Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ)
-
* Corresponding authors.
E-mail addresses: wuqy@ihep.ac.cn (Q. Wu), shiwq@ihep.ac.cn (W. Shi).
Citation:
Lingling Su, Qunyan Wu, Congzhi Wang, Jianhui Lan, Weiqun Shi. Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ)[J]. Chinese Chemical Letters,
;2024, 35(8): 109402.
doi:
10.1016/j.cclet.2023.109402
R.C. Ewing, Nat. Mater. 14 (2015) 252–257.
doi: 10.1038/nmat4226
J. Veliscek-Carolan, J. Hazard. 318 (2016) 266–281.
doi: 10.1016/j.jhazmat.2016.07.027
M. Salvatores, G. Palmiotti, Prog. Part. Nucl. Phys. 66 (2011) 144–166.
doi: 10.1016/j.ppnp.2010.10.001
A. Salvatores, Nucl. Eng. Des. 235 (2005) 805–816.
doi: 10.1016/j.nucengdes.2004.10.009
J.N. Mathur, M.S. Murali, K.L. Nash, Solvent Extr. Ion. Exch. 19 (2001) 357–390.
doi: 10.1081/SEI-100103276
K.L. Nash, Handbook on the Physics and Chemistry of Rare Earths, Elsevier, 1994, pp. 197–238.
A. Khayambashi, L. Chen, X. Dong, et al., Chin. Chem. Lett. 33 (2022) 3429–3434.
doi: 10.1016/j.cclet.2022.02.011
L. Xu, N. Pu, G. Y, et al., Inorg. Chem. Front. 7 (2020) 1726–1740.
doi: 10.1039/d0qi00200c
X. Yang, S.H. Wang, L. Xu, et al., Inorg. Chem. Front. 9 (2022) 4671–4684.
doi: 10.1039/d2qi01153k
T.Y. Xiu, S.M. Zhang, P. Ren, et al., Chin. Chem. Lett. 34 (2023) 108440.
doi: 10.1016/j.cclet.2023.108440
D.S. Tian, Y.Y. Liu, Y. Kang, et al., ACS Cent. Sci. 9 (2023) 1642–1649.
doi: 10.1021/acscentsci.3c00504
R.G. Pearson, J. Am. Chem. Soc. 85 (1963) 3533–3539.
doi: 10.1021/ja00905a001
A. Leoncini, J. Huskens, W. Verboom, Chem. Soc. Rev. 46 (2017) 7229–7273.
doi: 10.1039/C7CS00574A
Z.R. Ye, Q.Y. Wu, C.Z. Wang, et al., Inorg. Chem. 60 (2021) 16409–16419.
doi: 10.1021/acs.inorgchem.1c02256
A. Geist, P.J. Panak, Solvent Extr. Ion. Exch. 39 (2021) 128–151.
doi: 10.1080/07366299.2020.1831235
C. Madic, M.J. Hudson, Report EUR 18038EN. Nuclear Science and Technology, 1998.
Z. Kolarik, U. Müllich, F. Gassner, Solvent Extr. Ion. Exch. 17 (1999) 23–32.
doi: 10.1080/07360299908934598
F.W. Lewis, L.M. Harwood, M.J. Hudson, et al., J. Am. Chem. Soc. 133 (2011) 13093–13102.
doi: 10.1021/ja203378m
M.G.B. Drew, M.J. Hudson, P.B. Iveson, et al., Dalton Trans. (1999) 2433–2440.
A. Bremer, C.M. Ruff, D. Girnt, et al., Inorg. Chem. 51 (2012) 5199–5207.
doi: 10.1021/ic3000526
D.P. Su, Y. Liu, S.M. Li, et al., Eur. J. Inorg. Chem. (2017) 651–658 2017.
Y. Liu, X.Y. Yang, S.D. Ding, et al., Inorg. Chem. 57 (2018) 5782–5790.
doi: 10.1021/acs.inorgchem.8b00074
J.R. Wang, D.P. Su, D.Q. Wang, et al., Inorg. Chem. 54 (2015) 10648–10655.
doi: 10.1021/acs.inorgchem.5b01452
X.H. Kong, Q.Y. Wu, C.Z. Wang, et al., J. Phys. Chem. A 122 (2018) 4499–4507.
doi: 10.1021/acs.jpca.8b00177
C. Kiefer, A.T. Wagner, B.B. Beele, et al., Inorg. Chem. 54 (2015) 7301–7308.
doi: 10.1021/acs.inorgchem.5b00803
E. Macerata, E. Mossini, S. Scaravaggi, et al., J. Am. Chem. Soc. 138 (2016) 7232–7235.
doi: 10.1021/jacs.6b03106
A.C. Edwards, P. Mocilac, A. Geist, et al., Chem. Commun. 53 (2017) 5001–5004.
doi: 10.1039/C7CC01855J
A. Ossola, E. Macerata, E. Mossini, et al., J. Radioanal. Nucl. Ch. 318 (2018) 2013–2022.
doi: 10.1007/s10967-018-6253-y
P. Weßling, M. Maag, G. Baruth, et al., Inorg. Chem. 61 (2022) 17719–17729.
doi: 10.1021/acs.inorgchem.2c02871
F. Galluccio, E. Macerata, P. Weßling, et al., Inorg. Chem. 61 (2022) 18400–18411.
doi: 10.1021/acs.inorgchem.2c02332
L.K. Liu, S.B. Xie, H.B. Lv, et al., Chin. Chem. Lett. 33 (2022) 3439–3443.
doi: 10.1016/j.cclet.2022.04.001
Y.A. Ustynyuk, M.Y. Alyapyshev, V.A. Babain, et al., Russ. Chem. Rev. 85 (2016) 917–942.
doi: 10.1070/RCR4588
X. Zhang, S.L. Adelman, B.T. Arko, et al., Inorg. Chem. 61 (2022) 11556–11570.
doi: 10.1021/acs.inorgchem.2c00534
C. Ebenezer, R. Vijay Solomon, Inorg. Chem. Front. 8 (2021) 3012–3024.
doi: 10.1039/d1qi00097g
R.C. Chapleski Jr., A.S. Ivanov, K.A. Peterson, et al., Phys. Chem. Chem. Phys. 23 (2021) 19558–19570.
doi: 10.1039/d1cp02466c
J.P. Yu, K. Liu, Q.Y. Wu, et al., Chinese J. Chem. 39 (2021) 2125–2131.
doi: 10.1002/cjoc.202100149
G.J.P. Deblonde, M.P. Kelley, J. Su, et al., Angew. Chem. Int. Ed. 57 (2018) 4521–4526.
doi: 10.1002/anie.201709183
J.N. Cross, J. Su, E.R. Batista, et al., J. Am. Chem. Soc. 139 (2017) 8667–8677.
doi: 10.1021/jacs.7b03755
J. Su, E.R. Batista, K.S. Boland, et al., J. Am. Chem. Soc. 140 (2018) 17977–17984.
doi: 10.1021/jacs.8b09436
Q.Y. Wu, Y.T. Song, L. Ji, et al., Phys. Chem. Chem. Phys. 19 (2017) 26969–26979.
doi: 10.1039/C7CP04625A
C. Wang, Q.Y. Wu, X.H. Kong, et al., Inorg. Chem. 58 (2019) 10047–10056.
doi: 10.1021/acs.inorgchem.9b01200
X.H. Kong, Q.Y. Wu, J.H. Lan, et al., Inorg. Chem. 57 (2018) 14810–14820.
doi: 10.1021/acs.inorgchem.8b02550
X.P. Lei, Q.Y. Wu, C.Z. Wang, et al., Dalton Trans. 51 (2022) 16659–16667.
doi: 10.1039/d2dt02474h
X.P. Lei, Q.Y. Wu, C.Z. Wang, et al., Inorg. Chem. 62 (2023) 2705–2714.
doi: 10.1021/acs.inorgchem.2c03823
Y.M. Chen, C.Z. Wang, Q.Y. Wu, et al., Inorg. Chem. 59 (2020) 3221–3231.
doi: 10.1021/acs.inorgchem.9b03604
Z.R. Ye, Q.Y. Wu, C.Z. Wang, et al., Inorg. Chem. 61 (2022) 6110–6119.
doi: 10.1021/acs.inorgchem.2c00232
Y. Zou, J.H. Lan, L.Y. Yuan, et al., Inorg. Chem. 62 (2023) 4581–4589.
doi: 10.1021/acs.inorgchem.2c04476
Y. Zou, J.H. Lan, L.Y. Yuan, et al., Inorg. Chem. 61 (2022) 15423–15431.
doi: 10.1021/acs.inorgchem.2c01952
A. Bhattacharyya, T. Gadly, A.S. Kanekar, et al., Inorg. Chem. 57 (2018) 5096–5107.
doi: 10.1021/acs.inorgchem.8b00142
C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785–789.
doi: 10.1103/PhysRevB.37.785
M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al., Gaussian 16, Revision B, Gaussian, Inc., Wallingford, CT, 2016.
M. Dolg, H. Stoll, H. Preuss, J. Chem. Phys. 90 (1989) 1730–1734.
doi: 10.1063/1.456066
W. Küchle, M. Dolg, H. Stoll, J. Chem. Phys. 100 (1994) 7535–7542.
doi: 10.1063/1.466847
X.Y. Cao, M. Dolg, J. Mol. Struct. 581 (2002) 139–147.
doi: 10.1016/S0166-1280(01)00751-5
X.Y. Cao, M. Dolg, H. Stoll, J. Chem. Phys. 118 (2002) 487–496.
X.Y. Cao, M. Dolg, J. Mol. Struct. 673 (2004) 203–209.
doi: 10.1016/j.theochem.2003.12.015
G.A. Shamov, G. Schreckenbach, R.L. Martin, et al., Inorg. Chem. 47 (2008) 1465–1475.
doi: 10.1021/ic7015403
G.A. Shamov, G. Schreckenbach, J. Phys. Chem. A 109 (2005) 10961–10974.
doi: 10.1021/jp053522f
J. Narbutt, A. Wodyński, M. Pecul, Dalton Trans. 44 (2015) 2657–2666.
doi: 10.1039/C4DT02657H
A. Zaiter, B. Amine, Y. Bouzidi, et al., Inorg. Chem. 53 (2014) 4687–4697.
doi: 10.1021/ic500361b
C. Clavaguéra-Sarrio, V. Vallet, D. Maynau, et al., J. Chem. Phys. 121 (2004) 5312–5321.
doi: 10.1063/1.1784412
M. Cossi, N. Rega, G. Scalmani, et al., J. Comput. Chem. 24 (2003) 669–681.
doi: 10.1002/jcc.10189
V. Barone, M. Cossi, J. Phys. Chem. A 102 (1998) 1995–2001.
doi: 10.1021/jp9716997
J. Ho, A. Klamt, M.L. Coote, J. Phys. Chem. A 114 (2010) 13442–13444.
doi: 10.1021/jp107136j
T. Lu, F. Chen, J. Comput. Chem. 33 (2012) 580–592.
doi: 10.1002/jcc.22885
I. Mayer, Chem. Phys. Lett. 97 (1983) 270–274.
doi: 10.1016/0009-2614(83)80005-0
A.E. Reed, F. Weinhold, J. Chem. Phys. 78 (1983) 4066–4073.
doi: 10.1063/1.445134
A.E. Reed, R.B. Weinstock, F. Weinhold, J. Chem. Phys. 83 (1985) 735–746.
doi: 10.1063/1.449486
R.F.W. Bader, C.F. Matta, Inorg. Chem. 40 (2001) 5603–5611.
doi: 10.1021/ic010165o
E. Espinosa, I. Alkorta, J. Elguero, et al., J. Chem. Phys. 117 (2002) 5529–5542.
doi: 10.1063/1.1501133
T. Ziegler, A. Rauk, Theor. Chem. Acc. 46 (1977) 1–10.
doi: 10.1007/BF02401406
G. te Velde, F.M. Bickelhaupt, E.J. Baerends, et al., J. Comput. Chem. 22 (2001) 931–967.
doi: 10.1002/jcc.1056
C. Fonseca Guerra, J.G. Snijders, G. te Velde, et al., Theor. Chem. Acc. 99 (1998) 391–403.
T.Z.E.J. Baerends, J. Autschbach, D. Bashford, et al., ADF2022, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, URL:
R.G. Parr, R.G. Pearson, J. Am. Chem. Soc. 105 (1983) 7512–7516.
doi: 10.1021/ja00364a005
R. Shannon, Acta Crystallogr. A 32 (1976) 751–767.
doi: 10.1107/S0567739476001551
M.P. Jensen, A.H. Bond, J. Am. Chem. Soc. 124 (2002) 9870–9877.
doi: 10.1021/ja0178620
D. Cremer, E. Kraka, J. Am. Chem. Soc. 107 (1985) 3811–3819.
doi: 10.1021/ja00299a010
W.H. Tu, S.J. Zeng, Y. Bai, et al., Ind. Chem. Mater. 1 (2023) 262–270.
doi: 10.1039/d2im00041e
P. Thakur, J.L. Conca, G.R. Choppin, J. Solution Chem. 41 (2012) 599–615.
doi: 10.1007/s10953-012-9826-3
Peining Zhu , Xi Guo , Qinqin Yu , Zuyong Wang , Xiangxiao Lei , Zhiwei Zhu , Juan Du , Xiaojia Zhang , Yuan-Li Ding . Design strategies of Si-based anode for solid-state batteries. Chinese Chemical Letters, 2025, 36(9): 111383-. doi: 10.1016/j.cclet.2025.111383
Yuxiang Zhang , Jia Zhao , Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415
Wei Chen , Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412
Xu Huang , Kai-Yin Wu , Chao Su , Lei Yang , Bei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720
Jiajun Wang , Guolin Yi , Shengling Guo , Jianing Wang , Shujuan Li , Ke Xu , Weiyi Wang , Shulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050
Jiaming Li , Na Xu , Yafei Zhang , Hongjun Dong , Chunmei Li . Research progress of heterogeneous photocatalyst for H2O2 production: A mini review. Chinese Chemical Letters, 2025, 36(11): 110470-. doi: 10.1016/j.cclet.2024.110470
Yu-Hang Li , Shuai Gao , Lu Zhang , Hanchun Chen , Chong-Chen Wang , Haodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894
Xin-Tong Zhao , Jin-Zhi Guo , Wen-Liang Li , Jing-Ping Zhang , Xing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715
Fanjun Kong , Yixin Ge , Shi Tao , Zhengqiu Yuan , Chen Lu , Zhida Han , Lianghao Yu , Bin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552
Weiping Xiao , Yuhang Chen , Qin Zhao , Danil Bukhvalov , Caiqin Wang , Xiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176
Ze Zhang , Lei Yang , Jin-Ru Liu , Hao Hu , Jian-Li Mi , Chao Su , Bei-Bei Xiao , Zhi-Min Ao . Improved oxygen electrocatalysis at FeN4 and CoN4 sites via construction of axial coordination. Chinese Chemical Letters, 2025, 36(2): 110013-. doi: 10.1016/j.cclet.2024.110013
Chaozheng He , Menghui Xi , Chenxu Zhao , Ran Wang , Ling Fu , Jinrong Huo . Highly N2 dissociation catalyst: Ir(100) and Ir(110) surfaces. Chinese Chemical Letters, 2025, 36(3): 109671-. doi: 10.1016/j.cclet.2024.109671
Mianfeng Li , Haozhi Wang , Zijun Yang , Zexiang Yin , Yuan Liu , Yingmei Bian , Yang Wang , Xuerong Zheng , Yida Deng . Synergistic enhancement of alkaline hydrogen evolution reaction by role of Ni-Fe LDH introducing frustrated Lewis pairs via vacancy-engineered. Chinese Chemical Letters, 2025, 36(3): 110199-. doi: 10.1016/j.cclet.2024.110199
Teng Wang , Jiachun Cao , Juan Li , Didi Li , Zhimin Ao . A novel photocatalytic mechanism of volatile organic compounds degradation on BaTiO3 under visible light: Photo-electrons transfer from photocatalyst to pollutant. Chinese Chemical Letters, 2025, 36(3): 110078-. doi: 10.1016/j.cclet.2024.110078
Yubang Liu , Jiaxin Lin , Huayu Liang , Yinwu Li , Zhuofeng Ke . Computational insights into three-centre four-electron bridging hydride bond in boryl type PBP-M dihydride complexes✰ ✩. Chinese Chemical Letters, 2025, 36(5): 110291-. doi: 10.1016/j.cclet.2024.110291
Jin Li , Xin Chen , Aling Chen , Zhi-Qiang Wang , Dengsong Zhang . Theoretical insight into the active sites for chlorobenzene oxidation: From phosphate to M3 clusters. Chinese Chemical Letters, 2025, 36(8): 110527-. doi: 10.1016/j.cclet.2024.110527
Yanhui Lu , Chengang Pei , Wenqiang Li , Qing Liu , Huan Pang , Xu Yu . Tailoring active sites of cerium and nitrogen Co-doped rhenium disulfide for enhanced hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(12): 111646-. doi: 10.1016/j.cclet.2025.111646
Min Jie Wang , Jiao Yang , Lishan Peng , Yongjie Bai , Zehui Liu , Xiaoliang Yang , Huijuan Lu , Bingjie Zhou , Ningtao Jiang , Guoxu He , Han-Ming Zhang , Liwei Mi , Yonghui Deng . Optimizing the size and electronic effects of core-shell heterostructures via well-constructed Ru clusters encapsulated in N-doped carbon layers. Chinese Chemical Letters, 2025, 36(12): 110573-. doi: 10.1016/j.cclet.2024.110573
Dixing Ni , Jiarui Qi , Zhi Deng , Dong Ding , Rui Wang , Wenjie Zhou , Sisi Zhou , Yang Sun , Shuai Li , Zhaoxiang Wang . Voltage design and transport channel optimization of anti-perovskite cathode materials: A density functional theory study. Chinese Chemical Letters, 2025, 36(12): 110683-. doi: 10.1016/j.cclet.2024.110683
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007