Stereoselective synthesis of 2-deoxy-α-C-glycosides from glycals
-
* Corresponding authors.
E-mail addresses: yinguoyin@whu.edu.cn (G. Yin), luxi@mail.ustc.edu.cn (X. Lu), yangyangl@whu.edu.cn (Y. Li).
Citation:
Hongjin Shi, Guoyin Yin, Xi Lu, Yangyang Li. Stereoselective synthesis of 2-deoxy-α-C-glycosides from glycals[J]. Chinese Chemical Letters,
;2024, 35(12): 109674.
doi:
10.1016/j.cclet.2024.109674
V. Křen, J. Thiem, Chem. Soc. Rev. 26 (1997) 463–473.
doi: 10.1039/CS9972600463
S. Hanashima, B. Castagner, D. Esposito, et al., Org. Lett. 9 (2007) 1777–1779.
doi: 10.1021/ol0704946
S.A. Borisova, H.J. Kim, X. Pu, et al., ChemBioChem 9 (2008) 1554–1558.
doi: 10.1002/cbic.200800155
Y. Fujimoto, T. Hattori, S. Uno, et al., Carbohydr. Res. 344 (2009) 972–978.
doi: 10.1016/j.carres.2009.03.006
S. Muthana, H. Cao, X. Chen, Curr. Opinion Chem. Biol. 13 (2009) 573–581.
doi: 10.1016/j.cbpa.2009.09.013
P. Nagorny, B. Fasching, X. Li, et al., J. Am. Chem. Soc. 131 (2009) 5792–5799.
doi: 10.1021/ja809554x
M.H.D. Postema, Tetrahedron 48 (1992) 8545–8599.
doi: 10.1016/S0040-4020(01)89435-7
D.Y.W. Lee, M. He, Curr. Topics Med. Chem. 5 (2005) 1333–1350.
doi: 10.2174/156802605774643042
M. Ferrero, V. Gotor, Chem. Rev. 100 (2000) 4319–4348.
doi: 10.1021/cr000446y
M. Adamo, R. Pergoli, Curr. Org. Chem. 12 (2008) 1544–1569.
doi: 10.2174/138527208786786318
Y. Yang, B. Yu, Chem. Rev. 117 (2017) 12281–12356.
doi: 10.1021/acs.chemrev.7b00234
P. Hultin, Curr. Top. Med. Chem. 5 (2005) 1299–1331.
doi: 10.2174/156802605774643015
K. Kitamura, Y. Ando, T. Matsumoto, et al., Chem. Rev. 118 (2018) 1495–1598.
doi: 10.1021/acs.chemrev.7b00380
W. Shang, R. Shi, D. Niu, Chin. J. Chem. 41 (2023) 2217–2236.
doi: 10.1002/cjoc.202300153
E. De Clercq, J. Med. Chem. 59 (2016) 2301–2311.
doi: 10.1021/acs.jmedchem.5b01157
H. Liao, J. Ma, H. Yao, et al., Org. Biomol. Chem. 16 (2018) 1791–1806.
doi: 10.1039/C8OB00032H
P. Compain, O.R. Martin, Bioorg. Med. Chem. 9 (2001) 3077–3092.
doi: 10.1016/S0968-0896(01)00176-6
W. Zou, Curr. Top. Med. Chem. 5 (2005) 1363–1391.
doi: 10.2174/156802605774642999
M. Hocek, Chem. Rev. 109 (2009) 6729–6764.
doi: 10.1021/cr9002165
E. Leclerc, X. Pannecoucke, M. Ethève-Quelquejeu, et al., Chem. Soc. Rev. 42 (2013) 4270–4283.
doi: 10.1039/C2CS35403A
F. Zhu, M.J. Rourke, T. Yang, et al., J. Am. Chem. Soc. 138 (2016) 12049–12052.
doi: 10.1021/jacs.6b07891
C.C.J. Loh, Nat. Rev. Chem. 5 (2021) 792–815.
doi: 10.1038/s41570-021-00324-y
K.M. Hoang, N.R. Lees, S.B. Herzon, J. Am. Chem. Soc. 143 (2021) 2777–2783.
doi: 10.1021/jacs.0c11262
V.U.B. Rao, C. Wang, D.P. Demarque, et al., Nat. Chem. 15 (2022) 424–435.
Q. Li, S.M. Levi, C.C. Wagen, et al., Nature 608 (2022) 74–79.
doi: 10.1038/s41586-022-04958-w
C. Zhang, S.Y. Xu, H. Zuo, et al., Nat. Synth. 2 (2023) 251–260.
doi: 10.1038/s44160-022-00214-1
L. Krasnova, C.H. Wong, J. Am. Chem. Soc. 141 (2019) 3735–3754.
doi: 10.1021/jacs.8b11005
K. Kanagaraj, J. Rebek, Y. Yu, Green Synth. Catal. 4 (2023) 7–9.
doi: 10.1016/j.gresc.2022.10.005
P.R. Schreiner, Chem. Soc. Rev. 32 (2003) 289–296.
doi: 10.1039/b107298f
S.J. Connon, Chem. Eur. J. 12 (2006) 5418–5427.
doi: 10.1002/chem.200501076
A.G. Doyle, E.N. Jacobsen, Chem. Rev. 107 (2007) 5713–5743.
doi: 10.1021/cr068373r
Y. Takemoto, Chem. Pharm. Bull. 58 (2010) 593–601.
doi: 10.1248/cpb.58.593
D. Larsen, L.M. Langhorn, O.M. Akselsen, et al., Chem. Sci. 8 (2017) 7978–7982.
doi: 10.1039/C7SC03366D
Y. Park, K.C. Harper, N. Kuhl, et al., Science 355 (2017) 162–166.
doi: 10.1126/science.aal1875
Q. Li, S.M. Levi, E.N. Jacobsen, J. Am. Chem. Soc. 142 (2020) 11865–11872.
doi: 10.1021/jacs.0c04255
A. Chen, B. Yang, Z. Zhou, et al., Chem. Catal. 2 (2022) 3430–3470.
doi: 10.1016/j.checat.2022.10.019
H. Gong, R. Sinisi, M.R. Gagné, J. Am. Chem. Soc. 129 (2007) 1908–1909.
doi: 10.1021/ja068950t
H. Gong, M.R. Gagné, J. Am. Chem. Soc. 130 (2008) 12177–12183.
doi: 10.1021/ja8041564
X. Li, J. Zhu, Eur. J. Org. Chem. 2016 (2016) 4724–4767.
doi: 10.1002/ejoc.201600484
J. Ghouilem, M.D. Robichon, F.L. Bideau, et al., Chem. Eur. J. 27 (2021) 491–511.
doi: 10.1002/chem.202003267
Q. Sun, H. Zhang, Q. Wang, et al., Angew. Chem. Int. Ed. 60 (2021) 19620–19625.
doi: 10.1002/anie.202104430
X. Gou, Y. Li, W. Shi, et al., Angew. Chem. Int. Ed. 61 (2022) e202205656.
doi: 10.1002/anie.202205656
N. Hussain, A. Hussain, RSC Adv. 11 (2021) 34369–34391.
doi: 10.1039/D1RA06351K
J. Liu, C. Lei, H. Gong, Sci. China Chem. 62 (2019) 1492–1496.
doi: 10.1007/s11426-019-9501-4
Y. Jiang, Q. Wang, X. Zhang, et al., Chem 7 (2021) 3377–3392.
doi: 10.1016/j.chempr.2021.09.008
Q. Wang, Q. Sun, Y. Jiang, et al., Nat. Synth. 1 (2022) 235–244.
doi: 10.1038/s44160-022-00024-5
Y. Ma, S. Liu, Y. Xi, et al., Chem. Commun. 55 (2019) 14657–14660.
doi: 10.1039/C9CC07184A
M. Li, Y.F. Qiu, C.T. Wang, et al., Org. Lett. 22 (2020) 6288–6293.
doi: 10.1021/acs.orglett.0c02053
W.Z. Shi, H. Li, G.C. Mu, et al., Org. Lett. 23 (2021) 2659–2663.
doi: 10.1021/acs.orglett.1c00551
M. Zhu, S. Messaoudi, ACS. Catal. 11 (2021) 6334–6342.
doi: 10.1021/acscatal.1c01600
W. Yao, G. Zhao, Y. Wu, et al., J. Am. Chem. Soc. 144 (2022) 3353–3359.
doi: 10.1021/jacs.1c13299
S.O. Badir, A. Dumoulin, J.K. Matsui, et al., Angew. Chem. Int. Ed. 57 (2018) 6610–6613.
doi: 10.1002/anie.201800701
A. Dumoulin, J.K. Matsui, Á. Gutiérrez-Bonet, et al., Angew. Chem. Int. Ed. 57 (2018) 6614–6618.
doi: 10.1002/anie.201802282
E.M. Miller, M.A. Walczak, Org. Lett. 23 (2021) 4289–4293.
doi: 10.1021/acs.orglett.1c01035
D. Takeda, M. Yoritate, H. Yasutomi, et al., Org. Lett. 23 (2021) 1940–1944.
doi: 10.1021/acs.orglett.1c00402
W. Shang, S.N. Su, R. Shi, et al., Angew. Chem. Int. Ed. 60 (2021) 385–390.
doi: 10.1002/anie.202009828
S. Xu, W. Zhang, C. Li, et al., Angew. Chem. Int. Ed. 62 (2023) e202218303.
doi: 10.1002/anie.202218303
H. Zeng, Y. Li, R. Wu, et al., Org. Lett. (2023), doi:10.1021/acs.orglett.3c00833.
doi: 10.1021/acs.orglett.3c00833
Y. Jiang, Y. Zhang, B.C. Lee, et al., Angew. Chem. Int. Ed. 62 (2023) e202305138.
doi: 10.1002/anie.202305138
L. Chen, Z. Zhao, S. Yu, Chin. Chem. Lett. 35 (2024) 109128.
doi: 10.1016/j.cclet.2023.109128
B. Liu, D. Liu, X. Rong, et al., Angew. Chem. Int. Ed. 62 (2023) e202218544.
doi: 10.1002/anie.202218544
M. Zeng, C. Yu, Y. Wang, et al., Angew. Chem. Int. Ed. 62 (2023) e202300424.
doi: 10.1002/anie.202300424
J.R. Clark, K. Feng, A. Sookezian, et al., Nat. Chem. 10 (2018) 583–591.
doi: 10.1038/s41557-018-0020-0
P. Bhutani, G. Joshi, N. Raja, et al., J. Med. Chem. 64 (2021) 2339–2381.
doi: 10.1021/acs.jmedchem.0c01786
J. Panigot, W. Curley, J. Carb. Chem. 13 (1994) 293–302.
doi: 10.1080/07328309408009194
G. Díaz, A. Ponzinibbio, R.D. Bravo, Carb. Res. 393 (2014) 23–25.
doi: 10.1016/j.carres.2014.04.009
Z. Wang, H. Yin, G.C. Fu, Nature 563 (2018) 379–383.
doi: 10.1038/s41586-018-0669-y
D. Qian, S. Bera, X. Hu, J. Am. Chem. Soc. 143 (2021) 1959–1967.
doi: 10.1021/jacs.0c11630
F. Zhu, M.A. Walczak, J. Am. Chem. Soc. 142 (2020) 15127–15136.
doi: 10.1021/jacs.0c06882
Y. Wang, Y. He, S. Zhu, Acc. Chem. Res. 55 (2022) 3519–3536.
doi: 10.1021/acs.accounts.2c00628
S.J. He, J.W. Wang, Y. Li, et al., J. Am. Chem. Soc. 142 (2020) 214–221.
doi: 10.1021/jacs.9b09415
X.X. Wang, X. Lu, Y. Li, et al., Sci. China Chem. 63 (2020) 1586–1600.
doi: 10.1007/s11426-020-9838-x
Y. Li, W. Nie, Z. Chang, et al., Nat. Catal. 4 (2021) 901–911.
doi: 10.1038/s41929-021-00688-w
Y. Li, D. Liu, L. Wan, et al., J. Am. Chem. Soc. 144 (2022) 13961–13972.
doi: 10.1021/jacs.2c06279
S.Z. Sun, Y.M. Cai, D.L. Zhang, et al., J. Am. Chem. Soc. 144 (2022) 1130–1137.
doi: 10.1021/jacs.1c12350
X.X. Wang, Y.T. Xu, Z.L. Zhang, et al., Nat. Commun. 13 (2022) 1890.
doi: 10.1038/s41467-022-29554-4
J.W. Wang, Z. Li, D. Liu, et al., J. Am. Chem. Soc. 145 (2023) 10411–10421.
doi: 10.1021/jacs.3c02950
Junxin Li , Chao Chen , Yuzhen Dong , Jian Lv , Jun-Mei Peng , Yuan-Ye Jiang , Daoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732
Haoran Shi , Jiaxin Wang , Yuqin Zhu , Hongyang Li , Guodong Ju , Lanlan Zhang , Chao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333
Baokang Geng , Xiang Chu , Li Liu , Lingling Zhang , Shuaishuai Zhang , Xiao Wang , Shuyan Song , Hongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924
Ao Sun , Zipeng Li , Shuchun Li , Xiangbao Meng , Zhongtang Li , Zhongjun Li . Stereoselective synthesis of α-3-deoxy-D-manno-oct-2-ulosonic acid (α-Kdo) derivatives using a C3-p-tolylthio-substituted Kdo fluoride donor. Chinese Chemical Letters, 2025, 36(3): 109972-. doi: 10.1016/j.cclet.2024.109972
Qinghong Zhang , Qiao Zhao , Xiaodi Wu , Li Wang , Kairui Shen , Yuchen Hua , Cheng Gao , Yu Zhang , Mei Peng , Kai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167
Hong Lu , Yidie Zhai , Xingxing Cheng , Yujia Gao , Qing Wei , Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074
Lang Gao , Cen Zhou , Rui Wang , Feng Lan , Bohang An , Xiaozhou Huang , Xiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832
Yuhan Liu , Jingyang Zhang , Gongming Yang , Jian Wang . Highly enantioselective carbene-catalyzed δ-lactonization via radical relay cross-coupling. Chinese Chemical Letters, 2025, 36(1): 109790-. doi: 10.1016/j.cclet.2024.109790
Peng Guo , Shicheng Dong , Xiang-Gui Zhang , Bing-Bin Yang , Jun Zhu , Ke-Yin Ye . Cobalt-catalyzed migratory carbon-carbon cross-coupling of borabicyclo[3.3.1]nonane (9-BBN) borates. Chinese Chemical Letters, 2025, 36(4): 110052-. doi: 10.1016/j.cclet.2024.110052
Ruilong Geng , Lingzi Peng , Chang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433
Yuemin Chen , Yunqi Wu , Guoao Wang , Feihu Cui , Haitao Tang , Yingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445
Lili Zhang , Hui Gao , Gong Zhang , Yuning Dong , Kai Huang , Zifan Pang , Tuo Wang , Chunlei Pei , Peng Zhang , Jinlong Gong . Cross-section design of the flow channels in membrane electrode assembly electrolyzer for CO2 reduction reaction through numerical simulations. Chinese Chemical Letters, 2025, 36(1): 110204-. doi: 10.1016/j.cclet.2024.110204
Mengli Xu , Zhenmin Xu , Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305
Weiping Xiao , Yuhang Chen , Qin Zhao , Danil Bukhvalov , Caiqin Wang , Xiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176
Yi Luo , Lin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648
Lu Dai , Yuxin Ren , Shuang Li , Meidi Wang , Chentao Hu , Ya-Pan Wu , Guangtong Hai , Dong-Sheng Li . Room-temperature synthesis of Co(OH)2/Mo2TiC2Tx hetero-nanosheets with interfacial coupling for enhanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 109774-. doi: 10.1016/j.cclet.2024.109774
Yuhao Guo , Na Li , Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320
Zhenghua ZHAO , Qin ZHANG , Yufeng LIU , Zifa SHI , Jinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342
Conghui Wang , Lei Xu , Zhenhua Jia , Teck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075
Wei Chen , Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412