

    35. [35]

      S.Z. You, M.H. Ye, J.M. Xiong, et al., Small 17 (2021) 2102400.

    36. [36]

      Y. Deng, J.X. Zheng, Q. Zhao, et al., Small 18 (2022) 2203409.

    37. [37]

      J. Chen, Y. Wang, S. Li, et al., Adv. Sci. 10 (2022) e2205695.

    38. [38]

      P.C. Liu, Y.X. Wang, H.C. Hao, et al., Adv. Mater. 32 (2020) 2002908.

    39. [39]

      H. Jeong, J. Jang, C. Jo, Chem. Eng. J. 446 (2022) 136860.

    40. [40]

      X. Li, M. Zhao, Q. Guo, et al., J. Mater. Sci. Technol. 176 (2024) 112–118.

    41. [41]

      Y. Liu, Y. Xu, J. Wang, et al., Mater. Today Sustain. 18 (2022) 100127.

    42. [42]

      W. Xu, Y. Li, J. Yao, et al., J. Appl. Electrochem. 53 (2023) 1953–1957.  doi: 10.1007/s10800-023-01904-0

    43. [43]

      Z.J. Zhang, S.H. Sun, Y.F. Chen, et al., Chin. Chem. Lett. 35 (2024) 108922.

    44. [44]

      X. Li, S. Deng, M.N. Banis, et al., ACS Appl. Mater. Interfaces 11 (2019) 32826–32832.  doi: 10.1021/acsami.9b06442

    45. [45]

      C.X. Han, G.S. Chen, Y. Ma, et al., Energy Mater. 3 (2023) 300052.

    46. [46]

      Z.K. Zhou, Q. Chen, Y. Wang, et al., Batteries 9 (2023) 188–204.  doi: 10.3390/batteries9030188

    47. [47]

      L.F. Zhang, Y.H. Xia, H. Yang, et al., APL Mater. 10 (2022) 070901.

    48. [48]

      M.Z. Wang, M. Tang, S.L. Chen, et al., Adv. Mater. 29 (2017) 1703882.

    49. [49]

      T.E. Fan, H.F. Xie, J. Alloys Compd. 775 (2019) 549–553.

    50. [50]

      X.M. Xia, C.F. Du, S. Zhong, et al., Adv. Funct. Mater. 32 (2021) 2110280.

    51. [51]

      Y.W. Yao, X.X. Wang, C.L. Dong, et al., J. Power Source. 523 (2022) 231034.

    52. [52]

      Z.C. Shen, J.W. Zhong, J.H. Chen, et al., Chin. Chem Lett. 34 (2023) 107370.

    53. [53]

      S. Byun, J. Yu, J. Power Source. 307 (2016) 849–855.

    54. [54]

      S. Jeong, V.C. Ho, O. Kwon, et al., Energy Mater. 3 (2023) 300048.

    55. [55]

      C.L. Wei, L.W. Tan, Y.C. Zhang, et al., J. Mater. Sci. Technol. 115 (2022) 156–165.

    56. [56]

      K.W. Apurva Patrike, M.V. Shelke, Chem. Asian J. 18 (2023) 2300068.

    57. [57]

      Y. Li, Q. Zhou, S. Weng, et al., Nat. Energy 7 (2022) 511–519.  doi: 10.1038/s41560-022-01033-6

    58. [58]

      A.P. Cohn, N. Muralidharan, R. Carter, et al., Nano Lett. 17 (2017) 1296–1301.  doi: 10.1021/acs.nanolett.6b05174

    59. [59]

      O.J. Dahunsi, B. Li, B. An, et al., Energy Fuel. 37 (2023) 7522–7529.  doi: 10.1021/acs.energyfuels.3c00891

    60. [60]

      C. Wei, G.X. Huang, J.Y. Mao, et al., ACS Appl. Energy Mater. 5 (2022) 10446–10456.  doi: 10.1021/acsaem.2c00912

    61. [61]

      H.H. Li, H. Zhang, F.L. Wu, et al., Adv. Energy Mater. 12 (2022) 2202293.

    62. [62]

      Z. Hou, W.H. Wang, Y.K. Yu, et al., Energy Storage Mater. 24 (2020) 588–593.

    63. [63]

      Q.W. Chen, Z. Hou, Z.Z. Sun, et al., ACS Appl. Energy Mater. 3 (2020) 2900–2906.  doi: 10.1021/acsaem.9b02508

    64. [64]

      S.Y. Wang, Y.L. Jie, Z.H. Sun, et al., ACS Appl. Energy Mater. 3 (2020) 8688–8694.  doi: 10.1021/acsaem.0c01260

    65. [65]

      S. Wu, J. Hwang, K. Matsumoto, et al., Adv. Energy Mater. 13 (2023) 2302468.

    66. [66]

      X.L. Zhu, Y. Wang, W.Y. Wang, et al., Chem. Eng. J. 446 (2022) 136917.

    67. [67]

      C.Z. Wang, Y. Zheng, Z.N. Chen, et al., Adv. Energy Mater. 13 (2023) 2370094.

    68. [68]

      S. Tang, Z. Qiu, X.Y. Wang, et al., Nano Energy 48 (2018) 101–106.

    69. [69]

      S. Tang, Y.Y. Zhang, X.G. Zhang, et al., Adv. Mater. 31 (2019) 1807495.

    70. [70]

      Q.W. Chen, T.X. Zhang, Z. Hou, et al., Chem. Eng. J. 433 (2022) 133270.

    71. [71]

      Y.F. Zhang, Q.W. Shi, Y.R. Zhong, et al., Sci. China Chem. 63 (2020) 1557–1562.  doi: 10.1007/s11426-020-9808-6

    72. [72]

      L. Zhang, X.L. Zhu, G.Y. Wang, et al., Small 17 (2021) 2007578.

    73. [73]

      S. Liu, S. Tang, X.Y. Zhang, et al., Nano Lett. 17 (2017) 5862–5868.  doi: 10.1021/acs.nanolett.7b03185

    74. [74]

      F. Tang, R.Q. Xia, D. Chen, et al., J. Energy Chem. 74 (2022) 1–7.  doi: 10.1504/ijsnet.2022.120269

    75. [75]

      Y.L. Xu, A.S. Menon, P.P.R.M.L. Harks, et al., Energy Storage Mater. 12 (2018) 69–78.

    76. [76]

      Z.J. Cai, F. Tang, Y. Yang, et al., Nano Energy 116 (2023) 108814.

    77. [77]

      Y.Y. Lu, Q. Zhang, M. Han, et al., Chem. Commun. 53 (2017) 12910–12913.

    78. [78]

      Y. Shuai, Y.L. Hu, J. Lou, et al., J. Electrochem. Soc. 170 (2023) 030519.  doi: 10.1149/1945-7111/acc2ed

    79. [79]

      C.L. Wang, H. Wang, E. Matios, et al., Adv. Funct. Mater. 28 (2018) 1802282.

    80. [80]

      F.F. Liu, L.F. Wang, F.X. Ling, et al., Adv. Funct. Mater. 32 (2022) 2210166.

    81. [81]

      T.S. Wang, Y.C. Liu, Y.X. Lu, et al., Energy Storage Mater. 15 (2018) 274– 281.

    82. [82]

      F.Y. Jiang, X.J. Li, J.H. Wang, et al., J. Alloys Compd. 910 (2022) 164762.

    83. [83]

      J.C. Sun, M. Zhang, P. Ju, et al., Energy Technol. 8 (2020) 1901250.

    84. [84]

      Q.L. Chen, B. Liu, L. Zhang, et al., Chem. Eng. J. 404 (2021) 126469.

    85. [85]

      H.J. Huang, Y.L. Wang, M. Li, et al., Adv. Mater. 35 (2023) 2210826.

    86. [86]

      M.E. Lee, S. Lee, J. Choi, et al., Small 15 (2019) 1901274.

    87. [87]

      K. Shen, X.J. Xu, Y.P. Tang, Nano Energy 92 (2022) 106703.

    88. [88]

      K. Shen, Z. Wang, X.X. Bi, et al., Adv. Energy Mater. 9 (2019) 1900260.

    89. [89]

      A.X. Wang, Q.B. Deng, L.J. Deng, et al., Adv. Funct. Mater. 29 (2019) 1902630.

    90. [90]

      S.W. Sun, X.N. Li, L.Q. Yan, et al., ACS Energy Lett. 8 (2023) 4349–4356.  doi: 10.1021/acsenergylett.3c01689

    91. [91]

      F.S. Liu, Y.Y. Xiao, P.Y. Han, et al., Nanoscale 11 (2019) 21081–21092.  doi: 10.1039/c9nr06180k

    92. [92]

      K. Lee, Y.J. Lee, M.J. Lee, et al., Adv Mater. 34 (2022) e2109767.

    93. [93]

      J.Y. Wang, Q. Kang, J.C. Yuan, et al., Carbon Energy 3 (2021) 153–166.

    94. [94]

      W. Yang, W. Yang, L.B. Dong, et al., Nano Energy 80 (2021) 105563.

    95. [95]

      X.L. Cheng, D.J. Li, S. Peng, et al., Batteries 9 (2023) 408.

    96. [96]

      C. Bao, B. Wang, Y. Xie, et al., ACS Sustain. Chem. Eng. 8 (2020) 5452–5463.  doi: 10.1021/acssuschemeng.9b06534

  • 加载中
    1. [1]

      Haobo WangFei WangYong LiuZhongxiu LiuYingjie MiaoWanhong ZhangGuangxin WangJiangtao JiQiaobao Zhang . Emerging natural clay-based materials for stable and dendrite-free lithium metal anodes: A review. Chinese Chemical Letters, 2025, 36(2): 109589-. doi: 10.1016/j.cclet.2024.109589

    2. [2]

      Rui LiRuijie LuLibin YangJianwen LiZige GuoQiquan YanMengjun LiYazhuo NiKeying ChenYaoyang LiBo XuMengzhen CuiZhan LiZhiying Zhao . Immobilization of chitosan nano-hydroxyapatite alendronate composite microspheres on polyetheretherketone surface to enhance osseointegration by inhibiting osteoclastogenesis and promoting osteogenesis. Chinese Chemical Letters, 2025, 36(4): 110242-. doi: 10.1016/j.cclet.2024.110242

    3. [3]

      Haiying Lu Weijie Li . The electrolyte solvation and interfacial chemistry for anode-free sodium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(11): 100334-100334. doi: 10.1016/j.cjsc.2024.100334

    4. [4]

      Shuo ZhangHaitao LiaoZhi-Qun LiuChong YanJia-Qi Huang . Re-evaluating the nano-sized inorganic protective layer on Cu current collector for anode free lithium metal batteries. Chinese Chemical Letters, 2024, 35(7): 109284-. doi: 10.1016/j.cclet.2023.109284

    5. [5]

      Jianwen ZhaoShuai WangShanshan ZhaoLiwei ChenFangang MengXuelin Tian . A non-fluorinated liquid-like membrane with excellent anti-scaling performance for membrane distillation. Chinese Chemical Letters, 2025, 36(1): 109883-. doi: 10.1016/j.cclet.2024.109883

    6. [6]

      Yang LIULijun WANGHongyu WANGZhidong CHENLin SUN . Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015

    7. [7]

      Yunfei Shen Long Chen . Gradient imprinted Zn metal anodes assist dendrites-free at high current density/capacity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100321-100321. doi: 10.1016/j.cjsc.2024.100321

    8. [8]

      Changyuan BaoYunpeng JiangHaoyin ZhongHuaizheng RenJunhui WangBinbin LiuQi ZhaoFan JinYan Meng ChongJianguo SunFei WangBo WangXimeng LiuDianlong WangJohn Wang . Synergizing 3D-printed structure and sodiophilic interface enables highly efficient sodium metal anodes. Chinese Chemical Letters, 2024, 35(11): 109353-. doi: 10.1016/j.cclet.2023.109353

    9. [9]

      Run ChaiQiujie WuYongchao LiuXiaohui SongXuyong FengYi SunHongfa Xiang . A 3D dual layer host with enhanced sodiophilicity as stable anode for high-energy sodium metal batteries. Chinese Chemical Letters, 2025, 36(6): 110007-. doi: 10.1016/j.cclet.2024.110007

    10. [10]

      Chenghao GePeng WangPei YuanTai WuRongjun ZhaoRong HuangLin XieYong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352

    11. [11]

      Xinxiu YanXizhe HuangYangyang LiuWeishang JiaHualin ChenQi YaoTao Chen . Hyperbranched polyamidoamine protective layer with phosphate and carboxyl groups for dendrite-free Zn metal anodes. Chinese Chemical Letters, 2024, 35(10): 109426-. doi: 10.1016/j.cclet.2023.109426

    12. [12]

      Ze LiuXiaochen ZhangJinlong LuoYingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500

    13. [13]

      Huanyan LiuJiajun LongHua YuShichao ZhangWenbo Liu . Rational design of highly conductive and stable 3D flexible composite current collector for high performance lithium-ion battery electrodes. Chinese Chemical Letters, 2025, 36(3): 109712-. doi: 10.1016/j.cclet.2024.109712

    14. [14]

      Jiao WangShuang-Yan LangZhen-Zhen ShenGui-Xian LiuJian-Xin TianYuan LiRui-Zhi LiuRui WenIn situ imaging of the interfacial processes manipulated by salt concentration on zinc anodes in zinc metal batteries. Chinese Chemical Letters, 2025, 36(4): 109815-. doi: 10.1016/j.cclet.2024.109815

    15. [15]

      Jing Guo . Stacking solid-state electrolyte and aluminum pellets for anode-free solid-state batteries. Chinese Chemical Letters, 2025, 36(5): 110764-. doi: 10.1016/j.cclet.2024.110764

    16. [16]

      Li LinSong-Lin TianZhen-Yu HuYu ZhangLi-Min ChangJia-Jun WangWan-Qiang LiuQing-Shuang WangFang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802

    17. [17]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    18. [18]

      Rui WangYuan TianXuefeng GaoLei Jiang . Design and fabrication of triangle-pattern superwettability hybrid surface with high-efficiency condensation heat transfer performance. Chinese Chemical Letters, 2025, 36(3): 110395-. doi: 10.1016/j.cclet.2024.110395

    19. [19]

      Yue PanWenping SiYahao LiHaotian TanJi LiangFeng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877

    20. [20]

      Zihao WangJing XueZhicui SongJianxiong XingAijun ZhouJianmin MaJingze Li . Li-Zn alloy patch for defect-free polymer interface film enables excellent protection effect towards stable Li metal anode. Chinese Chemical Letters, 2024, 35(10): 109489-. doi: 10.1016/j.cclet.2024.109489

Metrics
  • PDF Downloads(0)
  • Abstract views(152)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return