Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review
-
*Corresponding author.
E-mail address: congjuli@126.com (C. Li).
Citation:
Yaxin Sun, Huiyu Li, Shiquan Guo, Congju Li. Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review[J]. Chinese Chemical Letters,
;2024, 35(5): 109418.
doi:
10.1016/j.cclet.2023.109418
T. Rayner, Earth Syst. Govern. 8 (2021) 100061.
doi: 10.1016/j.esg.2020.100061
I. Overland, J. Juraev, R. Vakulchuk, Renew. Energy 200 (2022) 379–386.
doi: 10.1016/j.renene.2022.09.046
T. Galimova, M. Ram, D. Bogdanov, et al., J. Clean. Prod. 373 (2022) 133920.
doi: 10.1016/j.jclepro.2022.133920
H. Barkh, A.L.N. Yu, D. Friend, et al., Resour. Conserv. Recy. 185 (2022) 106440.
doi: 10.1016/j.resconrec.2022.106440
H.B. Ameur, X. Han, Z. Liu, J. Peillex, Econ. Modell. 116 (2022) 106005.
doi: 10.1016/j.econmod.2022.106005
R. De Winter-Sorkina, Atmos. Environ. 35 (2001) 1609–1614.
doi: 10.1016/S1352-2310(00)00436-2
J.D. Morales-Mendez, R. Silva-Rodriguez, Heliyon. 4 (2018) e01020.
doi: 10.1016/j.heliyon.2018.e01020
M.D. Garcia, M.D.F. Severini, C. Spetter, et al., Regi. Stud. Mar. Sci. 30 (2019) 100731.
doi: 10.1016/j.rsma.2019.100731
B.M. Sharma, L. Nizzetto, G.K. Bharat, et al., Environ. Pollut. 206 (2015) 588–596.
doi: 10.1016/j.envpol.2015.08.012
R.C. Delgado, R.O. de Santana, Y.A. Gelsleichter, M.G. Pereira, Environ. Impact Assess. Rev. 96 (2022) 106815.
doi: 10.1016/j.eiar.2022.106815
M. Mandal, S. Mandal, Gene Reports 29 (2022) 101690.
doi: 10.1016/j.genrep.2022.101690
S. Mohtaram, W.D. Wu, Y. Aryanfar, Q.G. Yang, J.L.G. Alcaraz, Renew. Energ. 199 (2022) 179–191.
doi: 10.1016/j.renene.2022.08.069
F.T. Sun, X.Y. Zhao, X. Chen, L. Fu, L.B. Liu, Appl. Therm. Eng. 151 (2019) 439–450.
doi: 10.1016/j.applthermaleng.2019.02.043
Z. Zhang, X. Liu, D. Zhao, S. Post, J. Chen, Energy Built Environ. 4 (2023) 725–742.
doi: 10.1016/j.enbenv.2022.06.009
A. Singh, J. Ephraim, Energy Policy 99 (2016) 1–3.
doi: 10.1016/j.enpol.2016.09.024
M. Lak Kamari, A. Maleki, R. Daneshpour, et al., Energy 263 (2023) 125649.
doi: 10.1016/j.energy.2022.125649
N.D. Çakar, S. Erdoğan, A. Gedikli, M.A. Öncü, Nucl. Eng. Technol. 54 (2022) 1301–1311.
doi: 10.1016/j.net.2021.10.015
X.T. Wu, L.J. Peng, K. Xiao, N. Li, Z.Q. Liu, Chem. Commun. 57 (2021) 5258–5261.
doi: 10.1039/D1CC00460C
H.Y. Zhu, Z. Zhang, Y.Y. Zhou, et al., J. Water Process Eng. 45 (2022) 102471.
doi: 10.1016/j.jwpe.2021.102471
Y. Zhou, D. Xu, E.R. Xiao, et al., J. Environ. Sci. 70 (2018) 54–62.
doi: 10.1016/j.jes.2017.11.008
K.Q. Zhong, M. Li, Y. Yang, et al., Appl. Energ. 242 (2019) 516–525.
doi: 10.1016/j.apenergy.2019.03.050
F. Zhao, R.C. Slade, J.R. Varcoe, Chem. Soc. Rev. 38 (2009) 1926–1939.
doi: 10.1039/b819866g
H. Roy, T.U. Rahman, N. Tasnim, et al., Membranes 13 (2023) 490–518.
doi: 10.3390/membranes13050490
C.E. Zhao, J. Wu, S. Kjelleberg, J.S.C. Loo, Q. Zhang, Small 11 (2015) 3440–3443.
doi: 10.1002/smll.201403328
X. Fan, Y. Zhou, X. Jin, Carbon Energy 3 (2021) 449–472.
doi: 10.1002/cey2.113
C.E. Zhao, J. Chen, Y. Ding, et al., ACS Appl. Mater. Interfaces 7 (2015) 14501–14505.
doi: 10.1021/acsami.5b03990
X. Zhang, Q. Wang, C. Tang, et al., Small 16 (2020) 1905240.
doi: 10.1002/smll.201905240
N.M. Selihin, M.G. Tay, Water Sci. Technol. 85 (2022) 319–341.
doi: 10.2166/wst.2021.618
J. Yu, Y. Park, E. Widyaningsih, et al., Sci. Total Environ. 775 (2021) 145904.
doi: 10.1016/j.scitotenv.2021.145904
M.D. Yates, P.D. Kiely, D.F. Call, et al., Isme J. 6 (2012) 2002–2013.
doi: 10.1038/ismej.2012.42
C. Chen, M. Sun, K. Wang, Y. Li, SmartMat 3 (2022) 533–564.
doi: 10.1002/smm2.1085
M.O. Oyedeji, A. Alharbi, M. Aldhaifallah, H. Rezk, Energies 16 (2023) 4740–4760.
doi: 10.3390/en16124740
S. Rojas-Flores, E. Ramirez-Asis, J. Delgado-Caramutti, et al., Sustainability 15 (2023) 3651–3666.
doi: 10.3390/su15043651
W. Wang, Y. Zhang, M. Li, Bioresour. Technol. 314 (2020) 123808.
doi: 10.1016/j.biortech.2020.123808
A.S. Vishwanathan, 3 Biotech 11 (2021) 248.
H. Sun, S. Xu, G. Zhuang, X. Zhuang, J. Environ. Sci. 39 (2016) 242–248 (China).
doi: 10.1016/j.jes.2015.12.006
C. Santoro, C. Arbizzani, B. Erable, I. Ieropoulos, J. Power Sources 356 (2017) 225–244.
doi: 10.1016/j.jpowsour.2017.03.109
R. Prashanthi, Ionics 29 (2023) 1667–1697.
doi: 10.1007/s11581-023-04956-6
I.C.B. Rodrigues, V.A. Leao, Environ. Sci. Pollut. R. 27 (2020) 36075–36084.
doi: 10.1007/s11356-020-09728-7
X. Jin, N. Yang, Y. Liu, F. Guo, H. Liu, Bioresour. Technol. 306 (2020) 123120.
doi: 10.1016/j.biortech.2020.123120
L. Tan, Q.R. Pan, X.T. Wu, et al., ACS Sustain. Chem. Eng. 7 (2019) 6335–6344.
doi: 10.1021/acssuschemeng.9b00026
B. Li, Z. Zhao, Z. Weng, et al., Fuel Cells 20 (2020) 203–211.
doi: 10.1002/fuce.201900210
E.B. Estrada-Arriaga, O. Guadarrama-Perez, S. Silva-Martinez, C. Cuevas-Arteaga, V.H. Guadarrama-Perez, Electrochim. Acta 370 (2021) 137745.
doi: 10.1016/j.electacta.2021.137745
H.Q. Wang, L.L. Wei, J.T. Liu, J.Q. Shen, Int. J. Hydrogen Energy 45 (2020) 4481–4489.
doi: 10.1016/j.ijhydene.2019.12.043
Y.X. Sun, H.Y. Li, J.N. Wang, et al., J. Environ. Chem. Eng. 10 (2022) 108898.
doi: 10.1016/j.jece.2022.108898
Y. Liu, Y.S. Fan, Z.M. Liu, Chem. Eng. J. 361 (2019) 416–427.
doi: 10.1016/j.cej.2018.12.105
J. Chen, Y. Liu, J. Yang, et al., Bioresource Technol. 346 (2022) 126584.
doi: 10.1016/j.biortech.2021.126584
C.E. Zhao, Z. Qiu, J. Yang, et al., ACS Sustain. Chem. Eng. 8 (2020) 13964–13972.
doi: 10.1021/acssuschemeng.0c03485
S. Huang, Y. Geng, J. Xia, D. Chen, J. Lu, Small 18 (2022) 2106355.
doi: 10.1002/smll.202106355
C. Shao, S. Zhuang, H. Zhang, et al., Small 17 (2021) 2006178.
doi: 10.1002/smll.202006178
E. Yeager, Electrochim. Acta. 29 (1984) 1527–1537.
doi: 10.1016/0013-4686(84)85006-9
T. Zhou, H. Han, P. Liu, et al., Sensors 17 (2017) 2230–2250.
doi: 10.3390/s17102230
H. Yin, Y. Dou, S. Chen, et al., Adv. Mater. 32 (2020) 1904870.
doi: 10.1002/adma.201904870
P. Dange, N. Savla, S. Pandit, et al., J. Renew Mater. 10 (2022) 665–697.
doi: 10.32604/jrm.2022.015806
Z.W. Seh, J. Kibsgaard, C.F. Dickens, et al., Science 355 (2017) eaad4998.
doi: 10.1126/science.aad4998
Z.Y. Teng, W.N. Cai, W. Sim, et al., Appl. Catal. B: Environ. 282 (2021) 119589.
doi: 10.1016/j.apcatb.2020.119589
J. Huang, L. Sementa, Z.Y. Liu, et al., Nat. Catal. 5 (2022) 513–523.
doi: 10.1038/s41929-022-00797-0
K. Zhao, Y. Shu, F. Li, G. Peng, Green Energy Environ. 8 (2023) 1043–1070.
doi: 10.1016/j.gee.2022.10.007
Z. Li, B. Li, Y. Hu, S. Wang, C. Yu, Mater. Adv. 3 (2022) 779–809.
doi: 10.1039/D1MA00858G
M. Abdallah, S. Feroz, S. Alani, E.T. Sayed, A. Shanableh, Rev. Environ. Sci. Biotechnol. 18 (2019) 543–578.
doi: 10.1007/s11157-019-09508-x
K. Ben Liew, W.R.W. Daud, M. Ghasemi, et al., Int. J. Hydrogen Energ. 39 (2014) 4870–4883.
doi: 10.1016/j.ijhydene.2014.01.062
C.X. Zhao, J.N. Liu, J. Wang, et al., Chem. Soc. Rev. 50 (2021) 7745–7778.
doi: 10.1039/D1CS00135C
C.E. Zhao, J. Wu, S. Kjelleberg, J.S. Loo, Q. Zhang, Small 11 (2015) 3440–3443.
doi: 10.1002/smll.201403328
H. Wang, L. Wei, C. Yang, J. Liu, J. Shen, Bioelectrochemistry 131 (2020) 107370.
doi: 10.1016/j.bioelechem.2019.107370
M.T. Noori, B.R. Tiwari, C.K. Mukherjee, M.M. Ghangrekar, Int. J. Hydrog. Energy 43 (2018) 19650–19660.
doi: 10.1016/j.ijhydene.2018.08.120
J.C. Carrillo-Rodriguez, S. Garcia-Mayagoitia, R. Perez-Hernandez, et al., J. Power Sources 414 (2019) 103–114.
doi: 10.1016/j.jpowsour.2018.12.087
Z.H. Yan, M. Wang, Y.Q. Lu, R.M. Liu, J.S. Zhao, J. Solid State. Electr. 18 (2014) 1087–1097.
doi: 10.1007/s10008-013-2361-3
Z.H. Yan, M. Wang, J.F. Liu, R.M. Liu, J.S. Zhao, Electrochim. Acta 141 (2014) 331–339.
doi: 10.1016/j.electacta.2014.06.137
B.T. Li, Z.Z. He, M. Wang, X.J. Wang, Int. J. Hydrogen Energ. 42 (2017) 5261–5271.
doi: 10.1016/j.ijhydene.2017.01.087
R. Jasinski, Nature 201 (1964) 1212–1213.
doi: 10.1038/2011212a0
J.R. Kim, J.Y. Kim, S.B. Han, et al., Bioresource Technol. 102 (2011) 342–347.
doi: 10.1016/j.biortech.2010.07.005
M. Yu, Q. Yang, X. Yuan, et al., Bioresource Technol. 320 (2021) 124343.
doi: 10.1016/j.biortech.2020.124343
M.Y. Yu, Y.F. Li, X.P. Chen, et al., J. Power Sources 509 (2021) 230365.
doi: 10.1016/j.jpowsour.2021.230365
B. Mecheri, V.C.A. Ficca, M.A.C. de Oliveira, et al., Appl. Catal. B: Environ. 237 (2018) 699–707.
doi: 10.1016/j.apcatb.2018.06.031
X. Zhang, K.X. Li, P.Y. Yan, Z.Q. Liu, L.T. Pu, Bioresource Technol. 187 (2015) 299–304.
doi: 10.1016/j.biortech.2015.03.131
P. Zhang, K.X. Li, X.H. Liu, J. Power Sources 264 (2014) 248–253.
doi: 10.1016/j.jpowsour.2014.04.098
H.R. Yuan, L.F. Deng, Y. Chen, Y. Yuan, Electrochim. Acta 196 (2016) 280–285.
doi: 10.1016/j.electacta.2016.02.183
L. Zheng, X. Lin, Y. Liu, et al., Sci. Total Environ. 808 (2022) 151873.
doi: 10.1016/j.scitotenv.2021.151873
Q. Dong, S. Ji, H. Wang, V. Linkov, R. Wang, ACS Appl. Mater. Interfaces 14 (2022) 51222–51233.
doi: 10.1021/acsami.2c15769
J. Cai, H. Zhang, L. Zhang, et al., Adv. Mater. 35 (2023) 2303488.
doi: 10.1002/adma.202303488
C. Chen, Z.J. Tang, J.Y. Li, et al., Adv. Funct. Mater. 33 (2023) 2210143.
doi: 10.1002/adfm.202210143
W.D. Qiu, H.B. Xiao, H. Gao, J. Power Sources 491 (2021) 229583.
doi: 10.1016/j.jpowsour.2021.229583
M. Mahmoud, T.A. Gad-Allah, K.M. El-Khatib, F. El-Gohary, Bioresource Technol. 102 (2011) 10459–10464.
doi: 10.1016/j.biortech.2011.08.123
L. Zhang, C. Liu, L. Zhuang, et al., Biosens. Bioelectron. 24 (2009) 2825–2829.
doi: 10.1016/j.bios.2009.02.010
R. Kumar, L. Singh, A.W. Zularisam, Int. J. Hydrogen Energ. 42 (2017) 19287–19295.
doi: 10.1016/j.ijhydene.2017.06.065
X. Li, B.X. Hu, S. Suib, Y. Lei, B.K. Li, Biochem. Eng. J. 54 (2011) 10–15.
doi: 10.1016/j.bej.2011.01.001
B.L. Liang, Y.B. Zhao, M.Z. Zong, et al., Chem. Eng. J. 385 (2020) 123861.
doi: 10.1016/j.cej.2019.123861
V.M. Ortiz-Martínez, K. Touati, M.J. Salar-García, F.J. Hernández-Fernández, A.P. de los Ríos, Biochem. Eng. J. 151 (2019) 107310.
doi: 10.1016/j.bej.2019.107310
M.T. Noori, C.K. Mukherjee, M.M. Ghangrekar, Electrochim. Acta 228 (2017) 513–521.
doi: 10.1016/j.electacta.2017.01.016
S. Xin, J. Shen, G. Liu, et al., Chem. Eng. J. 380 (2020) 122446.
doi: 10.1016/j.cej.2019.122446
Z. Fang, B. Bueken, D.E. De Vos, R.A. Fischer, Angew. Chem. Int. Ed. 54 (2015) 7234–7254.
doi: 10.1002/anie.201411540
Y. Peng, S. Sanati, A. Morsali, H. Garcia, Angew. Chem. Int. Ed. 135 (2023) e202214707.
doi: 10.1002/ange.202214707
Y. Pan, R. Abazari, Y. Wu, J. Gao, Q. Zhang, Electrochem. Commun. 126 (2021) 107024.
doi: 10.1016/j.elecom.2021.107024
I. Nath, J. Chakraborty, F. Verpoort, Chem. Soc. Rev. 45 (2016) 4127–4170.
doi: 10.1039/C6CS00047A
Z. Zhai, X. Zhang, J. Wang, et al., Chem. Eng. J. 428 (2022) 131720.
doi: 10.1016/j.cej.2021.131720
S. Guo, Y. Liu, Y. Sun, C. Li, J. Colloid Interface Sci. 636 (2023) 305–316.
doi: 10.1016/j.jcis.2023.01.013
Z. Zhai, X. Zhang, X. Hao, B. Niu, C. Li, Adv. Mater. Technol. 6 (2021) 2100127.
doi: 10.1002/admt.202100127
H.Y. Li, Y.X. Sun, J.A. Wang, Y.F. Liu, C.J. Li, Appl. Catal. B: Environ. 307 (2022) 121136.
doi: 10.1016/j.apcatb.2022.121136
L.C. Peng, Y.X. Sun, S.Q. Guo, C.J. Li, J. Mater. Chem. A 10 (2022) 3820–3821.
doi: 10.1039/D2TA90021A
F. Chen, Y.X. Sun, H.Y. Li, C.J. Li, Energy Technol. 10 (2022) 2101086.
doi: 10.1002/ente.202101086
D.P. Dubal, K. Jayaramulu, J. Sunil, et al., Adv. Funct. Mater. 29 (2019) 1900532.
doi: 10.1002/adfm.201900532
W. Fan, X. Wang, X. Zhang, et al., ACS Cent. Sci. 5 (2019) 1261–1268.
doi: 10.1021/acscentsci.9b00423
Y.Z. Jiang, C.Y. Liu, J. Caro, A.S. Huang, Micropor. Mesopor. Mater. 274 (2019) 203–211.
doi: 10.1016/j.micromeso.2018.08.003
Q. Liu, Y.K. Li, Q.Q. Li, et al., Sep. Purif. Technol. 214 (2019) 2–10.
doi: 10.1016/j.seppur.2018.01.050
V.I.A. Mate, J.A.D. Dobladez, S. Alvarez-Torrellas, M. Larriba, A.M. Rodriguez, Chem. Eng. J. 361 (2019) 1007–1018.
doi: 10.1016/j.cej.2018.12.154
F.R. Boroojeni, S. Mashayekhan, H.A. Abbaszadeh, Iran. J. Pharm. Res. 18 (2019) 111–124.
W.M. Chen, Y. Xu, Y.Q. Liu, et al., Mater. Design 179 (2019) 107886.
doi: 10.1016/j.matdes.2019.107886
Z. Zhai, J. Wang, Y. Sun, et al., Appl. Surf. Sci. 613 (2023) 155772.
doi: 10.1016/j.apsusc.2022.155772
Z.Y. Zhai, Y.X. Sun, X.K. Hao, C.J. Li, Appl. Surf. Sci. 621 (2023) 156833.
doi: 10.1016/j.apsusc.2023.156833
M.T. Noori, C.I. Ezugwu, Y.H. Wang, B.K. Min, J. Power Sources. 547 (2022) 231947.
doi: 10.1016/j.jpowsour.2022.231947
I. Das, M.T. Noori, M. Shaikh, M.M. Ghangrekar, R. Ananthakrishnan, ACS Appl. Energ. Mater. 3 (2020) 3512–3520.
doi: 10.1021/acsaem.0c00054
H. Tang, S. Cai, S. Xie, et al., Adv. Sci. 3 (2016) 1500265.
doi: 10.1002/advs.201500265
Y. Qin, H.Y. Li, Y.X. Sun, et al., J. Power Sources 541 (2022) 231685.
doi: 10.1016/j.jpowsour.2022.231685
S. Li, X. Zhu, H. Yu, et al., Environ. Res. 197 (2021) 111054.
doi: 10.1016/j.envres.2021.111054
Y. Wang, K.Q. Zhong, H. Li, et al., J. Power Sources 485 (2021) 229273.
doi: 10.1016/j.jpowsour.2020.229273
P. Tian, D. Liu, K.X. Li, et al., Bioresource Technol. 244 (2017) 206–212.
doi: 10.1016/j.biortech.2017.07.034
D.H. Hong, H.S. Shim, J. Ha, H.R. Moon, B. Korean Chem. Soc. 42 (2021) 956–969.
doi: 10.1002/bkcs.12335
C. Liu, J. Wang, J.J. Wan, C.Z. Yu, Coordin. Chem. Rev. 432 (2021) 213743.
doi: 10.1016/j.ccr.2020.213743
Z. Ye, Y. Jiang, L. Li, F. Wu, R. Chen, Nano Micro Lett. 13 (2021) 1–37.
doi: 10.1007/s40820-020-00525-y
Y.H. Li, M.Y. Liu, Y.W. Wei, C.C. Wang, P. Wang, Environ. Sci. Nano 10 (2023) 672–682.
doi: 10.1039/D2EN01035F
Y. Guo, K. Wang, Y. Hong, H. Wu, Q. Zhang, Dalton Trans. 50 (2021) 11331–11346.
doi: 10.1039/D1DT01729B
G. Palanisamy, S. Thangarasu, T.H. Oh, Polymers 15 (2023) 1294–1320.
doi: 10.3390/polym15051294
X. Liu, L.M. Dai, Nat. Rev. Mater. 1 (2016) 16064.
doi: 10.1038/natrevmats.2016.64
L. Wen, F. Li, H.M. Cheng, Adv. Mater. 28 (2016) 4306–4337.
doi: 10.1002/adma.201504225
S. Zhuang, C. Shao, J. Ye, B. Li, X. Wang, Environ. Res. 191 (2020) 110195.
doi: 10.1016/j.envres.2020.110195
K.Q. Zhong, L.Z. Huang, M. Li, et al., Int. J. Hydrogen Energy 44 (2019) 30127–30140.
doi: 10.1016/j.ijhydene.2019.09.167
K.Q. Zhong, L.Z. Huang, H. Li, et al., Carbon 183 (2021) 62–75.
doi: 10.1016/j.carbon.2021.06.070
Y. Cui, N. Jiang, S. Shi, C. Jia, B. Jiang, Int. J. Energ. Res. 46 (2022) 23234–23243.
doi: 10.1002/er.8622
Z. Shixuan, L. Donghao, J. Jiwei, F. Li, T. Hua, Electrochim. Acta 437 (2023) 141543.
doi: 10.1016/j.electacta.2022.141543
R. Lang, W. Xi, J.C. Liu, et al., Nat. Commun. 10 (2019) 234.
doi: 10.1038/s41467-018-08136-3
B. Qiao, A. Wang, X. Yang, et al., Nat. Chem. 3 (2011) 634–641.
doi: 10.1038/nchem.1095
B.L. Liang, S. Guo, Y.B. Zhao, et al., J. Power Sources 450 (2020) 227683.
doi: 10.1016/j.jpowsour.2019.227683
Y.X. Du, Q. Yang, W.T. Lu, et al., Adv. Funct. Mater. 33 (2023) 2300895.
doi: 10.1002/adfm.202300895
J. Yang, J. Tian, Y. Zhao, et al., Int. J. Hydrogen. Energ. 50 (2024) 1257–1266.
doi: 10.1016/j.ijhydene.2023.06.259
S.K. Dhillon, A. Chaturvedi, D. Gupta, T.C. Nagaiah, P.P. Kundu, Environ. Sci. Pollut. Res. Int. 29 (2022) 80787–80804.
doi: 10.1007/s11356-022-21437-x
Z. Lin, A. Yang, B. Zhang, et al., Adv. Funct. Mater. 32 (2021) 2107683.
C. Shao, L. Wu, Y. Wang, et al., Chem. Eng. J. 429 (2022) 132307.
doi: 10.1016/j.cej.2021.132307
Jinli Chen , Shouquan Feng , Tianqi Yu , Yongjin Zou , Huan Wen , Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Jin Long , Xingqun Zheng , Bin Wang , Chenzhong Wu , Qingmei Wang , Lishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354
Jiayu Huang , Kuan Chang , Qi Liu , Yameng Xie , Zhijia Song , Zhiping Zheng , Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097
Shaojie Ding , Henan Wang , Xiaojing Dai , Yuru Lv , Xinxin Niu , Ruilian Yin , Fangfang Wu , Wenhui Shi , Wenxian Liu , Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302
Fei Jin , Bolin Yang , Xuanpu Wang , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198
Kunsong Hu , Yulong Zhang , Jiayi Zhu , Jinhua Mai , Gang Liu , Manoj Krishna Sugumar , Xinhua Liu , Feng Zhan , Rui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423
Yatian Deng , Dao Wang , Jinglan Cheng , Yunkun Zhao , Zongbao Li , Chunyan Zang , Jian Li , Lichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141
Wenbiao Zhang , Bolong Yang , Zhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630
Fei Yin , Erli Yang , Xue Ge , Qian Sun , Fan Mo , Guoqiu Wu , Yanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753
Tao Ban , Xi-Yang Yu , Hai-Kuo Tian , Zheng-Qing Huang , Chun-Ran Chang . One-step conversion of methane and formaldehyde to ethanol over SA-FLP dual-active-site catalysts: A DFT study. Chinese Chemical Letters, 2024, 35(4): 108549-. doi: 10.1016/j.cclet.2023.108549
Jialin Cai , Yizhe Chen , Ruiwen Zhang , Cheng Yuan , Zeyu Jin , Yongting Chen , Shiming Zhang , Jiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255
Shenghui Tu , Anru Liu , Hongxiang Zhang , Lu Sun , Minghui Luo , Shan Huang , Ting Huang , Honggen Peng . Oxygen vacancy regulating transition mode of MIL-125 to facilitate singlet oxygen generation for photocatalytic degradation of antibiotics. Chinese Chemical Letters, 2024, 35(12): 109761-. doi: 10.1016/j.cclet.2024.109761
Chenhao Zhang , Qian Zhang , Yezhou Hu , Hanyu Hu , Junhao Yang , Chang Yang , Ye Zhu , Zhengkai Tu , Deli Wang . N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(3): 110429-. doi: 10.1016/j.cclet.2024.110429
Quanyou Guo , Yue Yang , Tingting Hu , Hongqi Chu , Lijun Liao , Xuepeng Wang , Zhenzi Li , Liping Guo , Wei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235
Yan Wang , Jiaqi Zhang , Xiaofeng Wu , Sibo Wang , Masakazu Anpo , Yuanxing Fang . Elucidating oxygen evolution and reduction mechanisms in nitrogen-doped carbon-based photocatalysts. Chinese Chemical Letters, 2025, 36(2): 110439-. doi: 10.1016/j.cclet.2024.110439
Xue Zhao , Rui Zhao , Qian Liu , Henghui Chen , Jing Wang , Yongfeng Hu , Yan Li , Qiuming Peng , John S Tse . A p-d block synergistic effect enables robust electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(11): 109496-. doi: 10.1016/j.cclet.2024.109496
Jiaqi Lin , Pupu Yang , Yimin Jiang , Shiqian Du , Dongcai Zhang , Gen Huang , Jinbo Wang , Jun Wang , Qie Liu , Miaoyu Li , Yujie Wu , Peng Long , Yangyang Zhou , Li Tao , Shuangyin Wang . Surface decoration prompting the decontamination of active sites in high-temperature proton exchange membrane fuel cells. Chinese Chemical Letters, 2024, 35(11): 109435-. doi: 10.1016/j.cclet.2023.109435
Min Song , Qian Zhang , Tao Shen , Guanyu Luo , Deli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083
Lian Sun , Honglei Wang , Ming Ma , Tingting Cao , Leilei Zhang , Xingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188