Structure factors dictate the ionic conductivity and chemical stability for cubic garnet-based solid-state electrolyte
-
* Corresponding author.
E-mail address: kkhuang@jlu.edu.cn (K. Huang).
Citation:
Jingyu Shi, Xiaofeng Wu, Yutong Chen, Yi Zhang, Xiangyan Hou, Ruike Lv, Junwei Liu, Mengpei Jiang, Keke Huang, Shouhua Feng. Structure factors dictate the ionic conductivity and chemical stability for cubic garnet-based solid-state electrolyte[J]. Chinese Chemical Letters,
;2025, 36(5): 109938.
doi:
10.1016/j.cclet.2024.109938
G. Harper, R. Sommerville, E. Kendrick, et al., Nature 575 (2019) 75–86.
doi: 10.1038/s41586-019-1682-5
Y. Liu, X. Tao, Y. Wang, et al., Science 375 (2022) 739–745.
doi: 10.1126/science.abn1818
Y. Zeng, B. Ouyang, J. Liu, et al., Science 378 (2022) 1320–1324.
doi: 10.1126/science.abq1346
Y.C. Yin, J.T. Yang, J.D. Luo, et al., Nature 616 (2023) 77–83.
doi: 10.1038/s41586-023-05899-8
Y. Chen, Z. Wang, X. Li, et al., Nature 578 (2020) 251–255.
doi: 10.1038/s41586-020-1972-y
R. Chen, Q. Li, X. Yu, et al., Chem. Rev. 120 (2019) 6820–6877.
W. Lu, M. Xue, C. Zhang, Energy Storage Mater. 39 (2021) 108–129.
doi: 10.1016/j.ensm.2021.04.016
S. Kalnaus, N.J. Dudney, A.S. Westover, et al., Science 381 (2023) eabg5998.
doi: 10.1126/science.abg5998
Y. Li, S. Song, H. Kim, et al., Science 381 (2023) 50–53.
doi: 10.1126/science.add7138
S. Yu, J. Noh, B. Kim, et al., Science 382 (2023) 573–579.
doi: 10.1126/science.adg6591
X. Shen, H. Liu, X.-B. Cheng, et al., Energy Storage Mater. 12 (2018) 161–175.
doi: 10.1016/j.ensm.2017.12.002
A. Manthiram, X. Yu, S. Wang, Nat. Rev. Mater. 2 (2017) 1–16.
Z. Wu, Z. Xie, A. Yoshida, et al., Renew. Sust. Energ. Rev. 109 (2019) 367–385.
doi: 10.1016/j.rser.2019.04.035
A.K. Mishra, H.A. Chaliyawala, R. Patel, et al., J. Electrochem. Soc. 168 (2021) 080536.
doi: 10.1149/1945-7111/ac1dcc
L.Z. Fan, H. He, C.W. Nan, Nat. Rev. Mater. 6 (2021) 1003–1019.
doi: 10.1038/s41578-021-00320-0
J.F. Ding, R. Xu, C. Yan, et al., Chin. Chem. Lett. 31 (2020) 2339–2342.
doi: 10.1016/j.cclet.2020.03.015
F. He, Z. Hu, W. Tang, et al., Adv. Funct. Mater. 32 (2022) 2201465.
doi: 10.1002/adfm.202201465
Q. Zhao, S. Stalin, C.-Z. Zhao, et al., Nat. Rev. Mater. 5 (2020) 229–252.
doi: 10.1038/s41578-019-0165-5
X. Zhu, K. Wang, Y. Xu, et al., Energy Storage Mater. 36 (2021) 291–308.
doi: 10.1016/j.ensm.2021.01.002
L. Xu, J. Li, H. Shuai, et al., J. Energy Chem. 67 (2022) 524–548.
doi: 10.1016/j.jechem.2021.10.038
Z. Gao, H. Sun, L. Fu, et al., Adv. Mater. 30 (2018) 1705702.
doi: 10.1002/adma.201705702
J.C. Bachman, S. Muy, A. Grimaud, et al., Chem. Rev. 116 (2016) 140–162.
doi: 10.1021/acs.chemrev.5b00563
X. Ke, Y. Wang, G. Ren, et al., Energy Storage Mater. 26 (2020) 313–324.
doi: 10.1016/j.ensm.2019.08.029
C. Wang, J.T. Kim, C. Wang, et al., Adv. Mater. 35 (2023) 2209074.
doi: 10.1002/adma.202209074
C. Li, Y. Qiu, Y. Zhao, et al., Chin. Chem. Lett. 35 (2024) 108846.
doi: 10.1016/j.cclet.2023.108846
Y. Wu, S. Wang, H. Li, et al., InfoMat 3 (2021) 827–853.
doi: 10.1002/inf2.12224
T. Famprikis, P. Canepa, J.A. Dawson, et al., Nat. Mater. 18 (2019) 1278–1291.
doi: 10.1038/s41563-019-0431-3
S. Ramakumar, C. Deviannapoorani, L. Dhivya, et al., Prog. Mater. Sci. 88 (2017) 325–411.
doi: 10.1016/j.pmatsci.2017.04.007
A.M. Abakumov, S.S. Fedotov, E.V. Antipov, et al., Nat. Commun. 11 (2020) 4976.
doi: 10.1038/s41467-020-18736-7
C. Wang, J. Liang, J.T. Kim, et al., Sci. Adv. 8 (2022) eadc9516.
doi: 10.1126/sciadv.adc9516
Y. Chen, K. Wen, T. Chen, et al., Energy Storage Mater. 31 (2020) 401–433.
doi: 10.1016/j.ensm.2020.05.019
R. Chen, W. Qu, X. Guo, et al., Mater. Horizons. 3 (2016) 487–516.
doi: 10.1039/C6MH00218H
R. Murugan, V. Thangadurai, W. Weppner, Angew. Chem. Int. Ed. 46 (2007) 7778–7781.
doi: 10.1002/anie.200701144
S. Hu, Y.F. Li, R. Yang, et al., Ceram. Int. 44 (2018) 6614–6618.
doi: 10.1016/j.ceramint.2018.01.065
W. Luo, Y. Gong, Y. Zhu, et al., Adv. Mater. 29 (2017) 1606042.
doi: 10.1002/adma.201606042
C. Wang, K. Fu, S.P. Kammampata, et al., Chem. Rev. 120 (2020) 4257–4300.
doi: 10.1021/acs.chemrev.9b00427
Y.Z. Zhu, X.F. He, Y.F. Mo, J. Mater. Chem. A 4 (2016) 3253–3266.
doi: 10.1039/C5TA08574H
J. Gao, J.X. Zhu, X.L. Li, et al., Adv. Funct. Mater. 31 (2021) 2001918.
doi: 10.1002/adfm.202001918
X. He, Y. Zhu, Y. Mo, Nat. Commun. 8 (2017) 15893.
doi: 10.1038/ncomms15893
E.J. Cussen, J. Mater. Chem. 20 (2010) 5167–5173.
doi: 10.1039/b925553b
S. Abouali, C.-H. Yim, A. Merati, et al., ACS. Energy Lett. 6 (2021) 1920–1941.
doi: 10.1021/acsenergylett.1c00401
V. Thangadurai, S. Narayanan, D. Pinzaru, Chem. Soc. Rev. 43 (2014) 4714–4727.
doi: 10.1039/c4cs00020j
A.J. Samson, K. Hofstetter, S. Bag, et al., Energy Environ. Sci. 12 (2019) 2957–2975.
doi: 10.1039/c9ee01548e
M.P. O’Callaghan, D.R. Lynham, E.J. Cussen, et al., Chem. Mater. 18 (2006) 4681–4689.
doi: 10.1021/cm060992t
M.P. O’Callaghan, A.S. Powell, J.J. Titman, et al., Chem. Mater. 20 (2008) 2360–2369.
doi: 10.1021/cm703677q
H. Peng, Q. Wu, L. Xiao, J. Sol-Gel Sci. Technol. 66 (2013) 175–179.
doi: 10.1007/s10971-013-2984-y
E.J. Cussen, Chem. Commun. (2006) 412–413.
V. Thangadurai, H. Kaack, W.J. Weppner, J. Am. Ceram. Soc. 86 (2003) 437–440.
doi: 10.1111/j.1151-2916.2003.tb03318.x
V. Thangadurai, W. Weppner, J. Solid State Chem. 179 (2006) 974–984.
doi: 10.1016/j.jssc.2005.12.025
V. Thangadurai, W. Weppner, J. Am. Ceram. Soc. 88 (2005) 411–418.
doi: 10.1111/j.1551-2916.2005.00060.x
M.P. O’Callaghan, E.J. Cussen, Chem. Commun. (2007) 2048–2050.
V. Thangadurai, W. Weppner, Adv. Funct. Mater. 15 (2005) 107–112.
doi: 10.1002/adfm.200400044
J. Awaka, N. Kijima, Y. Takahashi, et al., Solid State Ionics 180 (2009) 602–606.
doi: 10.1016/j.ssi.2008.10.022
J. Percival, E. Kendrick, P. Slater, Mater. Res. Bull. 43 (2008) 765–770.
doi: 10.1016/j.materresbull.2007.04.002
H. Xie, Y. Li, J. Han, et al., J. Electrochem. Soc. 159 (2012) A1148.
doi: 10.1149/2.009208jes
R. Murugan, W. Weppner, P. Schmid-Beurmann, et al., Mater. Res. Bull. 43 (2008) 2579–2591.
doi: 10.1016/j.materresbull.2007.10.035
J. Awaka, A. Takashima, K. Kataoka, et al., Chem. Lett. 40 (2011) 60–62.
doi: 10.1246/cl.2011.60
J. Awaka, N. Kijima, H. Hayakawa, et al., J. Solid State Chem. 182 (2009) 2046–2052.
doi: 10.1016/j.jssc.2009.05.020
D. Rettenwander, A. Welzl, L. Cheng, et al., Inorg. Chem. 54 (2015) 10440–10449.
doi: 10.1021/acs.inorgchem.5b01895
F. Sun, Y. Yang, S. Zhao, et al., ACS. Energy Lett. 7 (2022) 2835–2844.
doi: 10.1021/acsenergylett.2c01432
P. Bottke, D. Rettenwander, W. Schmidt, et al., Chem. Mater. 27 (2015) 6571–6582.
doi: 10.1021/acs.chemmater.5b02231
T. Thompson, J. Wolfenstine, J.L. Allen, et al., J. Mater. Chem. A 2 (2014) 13431–13436.
doi: 10.1039/C4TA02099E
Z. Qin, Y. Xie, X. Meng, et al., J. Eur. Ceram. Soc. 43 (2023) 2023–2032.
doi: 10.1016/j.jeurceramsoc.2022.12.028
H. Yang, N. Wu, Energy Sci. Eng. 10 (2022) 1643–1671.
doi: 10.1002/ese3.1163
J.F. Wu, E.Y. Chen, Y. Yu, et al., ACS Appl. Mater. Interfaces 9 (2017) 1542–1552.
doi: 10.1021/acsami.6b13902
E. Rangasamy, J. Wolfenstine, J. Sakamoto, Solid State Ionics 206 (2012) 28–32.
doi: 10.1016/j.ssi.2011.10.022
E. Rangasamy, J. Wolfenstine, J. Allen, et al., J. Power Sources 230 (2013) 261–266.
doi: 10.1016/j.jpowsour.2012.12.076
B. Dong, S.R. Yeandel, P. Goddard, et al., Chem. Mater. 32 (2019) 215–223.
doi: 10.4324/9780429293078-17
R. Wagner, D. Rettenwander, G.J. Redhammer, et al., Inorg. Chem. 55 (2016) 12211–12219.
doi: 10.1021/acs.inorgchem.6b01825
Y. Li, J.T. Han, C.A. Wang, et al., J. Mater. Chem. 22 (2012) 15357–15361.
doi: 10.1039/c2jm31413d
W.G. Zeier, Dalton. Trans. 43 (2014) 16133–16138.
doi: 10.1039/C4DT02162B
R. Inada, K. Kusakabe, T. Tanaka, et al., Solid State Ionics 262 (2014) 568–572.
doi: 10.1016/j.ssi.2013.09.008
S. Ramakumar, L. Satyanarayana, S.V. Manorama, et al., Phys. Chem. Chem. Phys. 15 (2013) 11327–11338.
doi: 10.1039/c3cp50991e
K.C. Santosh, R.C. Longo, K. Xiong, et al., Solid State Ionics 261 (2014) 100–105.
doi: 10.1016/j.ssi.2014.04.021
L. Buannic, B. Orayech, J.M. Lopez Del Amo, et al., Chem. Mater. 29 (2017) 1769–1778.
doi: 10.1021/acs.chemmater.6b05369
M. Liu, B. Li, S. Zhang, et al., ACS Appl. Energy Mater. 5 (2022) 7559–7570.
doi: 10.1021/acsaem.2c01018
D. Rettenwander, G.n. Redhammer, F. Preishuber-Pflügl, et al., Chem. Mater. 28 (2016) 2384–2392.
doi: 10.1021/acs.chemmater.6b00579
Y.X. Xiang, G. Zheng, G. Zhong, et al., Solid State Ionics 318 (2018) 19–26.
doi: 10.1016/j.ssi.2017.11.025
D. Wang, G. Zhong, W.K. Pang, et al., Chem. Mater. 27 (2015) 6650–6659.
doi: 10.1021/acs.chemmater.5b02429
C. Bernuy-Lopez, W. Manalastas Jr, J.M. Lopez del Amo, et al., Chem. Mater. 26 (2014) 3610–3617.
doi: 10.1021/cm5008069
J. Zhao, X. Wang, T. Wei, et al., J. Energy Storage. 68 (2023) 107693.
doi: 10.1016/j.est.2023.107693
H. Xie, J.A. Alonso, Y. Li, et al., Chem. Mater. 23 (2011) 3587–3589.
doi: 10.1021/cm201671k
T. Thompson, A. Sharafi, M.D. Johannes, et al., Adv. Energy Mater. 5 (2015) 1500096.
doi: 10.1002/aenm.201500096
H. Nozaki, M. Harada, S. Ohta, et al., Solid State Ionics 262 (2014) 585–588.
doi: 10.1016/j.ssi.2013.10.014
M.M. Ahmad, RSC Adv. 5 (2015) 25824–25829.
doi: 10.1039/C4RA15972A
V. Gajraj, A. Kumar, S. Indris, et al., Ceram. Int. 48 (2022) 29238–29246.
doi: 10.1016/j.ceramint.2022.05.199
B. Zhang, R. Tan, L. Yang, et al., Energy Storage Mater. 10 (2018) 139–159.
doi: 10.1016/j.ensm.2017.08.015
X. Zhang, C. Li, W. Liu, et al., Solid State Ionics 369 (2021) 115713.
doi: 10.1016/j.ssi.2021.115713
N.V. Kireeva, A.Y. Tsivadze, V.S. Pervov, Solid State Ionics 399 (2023) 116293.
doi: 10.1016/j.ssi.2023.116293
X. Xiang, F. Chen, W. Yang, et al., J. Am. Ceram. Soc. 103 (2019) 2483–2490.
Y. Chen, T. Wang, H. Chen, et al., Matter. 6 (2023) 1530–1541.
doi: 10.3390/su15021530
F. Chen, L. Xu, J. Li, et al., Ionics 26 (2020) 3193–3198.
doi: 10.1007/s11581-020-03582-w
A.G. Squires, D.O. Scanlon, B.J. Morgan, Chem. Mater. 32 (2019) 1876–1886.
M. Kubicek, A. Wachter-Welzl, D. Rettenwander, et al., Chem. Mater. 29 (2017) 7189–7196.
doi: 10.1021/acs.chemmater.7b01281
Z. Ma, B. Zhao, W. Li, et al., Ionics 28 (2022) 2673–2683.
doi: 10.1007/s11581-022-04553-z
Y. Zhu, M. Chon, C.V. Thompson, et al., Angew. Chem. Int. Ed. 62 (2023) e2023045.
T. Kawaguchi, K. Sugihara, N. Sakamoto, et al., J. Ceram. Soc. Jpn. 128 (2020) 700–705.
doi: 10.2109/jcersj2.20098
C. Chen, K.X. Wang, H.Y. He, et al., Small. 19 (2023) 2205550.
doi: 10.1002/smll.202205550
K. Hofstetter, A.J. Samson, S. Narayanan, et al., J. Power Sources 390 (2018) 297–312.
doi: 10.1016/j.jpowsour.2018.04.016
L. Cheng, W. Chen, M. Kunz, et al., ACS Appl. Mater. Interfaces 7 (2015) 2073–2081.
doi: 10.1021/am508111r
Y.T. Li, X. Chen, A. Dolocan, et al., J. Am. Chem. Soc. 140 (2018) 6448–6455.
doi: 10.1021/jacs.8b03106
C. Galven, J. Dittmer, E. Suard, et al., Chem. Mater. 24 (2012) 3335–3345.
doi: 10.1021/cm300964k
F. Gam, C. Galven, A. Bulou, et al., Inorg. Chem. 53 (2014) 931–934.
doi: 10.1021/ic402326b
L. Truong, V. Thangadurai, Chem. Mater. 23 (2011) 3970–3977.
doi: 10.1021/cm2015127
S. Narayanan, F. Ramezanipour, V. Thangadurai, Inorg. Chem. 54 (2015) 6968–6977.
doi: 10.1021/acs.inorgchem.5b00972
C. Galven, G. Corbel, F.Le Berre, et al., Inorg. Chem. 55 (2016) 12872–12880.
doi: 10.1021/acs.inorgchem.6b02238
G. Larraz, A. Orera, J. Sanz, et al., J. Mater. Chem. A 3 (2015) 5683–5691.
doi: 10.1039/C4TA04570J
C. Ma, E. Rangasamy, C.D. Liang, et al., Angew. Chem. Int. Ed. 54 (2015) 129–133.
doi: 10.1002/anie.201408124
R.H. Brugge, A.K.O. Hekselman, A. Cavallaro, et al., Chem. Mater. 30 (2018) 3704–3713.
doi: 10.1021/acs.chemmater.8b00486
Y.F. Zhou, A.S. Gao, M.Q. Duan, et al., ACS Appl. Mater. Interfaces 15 (2023) 45465–45474.
doi: 10.1021/acsami.3c09358
S. Huang, M.M. Shang, K.L. Peng, et al., J. Lumines. 243 (2022) 118649.
doi: 10.1016/j.jlumin.2021.118649
C.H. Kuo, A.Y. Wang, H.Y. Liu, et al., APL. Mater. 10 (2022) 121104.
doi: 10.1063/5.0123562
R.J. Ye, M. Ihrig, N. Imanishi, et al., ChemSusChem. 14 (2021) 4397–4407.
doi: 10.1002/cssc.202101178
C. Liu, K. Rui, C. Shen, et al., J. Power Sources 282 (2015) 286–293.
doi: 10.1016/j.jpowsour.2015.02.050
Y.T. Li, J.T. Han, S.C. Vogel, et al., Solid State Ionics 269 (2015) 57–61.
doi: 10.1016/j.ssi.2014.11.010
C. Hiebl, D. Young, R. Wagner, et al., J. Phys. Chem. C 123 (2019) 1094–1098.
doi: 10.1021/acs.jpcc.8b10694
G.J. Redhammer, P. Badami, M. Meven, et al., ACS Appl. Mater. Interfaces 13 (2021) 350–359.
doi: 10.1021/acsami.0c16016
H.Y. Huo, J. Luo, V. Thangadurai, et al., ACS. Energy Lett. 5 (2020) 252–262.
doi: 10.1021/acsenergylett.9b02401
Y.X. Wang, W. Lai, J. Power Sources 275 (2015) 612–620.
doi: 10.1016/j.jpowsour.2014.11.062
L. Cheng, C.H. Wu, A. Jarry, et al., ACS Appl. Mater. Interfaces 7 (2015) 17649–17655.
doi: 10.1021/acsami.5b02528
W.H. Xia, B.Y. Xu, H.N. Duan, et al., ACS Appl. Mater. Interfaces 8 (2016) 5335–5342.
doi: 10.1021/acsami.5b12186
Y.H. Li, A.M. Prabhu, T.S. Choksi, et al., J. Mater. Chem. A 10 (2022) 4960–4973.
doi: 10.1039/d1ta10228a
Y. Arinicheva, X. Guo, M.T. Gerhards, et al., Chem. Mater. 34 (2022) 1473–1480.
doi: 10.1021/acs.chemmater.1c02581
W.H. Xia, B.Y. Xu, H.A. Duan, et al., J. Am. Ceram. Soc. 100 (2017) 2832–2839.
doi: 10.1111/jace.14865
J. Leng, H.Y. Wang, H.M. Liang, et al., ACS Appl. Energy Mater. 5 (2022) 5108–5116.
doi: 10.1021/acsaem.2c00452
A. Sharafi, S.H. Yu, M. Naguib, et al., J. Mater. Chem. A 5 (2017) 13475–13487.
doi: 10.1039/C7TA03162A
Y. Jin, P.J. McGinn, J. Power Sources 239 (2013) 326–331.
doi: 10.1016/j.jpowsour.2013.03.155
R.H. Brugge, F.M. Pesci, A. Cavallaro, et al., J. Mater. Chem. A 8 (2020) 14265–14276.
doi: 10.1039/d0ta04974c
W. Jeong, S.S. Park, J. Yun, et al., Energy Storage Mater. 54 (2023) 543–552.
doi: 10.1016/j.ensm.2022.10.044
S. Kobi, A. Mukhopadhyay, J. Eur. Ceram. Soc. 38 (2018) 4707–4718.
doi: 10.1016/j.jeurceramsoc.2018.06.014
J.L. Gai, E.Q. Zhao, F.R. Ma, et al., J. Eur. Ceram. Soc. 38 (2018) 1673–1678.
doi: 10.1016/j.jeurceramsoc.2017.12.002
L.H. Abrha, T.T. Hagos, Y. Nikodimos, et al., ACS Appl. Mater. Interfaces 12 (2020) 25709–25717.
doi: 10.1021/acsami.0c01289
J.Y. Shi, G. Sun, L.P. Li, et al., ACS. Energy Lett. 8 (2022) 48–55.
doi: 10.3390/wevj13030048
S.G. Kang, D.S. Sholl, J. Phys. Chem. C 118 (2014) 17402–17406.
doi: 10.1021/jp504314w
Hengyi ZHU , Liyun JU , Haoyue ZHANG , Jiaxin DU , Yutong XIE , Li SONG , Yachao JIN , Mingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358
Qianqian Song , Yunting Zhang , Jianli Liang , Si Liu , Jian Zhu , Xingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797
Mengya Ge , Zijie Zhou , Huaiyang Zhu , Ying Wang , Chao Wang , Chao Lai , Qinghong Wang . Multifunctional gel electrolytes for high-performance zinc metal batteries. Chinese Chemical Letters, 2025, 36(7): 110121-. doi: 10.1016/j.cclet.2024.110121
Ying Li , Yanjun Xu , Xingqi Han , Di Han , Xuesong Wu , Xinlong Wang , Zhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189
Yongjian Li , Xinyu Zhu , Chenxi Wei , Youyou Fang , Xinyu Wang , Yizhi Zhai , Wenlong Kang , Lai Chen , Duanyun Cao , Meng Wang , Yun Lu , Qing Huang , Yuefeng Su , Hong Yuan , Ning Li , Feng Wu . Unraveling the chemical and structural evolution of novel Li-rich layered/rocksalt intergrown cathode for Li-ion batteries. Chinese Chemical Letters, 2024, 35(12): 109536-. doi: 10.1016/j.cclet.2024.109536
Yue Zheng , Tianpeng Huang , Pengxian Han , Jun Ma , Guanglei Cui . Cathodal Li-ion interfacial transport in sulfide-based all-solid-state batteries: Challenges and improvement strategies. Chinese Journal of Structural Chemistry, 2024, 43(10): 100390-100390. doi: 10.1016/j.cjsc.2024.100390
Mufan Cao , Long Pan , Yaping Wang , Xianwei Sui , Xiong Xiong Liu , Shengfa Feng , Pengcheng Yuan , Min Gao , Jiacheng Liu , Song-Zhu Kure-Chu , Takehiko Hihara , Yang Zhou , Zheng-Ming Sun . Mechanical-durable and humidity-resistant dry-processed halide solid-state electrolyte films for all-solid-state battery. Chinese Chemical Letters, 2025, 36(6): 110391-. doi: 10.1016/j.cclet.2024.110391
Biao Fang , Runwei Mo . PVDF-based solid-state battery. Chinese Journal of Structural Chemistry, 2024, 43(8): 100347-100347. doi: 10.1016/j.cjsc.2024.100347
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624
Xinpin Pan , Yongjian Cui , Zhe Wang , Bowen Li , Hailong Wang , Jian Hao , Feng Li , Jing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567
Xinzhi Ding , Chong Liu , Jing Niu , Nan Chen , Shutao Xu , Yingxu Wei , Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247
Sheng Zhao , Junjie Lu , Bifu Sheng , Siying Zhang , Hao Li , Jizhang Chen , Xiang Han . High-performance room temperature solid-state lithium battery enabled by PP-PVDF multilayer composite electrolyte. Chinese Chemical Letters, 2025, 36(6): 110008-. doi: 10.1016/j.cclet.2024.110008
Ziling Jiang , Chen Liu , Jie Yang , Xia Li , Chaochao Wei , Qiyue Luo , Zhongkai Wu , Lin Li , Liping Li , Shijie Cheng , Chuang Yu . Designing F-doped Li3InCl6 electrolyte with enhanced stability for all-solid-state lithium batteries in a wide voltage window. Chinese Chemical Letters, 2025, 36(6): 109741-. doi: 10.1016/j.cclet.2024.109741
Jie Chen , Hannan Chen , Bingbing Tian . Enhancing moisture and electrochemical stability of the Li5.7PS4.7Cl1.3 electrolyte by boron nitride coating for all-solid-state lithium metal batteries. Chinese Chemical Letters, 2025, 36(7): 109775-. doi: 10.1016/j.cclet.2024.109775
Liang Ming , Dan Liu , Qiyue Luo , Chaochao Wei , Chen Liu , Ziling Jiang , Zhongkai Wu , Lin Li , Long Zhang , Shijie Cheng , Chuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387
Tianyi Hou , Yunhui Huang , Henghui Xu . Interfacial engineering for advanced solid-state Li-metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100313-100313. doi: 10.1016/j.cjsc.2024.100313
Ziling Jiang , Shaoqing Chen , Chaochao Wei , Ziqi Zhang , Zhongkai Wu , Qiyue Luo , Liang Ming , Long Zhang , Chuang Yu . Enabling superior electrochemical performance of NCA cathode in Li5.5PS4.5Cl1.5-based solid-state batteries with a dual-electrolyte layer. Chinese Chemical Letters, 2024, 35(4): 108561-. doi: 10.1016/j.cclet.2023.108561
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
Qiao Wang , Ziling Jiang , Chuang Yu , Liping Li , Guangshe Li . Research progress of inorganic sodium ion conductors for solid-state batteries. Chinese Chemical Letters, 2025, 36(6): 110006-. doi: 10.1016/j.cclet.2024.110006