Recent advances in FeCl3-photocatalyzed organic reactions via hydrogen-atom transfer
-
* Corresponding author.
E-mail address: bingyu@zzu.edu.cn (B. Yu).
Citation:
Xiao-Ya Yuan, Cong-Cong Wang, Bing Yu. Recent advances in FeCl3-photocatalyzed organic reactions via hydrogen-atom transfer[J]. Chinese Chemical Letters,
;2024, 35(9): 109517.
doi:
10.1016/j.cclet.2024.109517
J.W. Darcy, B. Koronkiewicz, G.A. Parada, et al., Acc. Chem. Res. 51 (2018) 2391–2399.
doi: 10.1021/acs.accounts.8b00319
F. Juliá, T. Constantin, D. Leonori, Chem. Rev. 122 (2022) 2292–2352.
doi: 10.1021/acs.chemrev.1c00558
W. Xiao, X. Wang, R. Liu, et al., Chin. Chem. Lett. 32 (2021) 1847–1856.
doi: 10.1016/j.cclet.2021.02.009
Z.Y. Ma, M. Li, L.N. Guo, et al., Org. Lett. 23 (2021) 474–479.
doi: 10.1021/acs.orglett.0c03992
J. Kim, S. Kim, G. Choi, et al., Chem. Sci. 12 (2021) 1915–1923.
doi: 10.1039/D0SC04890A
Z. Chen, J. Chen, J. Xuan, Chin. Chem. Lett. 33 (2022) 2763–2764.
doi: 10.1016/j.cclet.2022.03.094
L. Capaldo, L.L. Quadri, D. Ravelli, Green Chem. 22 (2020) 3376–3396.
doi: 10.1039/D0GC01035A
H. Cao, X. Tang, H. Tang, et al., Chem. Catal. 1 (2021) 523–598.
doi: 10.1016/j.checat.2021.04.008
M.D. Kärkäs, Chem. Soc. Rev. 47 (2018) 5786–5865.
doi: 10.1039/C7CS00619E
L. Capaldo, D. Ravelli, M. Fagnoni, Chem. Rev. 122 (2022) 1875–1924.
doi: 10.1021/acs.chemrev.1c00263
C.-H. Ma, L. Zhao, X. He, et al., Org. Chem. Front. 9 (2022) 1445–1450.
doi: 10.1039/D1QO01870A
Z. Wang, N. Meng, Y. Lv, et al., Chin. Chem. Lett. 34 (2023) 107599.
doi: 10.1016/j.cclet.2022.06.022
P.Z. Wang, W.J. Xiao, J.R. Chen, Nat. Rev. Chem. 7 (2023) 35–50.
S.L. Meng, C. Ye, X.B. Li, et al., J. Am. Chem. Soc. 144 (2022) 16219–16231.
doi: 10.1021/jacs.2c02341
A.K. Bagdi, M. Rahman, D. Bhattacherjee, et al., Green Chem. 22 (2020) 6632–6681.
doi: 10.1039/D0GC02437F
L. Shi, T. Li, G.J. Mei, Green Synth. Catal. 3 (2022) 227–242.
doi: 10.1016/j.gresc.2022.03.007
W.C. Yang, Y. Sun, L.Y. Shen, et al., Mol. Catal. 535 (2023) 112819.
doi: 10.1016/j.mcat.2022.112819
F. Gao, S. Zhang, Q. Lv, et al., Chin. Chem. Lett. 33 (2022) 2354–2362.
doi: 10.1016/j.cclet.2021.10.081
L. Capaldo, D. Ravelli, Eur. J. Org. Chem. 2017 (2017) 2056–2071.
doi: 10.1002/ejoc.201601485
S. Protti, M. Fagnoni, D. Ravelli, ChemCatChem 7 (2015) 1516–1523.
doi: 10.1002/cctc.201500125
W. Fan, X. Zhao, Y. Deng, et al., J. Am. Chem. Soc. 144 (2022) 21674–21682.
doi: 10.1021/jacs.2c09366
M.D. Tzirakis, I.N. Lykakis, M. Orfanopoulos, Chem. Soc. Rev. 38 (2009) 2609–2621.
doi: 10.1039/b812100c
B.E. Cowie, J.M. Purkis, J. Austin, et al., Chem. Rev. 119 (2019) 10595–10637.
doi: 10.1021/acs.chemrev.9b00048
D. Ravelli, S. Protti, M. Fagnoni, Acc. Chem. Res. 49 (2016) 2232–2242.
doi: 10.1021/acs.accounts.6b00339
X.Y. Yuan, G.P. Yang, B. Yu, Chin. J. Org. Chem. 40 (2020) 3620–3632.
doi: 10.6023/cjoc202006068
D. Hu, X. Jiang, Synlett 32 (2021) 1330–1342.
doi: 10.1055/a-1493-3564
W.M. He, Y.W. Lin, D.H. Yu, Sci. China Chem. 63 (2020) 291–293.
doi: 10.1007/s11426-019-9675-5
J. Yan, H.W. Cheo, W.K. Teo, et al., J. Am. Chem. Soc. 142 (2020) 11357–11362.
doi: 10.1021/jacs.0c02052
S.J. Blanksby, G.B. Ellison, Acc. Chem. Res. 36 (2003) 255–263.
doi: 10.1021/ar020230d
Y. Shen, Y. Gu, R. Martin, J. Am. Chem. Soc. 140 (2018) 12200–12209.
doi: 10.1021/jacs.8b07405
C.Y. Huang, J. Li, C.J. Li, Nat. Commun. 12 (2021) 4010.
doi: 10.1038/s41467-021-24280-9
A.A. Isse, C.Y. Lin, M.L. Coote, et al., J. Phys. Chem. B 115 (2011) 678–684.
J.K. Kochi, J. Am. Chem. Soc. 84 (1962) 2121–2127.
doi: 10.1021/ja00870a025
S.M. Treacy, T. Rovis, J. Am. Chem. Soc. 143 (2021) 2729–2735.
doi: 10.1021/jacs.1c00687
P. Lian, R. Li, L. Wang, et al., Org. Chem. Front. 9 (2022) 4924–4931.
doi: 10.1039/D2QO01032A
H.C. Li, G.N. Li, K. Sun, et al., Org. Lett. 24 (2022) 2431–2435.
doi: 10.1021/acs.orglett.2c00699
H.P. Deng, Q. Zhou, J. Wu, Angew. Chem. Int. Ed. 57 (2018) 12661–12665.
doi: 10.1002/anie.201804844
B.J. Shields, A.G. Doyle, J. Am. Chem. Soc. 138 (2016) 12719–12722.
doi: 10.1021/jacs.6b08397
H.P. Deng, X.Z. Fan, Z.H. Chen, et al., J. Am. Chem. Soc. 139 (2017) 13579–13584.
doi: 10.1021/jacs.7b08158
M.K. Nielsen, B.J. Shields, J. Liu, et al., Angew. Chem. Int. Ed. 56 (2017) 7191–7194.
doi: 10.1002/anie.201702079
L.K.G. Ackerman, J.I. Martinez Alvarado, A.G. Doyle, J. Am. Chem. Soc. 140 (2018) 14059–14063.
doi: 10.1021/jacs.8b09191
C. Yin, M. Wang, Z. Cai, et al., Synthesis 54 (2022) 4864–4882.
doi: 10.1055/a-1921-0698
R.G. Bergman, Nature 446 (2007) 391–393.
doi: 10.1038/446391a
K. Godula, D. Sames, Science 312 (2006) 67–72.
doi: 10.1126/science.1114731
J.F. Hartwig, M.A. Larsen, ACS Central Sci. 2 (2016) 281–292.
doi: 10.1021/acscentsci.6b00032
C. Sambiagio, D. Schönbauer, R. Blieck, et al., Chem. Soc. Rev. 47 (2018) 6603–6743.
doi: 10.1039/C8CS00201K
J. Wang, P.B. Bai, S.D. Yang, Chin. Chem. Lett. 33 (2022) 2397–2401.
doi: 10.1016/j.cclet.2021.10.019
A. Banerjee, S.K. Santra, N. Khatun, et al., Chem. Commun. 51 (2015) 15422–15425.
doi: 10.1039/C5CC06200D
Y. Zhu, Y. Wei, Chem. Sci. 5 (2014) 2379–2382.
doi: 10.1039/c4sc00093e
M. Liu, J.L. Niu, D. Yang, et al., J. Org. Chem. 85 (2020) 4067–4078.
doi: 10.1021/acs.joc.9b03073
Y. Zhu, B. Guo, S. Gao, et al., Org. Chem. Front. 9 (2022) 5005–5009.
doi: 10.1039/D2QO01104B
G. Rani, V. Luxami, K. Paul, Chem. Commun. 56 (2020) 12479–12521.
doi: 10.1039/D0CC04863A
P. Chirik, R. Morris, Acc. Chem. Res. 48 (2015) 2495-2495.
doi: 10.1021/acs.accounts.5b00385
D. Wei, C. Darcel, Chem. Rev. 119 (2019) 2550–2610.
doi: 10.1021/acs.chemrev.8b00372
Q. Liang, D. Song, Chem. Soc. Rev. 49 (2020) 1209–1232.
doi: 10.1039/C9CS00508K
W.J. Zhou, X.D. Wu, M. Miao, et al., Chem. Eur. J. 26 (2020) 15052–15064.
doi: 10.1002/chem.202000508
Y. Abderrazak, A. Bhattacharyya, O. Reiser, Angew. Chem. Int. Ed. 60 (2021) 21100–21115.
doi: 10.1002/anie.202100270
S. Bonciolini, T. Noël, L. Capaldo, Eur. J. Org. Chem. (2022) e202200417.
Q. Dou, L. Fang, H. Zhai, et al., Chin. J. Org. Chem. 43 (2023) 1386–1415.
doi: 10.6023/cjoc202209001
L.H.M. de Groot, A. Ilic, J. Schwarz, et al., J. Am. Chem. Soc. 145 (2023) 9369–9388.
doi: 10.1021/jacs.3c01000
M. Mishra, S. Mohapatra, N.P. Mishra, et al., Tetrahedron Lett. 60 (2019) 150925.
doi: 10.1016/j.tetlet.2019.07.016
Z.Y. Dai, S.Q. Zhang, X. Hong, et al., Chem. Catal. 2 (2022) 1211–1222.
doi: 10.1016/j.checat.2022.03.020
Z. Jue, Y. Huang, J. Qian, et al., ChemSusChem 15 (2022) e202201241.
doi: 10.1002/cssc.202201241
Z.T. Pan, L.M. Shen, F.W. Dagnaw, et al., Chem. Commun. 59 (2023) 1637–1640.
doi: 10.1039/D2CC06486C
J.L. Tu, A.M. Hu, L. Guo, et al., J. Am. Chem. Soc. 145 (2023) 7600–7611.
doi: 10.1021/jacs.3c01082
Z. Zhang, Y. Deng, M. Hou, et al., Chem. Commun. 58 (2022) 13644–13647.
doi: 10.1039/D2CC04917A
R. Qi, T. Bai, S. Tang, et al., Org. Biomol. Chem. 21 (2023) 5382–5386.
doi: 10.1039/D3OB00328K
M. Guan, M. Hou, S. Tang, et al., Chem. Commun. 59 (2023) 13309–13312.
doi: 10.1039/D3CC03919F
S. Oh, E.E. Stache, J. Am. Chem. Soc. 144 (2022) 5745–5749.
doi: 10.1021/jacs.2c01411
G. Zhang, Z. Zhang, R. Zeng, Chin. J. Chem. 39 (2021) 3225–3230.
doi: 10.1002/cjoc.202100420
Y.C. Kang, S.M. Treacy, T. Rovis, ACS Catal. 11 (2021) 7442–7449.
doi: 10.1021/acscatal.1c02285
Y.X. Chen, M. Zhang, S.Z. Zhang, et al., Green Chem. 24 (2022) 4071–4081.
doi: 10.1039/D2GC00754A
L. Qiao, X. Fu, Y. Si, et al., Green Chem. 24 (2022) 5614–5619.
doi: 10.1039/D2GC01381A
J. Kim, B. Song, I. Chung, et al., J. Catal. 396 (2021) 81–91.
doi: 10.1016/j.jcat.2021.02.001
M. Nambo, Y. Maekawa, C.M. Crudden, ACS Catal. 12 (2022) 3013–3032.
doi: 10.1021/acscatal.1c05608
Y. Jin, L. Wang, Q. Zhang, et al., Green Chem. 23 (2021) 9406–9411.
doi: 10.1039/D1GC03388C
T. Xue, Z. Zhang, R. Zeng, Org. Lett. 24 (2022) 977–982.
doi: 10.1021/acs.orglett.1c04365
X.Y. Yu, J.R. Chen, W.J. Xiao, Chem. Rev. 121 (2021) 506–561.
doi: 10.1021/acs.chemrev.0c00030
X. Wu, C. Zhu, Chin. J. Chem. 37 (2019) 171–182.
doi: 10.1002/cjoc.201800455
P. Sivaguru, Z. Wang, G. Zanoni, et al., Chem. Soc. Rev. 48 (2019) 2615–2656.
doi: 10.1039/C8CS00386F
S.P. Morcillo, Angew. Chem. Int. Ed. 58 (2019) 14044–14054.
doi: 10.1002/anie.201905218
X. Wu, C. Zhu, Chem. Commun. 55 (2019) 9747–9756.
doi: 10.1039/C9CC04785A
X. Wu, C. Zhu, Chem. Rec. 18 (2018) 587–598.
doi: 10.1002/tcr.201700090
M.A. Drahl, M. Manpadi, L.J. Williams, Angew. Chem. Int. Ed. 52 (2013) 11222–11251.
doi: 10.1002/anie.201209833
E. Tsui, H. Wang, R.R. Knowles, Chem. Sci. 11 (2020) 11124–11141.
doi: 10.1039/D0SC04542J
H.G. Yayla, H. Wang, K.T. Tarantino, et al., J. Am. Chem. Soc. 138 (2016) 10794–10797.
doi: 10.1021/jacs.6b06517
L. Chang, Q. An, L. Duan, et al., Chem. Rev. 122 (2022) 2429–2486.
doi: 10.1021/acs.chemrev.1c00256
N. Xiong, Y. Li, R. Zeng, Org. Lett. 23 (2021) 8968–8972.
doi: 10.1021/acs.orglett.1c03488
W. Liu, Q. Wu, M. Wang, et al., Org. Lett. 23 (2021) 8413–8418.
doi: 10.1021/acs.orglett.1c03137
Q. Wu, W. Liu, M. Wang, et al., Chem. Commun. 58 (2022) 9886–9889.
doi: 10.1039/D2CC03896J
G. Laudadio, Y. Deng, K. van der Wal, et al., Science 369 (2020) 92–96.
doi: 10.1126/science.abb4688
Q. Zhang, S. Liu, J. Lei, et al., Org. Lett. 24 (2022) 1901–1906.
doi: 10.1021/acs.orglett.2c00224
Y. Qi, X. Gu, X. Huang, et al., Chin. Chem. Lett. 32 (2021) 3544–3547.
doi: 10.1016/j.cclet.2021.05.069
Y. Cao, S. Zhang, J.C. Antilla, ACS Catal. 10 (2020) 10914–10919.
doi: 10.1021/acscatal.0c02563
R.A. Garza-Sanchez, A. Tlahuext-Aca, G. Tavakoli, et al., ACS Catal. 7 (2017) 4057–4061.
doi: 10.1021/acscatal.7b01133
Y. Liu, X.L. Chen, X.Y. Li, et al., J. Am. Chem. Soc. 143 (2021) 964–972.
doi: 10.1021/jacs.0c11138
N. Xu, X. Peng, Z. Chen, et al., ACS Sustainable Chem. Eng. 11 (2023) 13142–13148.
doi: 10.1021/acssuschemeng.3c03415
A. Chinchole, M.A. Henriquez, D. Cortes-Arriagada, et al., ACS Catal. (2022) 13549–13554.
Q.Y. Li, S. Cheng, Z. Ye, et al., Nat. Commun. 14 (2023) 6366.
doi: 10.1038/s41467-023-42191-9
E. Vitaku, D.T. Smith, J.T. Njardarson, J. Med. Chem. 57 (2014) 10257–10274.
doi: 10.1021/jm501100b
J. Pan, H. Li, K. Sun, et al., Molecules 27 (2022) 3648.
doi: 10.3390/molecules27123648
Y. Jin, Q. Zhang, L. Wang, et al., Green Chem. 23 (2021) 6984–6989.
doi: 10.1039/D1GC01563J
H. Ni, C. Li, X. Shi, et al., J. Org. Chem. 87 (2022) 9797–9805.
doi: 10.1021/acs.joc.2c00854
Z. Huang, J. Tang, X. Jiang, et al., Chin. Chem. Lett. 33 (2022) 4842–4845.
doi: 10.1016/j.cclet.2022.01.080
N. Xiong, Y. Dong, B. Xu, et al., Org. Lett. 24 (2022) 4766–4771.
doi: 10.1021/acs.orglett.2c01743
J. Gui, C.M. Pan, Y. Jin, et al., Science 348 (2015) 886–891.
C.W. Cheung, J.A. Ma, X. Hu, J. Am. Chem. Soc. 140 (2018) 6789–6792.
doi: 10.1021/jacs.8b03739
C.W. Cheung, M.L. Ploeger, X. Hu, Nat. Commun. 8 (2017) 14878.
doi: 10.1038/ncomms14878
B. Wang, J. Ma, H. Ren, et al., Chin. Chem. Lett. 33 (2022) 2420–2424.
doi: 10.1016/j.cclet.2021.11.023
H. Gao, L. Guo, Y. Zhu, et al., Chem. Commun. 59 (2023) 2771–2774.
doi: 10.1039/D2CC06507J
L. Qi, X. Pang, K. Yin, et al., Chin. Chem. Lett. 33 (2022) 5061–5064.
doi: 10.1016/j.cclet.2022.03.070
L. Ding, K. Niu, Y. Liu, et al., ChemSusChem 15 (2022) e202200367.
doi: 10.1002/cssc.202200367
L. Ding, Y. Liu, K. Niu, et al., Chem. Commun. 58 (2022) 10679–10682.
doi: 10.1039/D2CC04056E
D. Yang, Q. Yan, E. Zhu, et al., Chin. Chem. Lett. 33 (2022) 1798–1816.
doi: 10.1016/j.cclet.2021.09.068
B. Niu, K. Sachidanandan, M.V. Cooke, et al., Org. Lett. 24 (2022) 4524–4529.
doi: 10.1021/acs.orglett.2c01505
G.D. Xia, Z.K. Liu, Y.L. Zhao, et al., Org. Lett. 25 (2023) 5279–5284.
doi: 10.1021/acs.orglett.3c01824
Guixu Pan , Zhiling Xia , Ning Wang , Hejia Sun , Zhaoqi Guo , Yunfeng Li , Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463
Weixu Li , Yuexin Wang , Lin Li , Xinyi Huang , Mengdi Liu , Bo Gui , Xianjun Lang , Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299
Zhen Shi , Wei Jin , Yuhang Sun , Xu Li , Liang Mao , Xiaoyan Cai , Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201
Hong-Tao Ji , Yu-Han Lu , Yan-Ting Liu , Yu-Lin Huang , Jiang-Feng Tian , Feng Liu , Yan-Yan Zeng , Hai-Yan Yang , Yong-Hong Zhang , Wei-Min He . Nd@C3N4-photoredox/chlorine dual catalyzed synthesis and evaluation of antitumor activities of 4-alkylated sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110568-. doi: 10.1016/j.cclet.2024.110568
Chaoqun Ma , Yuebo Wang , Ning Han , Rongzhen Zhang , Hui Liu , Xiaofeng Sun , Lingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632
Yan Fan , Jiao Tan , Cuijuan Zou , Xuliang Hu , Xing Feng , Xin-Long Ni . Unprecedented stepwise electron transfer and photocatalysis in supramolecular assembly derived hybrid single-layer two-dimensional nanosheets in water. Chinese Chemical Letters, 2025, 36(4): 110101-. doi: 10.1016/j.cclet.2024.110101
Tianhao Li , Wenguang Tu , Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195
Qiang Zhang , Weiran Gong , Huinan Che , Bin Liu , Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205
Yanghanbin Zhang , Dongxiao Wen , Wei Sun , Jiahe Peng , Dezhong Yu , Xin Li , Yang Qu , Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469
Yue Pan , Wenping Si , Yahao Li , Haotian Tan , Ji Liang , Feng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877
Er-Meng Wang , Ziyi Wang , Xu Ban , Xiaowei Zhao , Yanli Yin , Zhiyong Jiang . Chemoselective photocatalytic sulfenylamination of alkenes with sulfenamides via energy transfer. Chinese Chemical Letters, 2024, 35(12): 109843-. doi: 10.1016/j.cclet.2024.109843
Shenglan Zhou , Haijian Li , Hongyi Gao , Ang Li , Tian Li , Shanshan Cheng , Jingjing Wang , Jitti Kasemchainan , Jianhua Yi , Fengqi Zhao , Wengang Qu . Recent advances in metal-loaded MOFs photocatalysts: From single atom, cluster to nanoparticle. Chinese Chemical Letters, 2025, 36(1): 110142-. doi: 10.1016/j.cclet.2024.110142
Xinlong Zheng , Zhongyun Shao , Jiaxin Lin , Qizhi Gao , Zongxian Ma , Yiming Song , Zhen Chen , Xiaodong Shi , Jing Li , Weifeng Liu , Xinlong Tian , Yuhao Liu . Recent advances of CuSbS2 and CuPbSbS3 as photocatalyst in the application of photocatalytic hydrogen evolution and degradation. Chinese Chemical Letters, 2025, 36(3): 110533-. doi: 10.1016/j.cclet.2024.110533
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Mengjun Zhao , Yuhao Guo , Na Li , Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348
Jiangqi Ning , Junhan Huang , Yuhang Liu , Yanlei Chen , Qing Niu , Qingqing Lin , Yajun He , Zheyuan Liu , Yan Yu , Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453
Jiaqi Ma , Lan Li , Yiming Zhang , Jinjie Qian , Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466
Kun Tang , Fen Su , Shijie Pan , Fengfei Lu , Zhongfu Luo , Fengrui Che , Xingxing Wu , Yonggui Robin Chi . Enones from aldehydes and alkenes by carbene-catalyzed dehydrogenative couplings. Chinese Chemical Letters, 2024, 35(9): 109495-. doi: 10.1016/j.cclet.2024.109495
Jia-Cheng Hou , Wei Cai , Hong-Tao Ji , Li-Juan Ou , Wei-Min He . Recent advances in semi-heterogenous photocatalysis in organic synthesis. Chinese Chemical Letters, 2025, 36(2): 110469-. doi: 10.1016/j.cclet.2024.110469
Jing Wang , Zenghui Li , Xiaoyang Liu , Bochao Su , Honghong Gong , Chao Feng , Guoping Li , Gang He , Bin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473