PEDOT-based thermoelectric composites: Preparation, mechanism and applications
-
* Corresponding authors.
E-mail addresses: yezq@szu.edu.cn (Z. Ye), chengm@szu.edu.cn (G. Chen).
Citation:
Jia Fu, Shilong Zhang, Lirong Liang, Chunyu Du, Zhenqiang Ye, Guangming Chen. PEDOT-based thermoelectric composites: Preparation, mechanism and applications[J]. Chinese Chemical Letters,
;2024, 35(9): 109804.
doi:
10.1016/j.cclet.2024.109804
T. Sun, J. Xie, W. Guo, et al., Adv. Energy Mater. 10 (2020) 1904199.
doi: 10.1002/aenm.201904199
X.L. Shi, J. Zou, Z.G. Chen, Chem. Rev. 120 (2020) 7399–7515.
doi: 10.1021/acs.chemrev.0c00026
K. Zhang, J.J. Qiu, S.R. Wang, Nanoscale 8 (2016) 8033–8041.
doi: 10.1039/C5NR08421K
L. You, Z.L. Li, Q.Y. Ma, et al., Research 2020 (2020) 1736798.
H.J. Kim, J.G. Jeon, J.H. Lee, et al., Sci. Rep. 12 (2022) 9386.
doi: 10.1038/s41598-022-13510-9
S. Kirchmeyer, K. Reuter, J. Mater. Chem. 15 (2005) 2077–2088.
doi: 10.1039/b417803n
J.Y. Ouyang, T.F. Guo, Y. Yang, et al., Adv. Mater. 14 (2002) 915–918.
doi: 10.1002/1521-4095(20020618)14:12<915::AID-ADMA915>3.0.CO;2-9
P.J. Brewer, P.A. Lane, A.J. Demello, et al., Adv. Funct. Mater. 14 (2004) 562–570.
doi: 10.1002/adfm.200305126
A.C.A. Chen, J. Wallace, S.K.H. Wei, et al., Chem. Mater. 18 (2006) 204–213.
doi: 10.1021/cm0519582
R.H. Friend, R.W. Gymer, A.B. Holmes, et al., Nature 397 (1999) 121–128.
doi: 10.1038/16393
S. Reineke, Nat. Photonics 8 (2014) 269–270.
doi: 10.1038/nphoton.2014.78
J.Y. Chen, H.C. Wu, Y.C. Chiu, et al., Adv. Electron. Mater. 1 (2015) 1400028.
doi: 10.1002/aelm.201400028
A. Zen, J. Pflaum, S. Hirschmann, et al., Adv. Funct. Mater. 14 (2004) 757–764.
doi: 10.1002/adfm.200400017
H. Rost, J. Ficker, J.S. Alonso, et al., Synth. Met. 145 (2004) 83–85.
doi: 10.1016/j.synthmet.2004.04.008
K.M. Coakley, M.D. Mcgehee, Chem. Mater. 16 (2004) 4533–4542.
doi: 10.1021/cm049654n
A.K.Y. Jen H.L. Yip, Energy Environ. Sci. 5 (2012) 5994–6011.
doi: 10.1039/c2ee02806a
S.X. Tan, J. Zhai, M.X. Wan, et al., J. Phys. Chem. B 108 (2004) 18693–18697.
doi: 10.1021/jp046574y
Q. Zhang, B. Kan, F. Liu, et al., Nat. Photonics 9 (2015) 35–41.
doi: 10.1038/nphoton.2014.269
G.A. Snook, P. Kao, A.S. Best, J. Power Sources 196 (2011) 1–12.
doi: 10.1016/j.jpowsour.2010.06.084
J.M. D'arcy, M.F. El-Kady, P.P. Khine, et al., ACS Nano 8 (2014) 1500–1510.
doi: 10.1021/nn405595r
G. Latessa, F. Brunetti, A. Reale, et al., Sensor. Actuat. B: Chem. 139 (2009) 304–309.
doi: 10.1016/j.snb.2009.03.063
C.L. Gaupp, K. Zong, P. Schottland, et al., Macromolecules 33 (2000) 1132–1133.
doi: 10.1021/ma9916180
Y. Zhu, M.T. Otley, F.A. Alamer, et al., Org. Electron. 15 (2014) 1378–1386.
doi: 10.1016/j.orgel.2014.03.038
H. Ju, J. Kim, Chem. Eng. J. 297 (2016) 66–73.
doi: 10.1016/j.cej.2016.03.137
J. Yang, H.L. Yip, A.K.Y. Jen, Adv. Energy Mater. 3 (2013) 549–565.
doi: 10.1002/aenm.201200514
D.K. Taggart, Y. Yang, S.C. Kung, et al., Nano Lett. 11 (2010) 125–131.
Y. Du, S.Z. Shen, K.F. Cai, et al., Prog. Polym. Sci. 37 (2012) 820–841.
doi: 10.1016/j.progpolymsci.2011.11.003
Q. Zhang, Y.M. Sun, W. Xu, et al., Adv. Mater. 26 (2014) 6829–6851.
doi: 10.1002/adma.201305371
Y. Chen, Y. Zhao, Z. Liang, Energy Environ. Sci. 8 (2015) 401–422.
doi: 10.1039/C4EE03297G
C. Liu, J. Xu, B. Lu, et al., J. Electron. Mater. 41 (2012) 639–645.
doi: 10.1007/s11664-012-1942-8
X.C. Hu, G.M. Chen, X. Wang, et al., J. Mater. Chem. A 3 (2015) 20896–20902.
doi: 10.1039/C5TA07381B
Z. Soleimani, S. Zoras, B. Ceranic, et al., Sustain. Energy Technol. 37 (2020) 100604.
T. Chen, S.H. Zhang, Q.H. Lin, et al., Nanoscale 12 (2020) 21271–21279.
doi: 10.1039/D0NR05976E
K.C. See, J.P. Feser, C.E. Chen, et al., Nano Lett. 10 (2010) 4664–4667.
doi: 10.1021/nl102880k
X. Li, K.F. Cai, M.Y. Gao, et al., Nano Energy 89 (2021) 106309.
doi: 10.1016/j.nanoen.2021.106309
Y. Wang, K. Cai, X. Yao, ACS Appl. Mater. Interfaces 3 (2011) 1163–1166.
doi: 10.1021/am101287w
A. Yoshida, N. Toshima, J. Electron. Mater. 43 (2014) 1492–1497.
doi: 10.1007/s11664-013-2745-2
G.O. Park, J.W. Roh, J. Kim, et al., Thin Solid Films 566 (2014) 14–18.
doi: 10.1016/j.tsf.2014.07.011
L. Deng, Y.C. Zhang, S.S. Wei, et al., J. Mater. Chem. A 9 (2021) 8317–8324.
doi: 10.1039/D1TA00820J
Y. Tian, T. Wang, Q.X. Zhu, et al., Nanomaterials 11 (2021) 2067.
doi: 10.3390/nano11082067
H. Zhao, W. Geng, W.W. Cao, et al., New J. Chem. 44 (2020) 780–790.
doi: 10.1039/C9NJ04414K
W. Fan, L. Liang, B. Zhang, et al., J. Mater. Chem. A 7 (2019) 13687–13694.
doi: 10.1039/C9TA03153G
Q. Li, M. Deng, S. Zhang, et al., J. Mater. Chem. C 7 (2019) 4374–4381.
doi: 10.1039/C9TC00310J
X. Wang, L. Liang, H. Lv, et al., Nano Energy 90 (2021) 106577.
doi: 10.1016/j.nanoen.2021.106577
X. Wang, P. Liu, Q. Jiang, et al., ACS Appl. Mater. Interfaces 11 (2019) 2408–2417.
doi: 10.1021/acsami.8b19168
L. Liu, J. Chen, L. Liang, et al., Nano Energy 102 (2022) 107678.
doi: 10.1016/j.nanoen.2022.107678
B. Lu, H. Yuk, S. Lin, et al., Nat. Commun. 10 (2019) 1043.
doi: 10.1038/s41467-019-09003-5
D.N. Heo, S.J. Lee, R. Timsina, et al., Mater. Sci. Eng. C 99 (2019) 582–590.
doi: 10.1016/j.msec.2019.02.008
R. Sarabia-Riquelme, M. Shahi, J.W. Brill, et al., ACS Appl. Polym. Mater. 1 (2019) 2157–2167.
doi: 10.1021/acsapm.9b00425
J. Liu, Y.H. Jia, Q.L. Jiang, et al., ACS Appl. Mater. Interfaces 10 (2018) 44033–44040.
doi: 10.1021/acsami.8b15332
N. Wen, Z. Fan, S. Yang, et al., Nano Energy 78 (2020) 105361.
doi: 10.1016/j.nanoen.2020.105361
P. Wang, M. Wang, J. Zhu, et al., Chem. Eng. J. 425 (2021) 131551.
doi: 10.1016/j.cej.2021.131551
R. Sarabia-Riquelme, R. Andrews, J.E. Anthony, et al., J. Mater. Chem. C 8 (2020) 11618–11630.
doi: 10.1039/D0TC02558E
Y. Zheng, Q. Zhang, W. Jin, et al., J. Mater. Chem. A 8 (2020) 2984–2994.
doi: 10.1039/C9TA12494B
H. Li, Y. Zong, Q. Ding, et al., J. Power Sources 500 (2021) 229992.
doi: 10.1016/j.jpowsour.2021.229992
W. Zhou, J. Xu, Electrochim. Acta 222 (2016) 1895–1902.
doi: 10.1016/j.electacta.2016.11.181
G. Liu, X. Chen, C. Liu, et al., J. Mater. Sci. 56 (2021) 14632–14643.
doi: 10.1007/s10853-021-06226-0
A.L. Oechsle, J.E. Heger, N. Li, et al., ACS Appl. Mater. Interfaces 14 (2022) 30802–30811.
doi: 10.1021/acsami.2c05745
C. Zhao, Z. Li, T. Fan, et al., Research 2020 (2020) 9652749.
J.C. Zheng, Research 2022 (2022) 9867639.
doi: 10.34133/2022/9867639
M.T. Dylla, A. Dunn, S. Anand, et al., Research 2020 (2020) 6375171.
M. Cassinelli, W.T. Park, Y. Kim, et al., Appl. Phys. Lett. 119 (2021) 033301.
doi: 10.1063/5.0054477
S. Yue, H. Cheng, H. He, et al., J. Mater. Chem. A 9 (2021) 16725–16732.
doi: 10.1039/D1TA04366H
H. Park, S.H. Lee, F.S. Kim, et al., J. Mater. Chem. A 2 (2014) 6532–6539.
doi: 10.1039/C3TA14960A
L. Zhang, B. Xia, X.L. Shi, et al., Carbon 2022 (196) (2022) 718–726.
doi: 10.1016/j.carbon.2022.05.043
Z.F. Yao, J.Y. Wang, J. Pei, Prog. Polym. Sci. 136 (2013) 101626.
G.L. Schulz, S. Ludwigs, Adv. Funct. Mater. 27 (2017) 1603083.
doi: 10.1002/adfm.201603083
Q.Y. Li, T. Lei, Z.F. Yao, et al., Acta Polym. Sin. 50 (2019) 1–12.
I. Petsagkourakis, N. Kim, K. Tybrandt, et al., Adv. Electron. Mater. 5 (2019) 1800918.
doi: 10.1002/aelm.201800918
C.M. Palumbiny, F. Liu, T.P. Russell, et al., Adv. Mater. 27 (2015) 3391.
doi: 10.1002/adma.201500315
Y. Zhang, Q. Zhang, G. Chen, Carbon Energy 2 (2020) 408–436.
doi: 10.1002/cey2.68
L. Liang, M. Wang, X. Wang, et al., Adv. Funct. Mater. 32 (2022) 2111435.
doi: 10.1002/adfm.202111435
Z. Zhu, C. Liu, H. Shi, et al., J. Polym. Sci. Part B: Polym. Phys. 53 (2015) 885–892.
doi: 10.1002/polb.23718
Y. Zheng, H.N. Zeng, Q. Zhu, et al., J. Mater. Chem. C. 6 (2018) 8858–8873.
doi: 10.1039/C8TC01900B
S. Wei, L. Liu, X. Huang, et al., ACS Appl. Mater. Interfaces 14 (2022) 5973–5982.
doi: 10.1021/acsami.1c21363
S. Wei, Y. Zhang, H. Lv, et al., Chem. Eng. J. 428 (2022) 131137.
doi: 10.1016/j.cej.2021.131137
C. Du, M. Cao, G. Li, et al., Adv. Funct. Mater. 32 (2022) 2206083.
doi: 10.1002/adfm.202206083
S.L. Zhang, C. Qing, R. Zhang, et al., Synth. Met. 300 (2023) 117493.
doi: 10.1016/j.synthmet.2023.117493
K. Xu, G. Chen, D. Qiu, J. Mater. Chem. A 1 (2013) 12395–12399.
doi: 10.1039/c3ta12691a
Z. Zhang, G. Chen, H. Wang, et al., Chem. Asian J. 10 (2015) 149–153.
doi: 10.1002/asia.201403100
Y. Wang, M. Hong, W.D. Liu, et al., Chem. Eng. J. 397 (2020) 125360.
doi: 10.1016/j.cej.2020.125360
X. Huang, L. Deng, F. Liu, et al., Adv. Energy Mater. 2021 (2021) 1572537.
D. Ni, H. Song, Y. Chen, et al., Energy 170 (2019) 53–61.
doi: 10.1016/j.energy.2018.12.124
S. Xu, M. Hong, X.L. Shi, et al., Chem. Mater. 31 (2019) 5238–5244.
doi: 10.1021/acs.chemmater.9b01500
G. Karalis, L. Tzounis, C.K. Mytafides, et al., Appl. Energy 294 (2021) 117004.
doi: 10.1016/j.apenergy.2021.117004
Z. Su, Y. Jin, H. Wang, et al., ACS Appl. Energy Mater. 5 (2022) 11915–11932.
doi: 10.1021/acsaem.2c01524
C. Li, F. Jiang, C. Liu, et al., Chem. Eng. J. 320 (2017) 201–210.
doi: 10.1016/j.cej.2017.03.023
X. Huang, L. Deng, F. Liu, et al., Chem. Eng. J. 417 (2021) 129230.
doi: 10.1016/j.cej.2021.129230
Y. Liu, S. Zhang, Y. Zhou, et al., Adv. Energy Mater. 10 (2020) 2002539.
doi: 10.1002/aenm.202002539
X. Wang, Y.T. Huang, C. Liu, et al., Nat. Commun. 10 (2019) 4151.
doi: 10.1038/s41467-019-12144-2
B. Yu, J. Duan, H. Cong, et al., Science 370 (2020) 342–346.
doi: 10.1126/science.abd6749
Q. Zhou, K. Zhu, J. Li, et al., Adv. Sci. 8 (2021) 2004947.
doi: 10.1002/advs.202004947
J. Emo, R. Jaisutti, H. Lee, et al., ACS Appl. Mater. Interfaces 9 (2017) 10190–10197.
doi: 10.1021/acsami.7b01771
S.C. Mukhopadhyay, IEEE Sens. J. 15 (2015) 1321–1330.
doi: 10.1109/JSEN.2014.2370945
A. Proto, M. Penhaker, S. Conforto, et al., Trends. Biotechnol. 35 (2017) 610–624.
doi: 10.1016/j.tibtech.2017.04.005
Y. Wang, L. Yang, X. Shi, et al., Adv. Mater. 31 (2019) 1807916.
doi: 10.1002/adma.201807916
S. Zhang, T. Tu, T. Li, et al., ACS Appl. Mater. Interfaces 14 (2022) 23877–23887.
doi: 10.1021/acsami.2c03350
Y. Jia, L. Shen, J. Liu, et al., J. Mater. Chem. C 7 (2019) 3496–3502.
doi: 10.1039/C8TC05906C
Y. Ding, J. Yang, C.R. Tolle, et al., ACS Appl. Mater. Interfaces 10 (2018) 16077–16086.
doi: 10.1021/acsami.8b00457
B.A. Kuzubasoglu, E. Sayar, S.K. Bahadir, IEEE Sens. J. 21 (2021) 13090–13097.
doi: 10.1109/JSEN.2021.3070073
X. Wang, K. Sun, K. Li, et al., Chin. Chem. Lett. 31 (2020) 1018–1021.
doi: 10.1016/j.cclet.2019.11.031
Ruizhi Yang , Xia Li , Weiping Guo , Zixuan Chen , Hongwei Ming , Zhong-Zhen Luo , Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268
Hao Deng , Yuxin Hui , Chao Zhang , Qi Zhou , Qiang Li , Hao Du , Derek Hao , Guoxiang Yang , Qi Wang . MXene−derived quantum dots based photocatalysts: Synthesis, application, prospects, and challenges. Chinese Chemical Letters, 2024, 35(6): 109078-. doi: 10.1016/j.cclet.2023.109078
Haohao Sun , Wenxuan Wang , Yuli Xiong , Zelang Jian , Wen Chen . Boosting the electrochromic properties by large V2O5 nanobelts interlayer spacing tuned via PEDOT. Chinese Chemical Letters, 2024, 35(9): 109213-. doi: 10.1016/j.cclet.2023.109213
Linghui Zou , Meng Cheng , Kaili Hu , Jianfang Feng , Liangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129
Junqing Wu , Yiyang Zhang , Qingqing Hong , Hui Yang , Lifeng Zhang , Ming Zhang , Lei Yu . Organometallic modification of silica with europium endowing the fluorescence properties: The key technique for numerical quality monitoring. Chinese Chemical Letters, 2025, 36(4): 110165-. doi: 10.1016/j.cclet.2024.110165
Haojie Song , Laiyu Luo , Siyu Wang , Guo Zhang , Baojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347
Xiaoning Li , Quanyu Shi , Meng Li , Ningxin Song , Yumeng Xiao , Huining Xiao , Tony D. James , Lei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021
Shaojie Deng , Peihua Ma , Qinghong Bai , Xin Xiao . The transformation of nor-seco-cucurbit[10]uril to cucurbit[5]uril and cucurbit[8]uril controlled by its own concentration. Chinese Chemical Letters, 2025, 36(2): 109878-. doi: 10.1016/j.cclet.2024.109878
Weidan Meng , Yanbo Zhou , Yi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961
Ming-Yi Sun , Lu Zhang , Ya Li , Chong-Chen Wang , Peng Wang , Xueying Ren , Xiao-Hong Yi . Recovering Ag+ with nano-MOF-303 to form Ag/AgCl/MOF-303 photocatalyst: The role of stored Cl− ions. Chinese Chemical Letters, 2025, 36(2): 110035-. doi: 10.1016/j.cclet.2024.110035
Binhan Zhao , Zheng Li , Lan Zheng , Zhichao Ye , Yuyang Yuan , Shanshan Zhang , Bo Liang , Tianyu Li . Recent progress in the biomedical application of PEDOT:PSS hydrogels. Chinese Chemical Letters, 2024, 35(10): 109810-. doi: 10.1016/j.cclet.2024.109810
Bharathi Natarajan , Palanisamy Kannan , Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349
Qiuping Liu , Yongxian Fan , Wenxian Chen , Mengdi Wang , Mei Mei , Genrong Qiang . Design of Ideological and Political Education for the Preparation Experiment of Ferrous Sulfate. University Chemistry, 2024, 39(2): 116-120. doi: 10.3866/PKU.DXHX202309083
Xuexia Lin , Yihui Zhou , Jiafu Hong , Xiaofeng Wei , Bin Liu , Chong-Chen Wang . Facile preparation of ZIF-8/ZIF-67-derived biomass carbon composites for highly efficient electromagnetic wave absorption. Chinese Chemical Letters, 2024, 35(9): 109835-. doi: 10.1016/j.cclet.2024.109835
Yating Zheng , Yulan Huang , Jing Luo , Xuqi Peng , Xiran Gui , Gang Liu , Yang Zhang . Supercritical fluid technology: A game-changer for biomacromolecular nanomedicine preparation and biomedical application. Chinese Chemical Letters, 2024, 35(7): 109169-. doi: 10.1016/j.cclet.2023.109169
Yongming Guo , Jie Li , Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057
Yufan Pan , Xue Ding , Jiayu Lin , Haiting Wu , Hairong Huang , Cuixue Chen , Meiling Ye . Oil Cosmetics, Charming Chemistry: A Gradient Science Popularization Scheme for Cream Cosmetic Preparation. University Chemistry, 2025, 40(4): 382-389. doi: 10.12461/PKU.DXHX202406078
Yanqi Wu , Yuhong Guan , Peilin Huang , Hui Chen , Liping Bai , Zhihong Jiang . Preparation of norovirus GII loop mediated isothermal amplification freeze-drying microsphere reagents and its application in an on-site integrated rapid detection platform. Chinese Chemical Letters, 2024, 35(9): 109308-. doi: 10.1016/j.cclet.2023.109308
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
Tiantian Zheng , Huiyi Wang , Huimin Li , Xuanhe Liu , Hong Shang . Anti-Counterfeiting National Salvation Chronicle of 006. University Chemistry, 2024, 39(9): 254-258. doi: 10.3866/PKU.DXHX202307032