Gelation mechanisms of gel polymer electrolytes for zinc-based batteries
-
* Corresponding authors.
E-mail addresses: sunmengjun@htu.edu.cn (M. Sun), wangxb@htu.edu.cn (X. Wang), cyu2020@hust.edu.cn (C. Yu).
Citation:
Mengjun Sun, Zhi Wang, Jvhui Jiang, Xiaobing Wang, Chuang Yu. Gelation mechanisms of gel polymer electrolytes for zinc-based batteries[J]. Chinese Chemical Letters,
;2024, 35(5): 109393.
doi:
10.1016/j.cclet.2023.109393
M. Armand, J.M. Tarascon, Nature 451 (2008) 652–657.
doi: 10.1038/451652a
S. Chu, A. Majumdar, Nature 488 (2012) 294–303.
doi: 10.1038/nature11475
B. Dunn, H. Kamath, J.M. Tarascon, Science 334 (2011) 928–935.
doi: 10.1126/science.1212741
S. Chen, C. Yu, S. Chen, et al., Chin. Chem. Lett. 33 (2022) 4635–4639.
doi: 10.1016/j.cclet.2021.12.048
S. Chen, C. Yu, C. Wei, et al., Chin. Chem. Lett. 34 (2023) 107544–107549.
doi: 10.1016/j.cclet.2022.05.058
Y. Du, X. Gao, S. Li, et al., Chin. Chem. Lett. 31 (2020) 609–616.
doi: 10.1016/j.cclet.2019.06.013
S. Yuan, K. Ding, X. Zeng, et al., Adv. Mater. (2022) 2206228.
doi: 10.1002/adma.202206228
Y. Jin, Y. Xu, Phung M.L. Le, et al., ACS Energy Lett. 5 (2020) 3212–3220.
doi: 10.1021/acsenergylett.0c01712
C. Wei, C. Yu, R. Wang, et al., J. Powe Source 559 (2023) 232659–232670.
doi: 10.1016/j.jpowsour.2023.232659
Z. Zhang, Z. Wang, L. Zhang, et al., Adv. Sci. 9 (2022) 2200744.
doi: 10.1002/advs.202200744
L. Ye, X. Li, Nature 593 (2021) 218–222.
doi: 10.1038/s41586-021-03486-3
F. Chen, X. Wang, M. Armand, et al., Nat. Mater. 21 (2022) 1175–1182.
doi: 10.1038/s41563-022-01319-w
A.D. Poletayev, J.A. Dawson, M.S. Islam, et al., Nat. Mater. 21 (2022) 1066–1073.
doi: 10.1038/s41563-022-01316-z
S. Chen, T. Wang, L. Ma, et al., Chemistry 9 (2022) 1–14.
Z. Chen, F. Mo, T. Wang, et al., Energy Environ. Sci. 14 (2021) 2441–2450.
doi: 10.1039/d0ee02999h
R. He, G. Tian, S. Li, et al., Nano Lett. 22 (2022) 2429–2436.
doi: 10.1021/acs.nanolett.2c00123
Z. Chen, H. Cui, Y. Hou, et al., Chemistry 8 (2022) 2204–2216.
doi: 10.1016/j.chempr.2022.05.001
G. Liang, J. Zhu, B. Yan, et al., Energy Environ. Sci. 15 (2022) 1086–1096.
doi: 10.1039/d1ee03749h
Z. Huo, T. Zhang, X. Liu, et al., Sci. Adv. 8 (2022) eabp8960.
doi: 10.1126/sciadv.abp8960
H. Li, C. Guo, T. Zhang, et al., Nano Lett. 22 (2022) 4223–4231.
doi: 10.1021/acs.nanolett.2c01235
Y. Zhang, X. Zheng, K. Wu, et al., Nano Lett. 22 (2022) 8574–8583.
doi: 10.1021/acs.nanolett.2c03114
Y. Zhao, R. Zhou, X. Zhang, et al., Angew. Chem. Int. Ed. 61 (2022) 202212231.
doi: 10.1002/anie.202212231
W.Y. Kim, H.I. Kim, K.M. Lee, et al., Energy Environ. Sci. 15 (2022) 5217–5228.
doi: 10.1039/d2ee03077b
H. Yan, S. Li, H. Xu, et al., Adv. Energy Mater. 12 (2022) 2201599.
doi: 10.1002/aenm.202201599
Y.G. Cho, C. Hwang, D.S. Cheong, et al., Adv. Mater. 31 (2019) 1804909.
doi: 10.1002/adma.201804909
R. Fang, B. Xu, N.S. Grundish, et al., Angew. Chem. Int. Ed. 60 (2021) 17701–17706.
doi: 10.1002/anie.202106039
C. Wang, H. Liu, Y. Liang, et al., Adv. Funct. Mater. 33 (2023) 2209828.
doi: 10.1002/adfm.202209828
H. Luo, B. Liu, Z. Yang, Y. Wan, C. Zhong, Energy Rev. 5 (2022) 187–210.
doi: 10.1007/s41918-021-00107-5
B. He, Q. Zhang, L. Li, et al., J. Mater. Chem. A 6 (2018) 14594–14601.
doi: 10.1039/c8ta05862h
Y. Huang, W. Shan, Y.Y. Lau, et al., ACS Nano 11 (2017) 8953–8961.
doi: 10.1021/acsnano.7b03322
Z. Zhao, C. Wang, H. Wang, et al., Nano Energy 97 (2022) 107162–107172.
doi: 10.1016/j.nanoen.2022.107162
H. Yang, W. Cui, Y. Han, B. Wang, Chin. Chem. Lett. 29 (2018) 842–844.
doi: 10.1016/j.cclet.2017.09.024
H. Li, J. Guo, Y. Mao, et al., Small (2023) 2206814.
doi: 10.1002/smll.202206814
K. Wu, J. Huang, J. Yi, et al., Adv. Energy Mater. 10 (2020) 1903977.
doi: 10.1002/aenm.201903977
Y. Lv, Y. Xiao, L. Ma, et al., Adv. Mater. 34 (2022) 2106409.
doi: 10.1002/adma.202106409
G. Cui, Matter 2 (2020) 805–815.
doi: 10.1016/j.matt.2020.02.003
N. Meng, F. Lian, G. Cui, Small 17 (2021) 2005762.
doi: 10.1002/smll.202005762
Z. Zhao, J. Wang, Z. Lv, et al., Chem. Eng. J. 417 (2021) 128096–128101.
doi: 10.1016/j.cej.2020.128096
H. Wu, B. Tang, X. Du, et al., Adv. Sci. 7 (2020) 2003370.
doi: 10.1002/advs.202003370
K.K. Sonigara, J. Zhao, H.K. Machhi, et al., Adv. Energy Mater. 10 (2020) 2001997.
doi: 10.1002/aenm.202001997
A. Du, H. Zhang, Z. Zhang, et al., Adv. Mater. 31 (2019) 1805930.
doi: 10.1002/adma.201805930
S. Huang, Z. Cui, L. Qiao, et al., Electrochim. Acta 299 (2019) 820–827.
doi: 10.1016/j.electacta.2019.01.039
J. Liang, X. Zhang, L. Huang, et al., J. Am. Chem. Soc. 143 (2021) 16768–16776.
doi: 10.1021/jacs.1c08425
S.J. Tan, J. Yue, Y.F. Tian, et al., Energy Storage Mater. 39 (2021) 186–193.
doi: 10.1016/j.ensm.2021.04.020
S. Jin, F. Duan, X. Wu, et al., Small 18 (2022) 2205462.
doi: 10.1002/smll.202205462
P. Chen, X. Yuan, Y. Xia, et al., Adv. Sci. 8 (2021) 2100309.
doi: 10.1002/advs.202100309
L. Cao, D. Li, F.A. Soto, et al., Angew. Chem. Int. Ed. 60 (2021) 18845–18851.
doi: 10.1002/anie.202107378
C.W. Bunn, Nature 161 (1948) 929–930.
doi: 10.1038/161929a0
H. Wu, W. Chi, Z. Chen, et al., Adv. Funct. Mater. 29 (2019) 1807243.
doi: 10.1002/adfm.201807243
S. Wu, M. Hua, Y. Alsaid, et al., Adv. Mater. 33 (2021) 2007829.
doi: 10.1002/adma.202007829
H. Tu, M. Zhu, B. Duan, et al., Adv. Mater. 33 (2021) 2000682.
doi: 10.1002/adma.202000682
O.M. Vanderfleet, E.D. Cranston, Nat. Rev. Mater. 6 (2021) 124–144.
T. Li, C. Chen, A.H. Brozana, et al., Nature 590 (2021) 47–56.
doi: 10.1038/s41586-020-03167-7
D.F. Vieira, C.O. Avellaneda, A. Pawlicka, Electrochim. Acta 53 (2007) 1404–1408.
doi: 10.1016/j.electacta.2007.04.034
X. Liu, P.X. Ma, Biomaterial 30 (2009) 4094–4103.
doi: 10.1016/j.biomaterials.2009.04.024
N.A. Choudhury, S. Sampath, A.K. Shukla, J. Electrochem. Soc. 155 (2008) A74–A81.
doi: 10.1149/1.2803501
B. Jeong, S.W. Kim, Y.H. Bae, Adv. Drug Deliv. Rev. 64 (2012) 154–162.
doi: 10.1016/j.addr.2012.09.012
J. Yang, P. Li, F. Zhong, et al., Adv. Energy Mater. 10 (2020) 1904264.
doi: 10.1002/aenm.201904264
S. Wang, Q. Duan, J. Lei, D.Y.W. Yu, J. Power Sources 468 (2020) 228365–228373.
doi: 10.1016/j.jpowsour.2020.228365
J. Liu, C. Guan, C. Zhou, J. Wang, et al., Adv. Mater. 28 (2016) 8732–8739.
doi: 10.1002/adma.201603038
Q. Zhang, W. Xu, J. Sun, et al., Nano Lett. 17 (2017) 7552–7560.
doi: 10.1021/acs.nanolett.7b03507
H. Cao, F. Wan, L. Zhang, et al., J. Mater. Chem. A 7 (2019) 11734–11741.
doi: 10.1039/c9ta02990g
B. He, Z. Zhou, P. Man, et al., J. Mater. Chem. A 7 (2019) 12979–12986.
doi: 10.1039/c9ta01164a
Y. Xu, Y. Zhang, Z. Guo, et al., Angew. Chem. Int. Ed. 54 (2015) 15390–15394.
doi: 10.1002/anie.201508848
H. Liu, Q. Liu, Y. Wang, et al., Chin. Chem. Lett. 33 (2022) 683–692.
doi: 10.1016/j.cclet.2021.07.038
J.M. Lee, C. Choi, J.H. Kim, et al., Sci. Rep. 8 (2018) 11150–11158.
doi: 10.1038/s41598-018-29266-0
X. Li, H. Li, X. Fan, X. Shi, J. Liang, Ad. Energy Mater. 10 (2020) 1903794.
doi: 10.1002/aenm.201903794
C. Wu, B. Unnikrishnan, I.W.P. Chen, et al., Energy Storage Mater. 25 (2020) 563–571.
doi: 10.1016/j.ensm.2019.09.026
Y. Zeng, X. Zhang, Y. Meng, et al., Adv. Mater. 29 (2017) 1700274.
doi: 10.1002/adma.201700274
W. Qiu, Y. Li, A. You, et al., J. Mater. Chem. A 5 (2017) 14838–14846.
doi: 10.1039/C7TA03274A
K. Wang, X. Zhang, J. Han, et al., ACS Appl. Mater. Interfaces 10 (2018) 24573–24582.
doi: 10.1021/acsami.8b07756
G. Zhang, X. Zhang, Solid State Ion. 160 (2003) 155–159.
doi: 10.1016/S0167-2738(03)00152-8
M. Chen, W. Zhou, A. Wang, et al., J. Mater. Chem. A 8 (2020) 6828–6841.
doi: 10.1039/d0ta01553a
C. Li, Q. Zhang, J. Sun, et al., ACS Energy Lett. 3 (2018) 2761–2768.
doi: 10.1021/acsenergylett.8b01675
C. Li, Q. Zhang, S E., et al., J. Mater. Chem. A 7 (2019) 2034–2040.
doi: 10.1039/C8TA10807B
X. Yan, Z. Chen, Y. Wang, H. Li, J. Zhang, J. Power Sources 407 (2018) 137–146.
doi: 10.1016/j.jpowsour.2018.10.071
P. Li, Z. Jin, D. Xiao, Energy Storage Mater. 12 (2018) 232–240.
doi: 10.1016/j.ensm.2017.11.017
X. Li, Y. Tang, J. Zhu, et al., Small 16 (2020) 2001935.
doi: 10.1002/smll.202001935
R. Wang, Y. Han, Z. Wang, et al., Adv. Funct. Mater. 28 (2018) 1802157.
doi: 10.1002/adfm.201802157
Y. Zeng, Y. Meng, Z. Lai, et al., Adv. Mater. 29 (2017) 1702698.
doi: 10.1002/adma.201702698
M. Gong, Y. Li, H. Zhang, et al., Energy Environ. Sci. 7 (2014) 2025–2032.
doi: 10.1039/c4ee00317a
P. Hu, T. Wang, J. Zhao, et al., ACS Appl. Mater. Interfaces 7 (2015) 26396–26399.
doi: 10.1021/acsami.5b09728
D.U. Lee, J. Fu, M.G. Park, et al., Nano Lett. 16 (2016) 1794–1802.
doi: 10.1021/acs.nanolett.5b04788
Z. Hao, L. Xu, Q. Liu, et al., Adv. Funct. Mater. 29 (2019) 1808470.
doi: 10.1002/adfm.201808470
M.S. Javed, H. Lei, Z. Wang, et al., Nano Energy 70 (2020) 104573–104582.
doi: 10.1016/j.nanoen.2020.104573
S. Li, Y. Liu, X. Zhao, et al., Adv. Mater. 33 (2021) 2007480.
doi: 10.1002/adma.202007480
X. He, H. Zhang, X. Zhao, et al., Adv. Sci. 6 (2019) 1900151.
doi: 10.1002/advs.201900151
X. Li, H. Cheng, H. Hu, et al., Chin. Chem. Lett. 32 (2021) 3753–3761.
doi: 10.1016/j.cclet.2021.04.045
F. Hu, Y. Gu, F. Cui, G. Song, K. Zhu, Chin. Chem. Lett. 32 (2021) 3793–3798.
doi: 10.1016/j.cclet.2021.04.032
J. Wang, J. Liu, M. Hu, et al., J. Mater. Chem. A 6 (2018) 11113–11118.
doi: 10.1039/c8ta03143f
F. Wan, L. Zhang, X. Wang, et al., Adv. Funct. Mater. 28 (2018) 1804975.
doi: 10.1002/adfm.201804975
G. Shim, M.X. Tran, G. Liu, D. Byun, J.K. Lee, Energy Storage Mater. 35 (2021) 739–749.
doi: 10.1016/j.ensm.2020.12.009
C. Lai, M. Li, Y. Shen, et al., Energy Environ. Mater. (2022) e12541.
doi: 10.1002/eem2.12541
C. Lai, H. Li, Y. Sheng, et al., Adv. Sci. 9 (2022) 2105925.
doi: 10.1002/advs.202105925
K. Wu, L. Zhang, Y. Yuan, et al., Adv. Mater. 32 (2020) 2002292.
doi: 10.1002/adma.202002292
L. Zhong, C. Jiang, M. Zheng, et al., ACS Energy Lett. 6 (2021) 3624–3633.
doi: 10.1021/acsenergylett.1c01678
T. Zhou, N. Zhang, C. Wu, Y. Xie, Energy Environ. Sci. 13 (2020) 1132–1153.
doi: 10.1039/c9ee03634b
N.K. Wagh, S.S. Shide, C.H. Lee, et al., Nano Micro Lett. 14 (2022) 190–210.
doi: 10.1007/s40820-022-00927-0
L. An, X. Zhao, T. Zhao, D. Wang, Energy Environ. Sci. 14 (2021) 2620–2638.
doi: 10.1039/d0ee03609a
M. Gong, D. Xiao, Z. Deng, et al., Appl. Catal. B Environ. 282 (2021) 119617–119625.
doi: 10.1016/j.apcatb.2020.119617
X. Liu, L. Wang, P. Yu, et al., Angew. Chemie Int. Ed. 57 (2018) 16166–16170.
doi: 10.1002/anie.201809009
X. Xiao, X. Xiao, Y. Zhou, et al., Sci. Adv. 7 (2021) l3742–13753.
doi: 10.1126/sciadv.abl3742
A.A. Mohamad, N.S. Mohamed, M.Z.A. Yahya, et al., Solid State Ion. 156 (2003) 171–177.
doi: 10.1016/S0167-2738(02)00617-3
Q. Zhang, C. Li, Q. Li, et al., Nano Lett. 19 (2019) 4035–4042.
doi: 10.1021/acs.nanolett.9b01403
Z. Pan, J. Yang, J. Yang, et al., ACS Nano 14 (2020) 842–853.
doi: 10.1021/acsnano.9b07956
B. Long, Q. Zhang, T. Duan, et al., Adv. Sci. 9 (2022) 2204087.
doi: 10.1002/advs.202204087
N. Zhang, M. Jia, Y. Dong, et al., Adv. Funct. Mater. 29 (2019) 1807331.
doi: 10.1002/adfm.201807331
J. Park, M. Park, G. Nam, J.S. Lee, J. Cho, Adv. Mater. 27 (2015) 1396–1401.
doi: 10.1002/adma.201404639
Z. Wang, Z. Ruan, Z. Liu, et al., J. Mater. Chem. A 6 (2018) 8549–8557.
doi: 10.1039/c8ta01172a
Q. Han, X. Chi, S. Zhang, et al., J. Mater. Chem. A 6 (2018) 23046–23054.
doi: 10.1039/c8ta08314b
S. Zhang, N. Yu, S. Zeng, et al., J. Mater. Chem. A 6 (2018) 12237–12243.
doi: 10.1039/c8ta04298e
T. Sun, Z. Li, Y. Zhi, et al., Adv. Funct. Mater. 31 (2021) 2010049.
doi: 10.1002/adfm.202010049
A.M. Gaikwad, A.M. Zamarayeva, J. Rousseau, et al., Adv. Mater. 24 (2012) 5071–5076.
doi: 10.1002/adma.201201329
A.M. Gaikwad, G.L. Whiting, D.A. Steingart, A.C. Arias, Adv. Mater. 23 (2011) 3251–3255.
doi: 10.1002/adma.201100894
Md.S. Rahman, Md.S. Hasan, A.S. Nitai, et al., Polymers 13 (2021) 1345–1393.
doi: 10.3390/polym13081345
M.H. Abu Elella, E.S. Goda, M.A. Gab-Allah, et al., J. Environ. Chem. Eng. 9 (2021) 104702–104733.
doi: 10.1016/j.jece.2020.104702
H. Mittal, A.Al Alili, P.P. Morajkar, S.M. Alhassan, J. Mol. Liq. 323 (2021) 115034.
doi: 10.1016/j.molliq.2020.115034
I. Osada, H.de Vries, B. Scrosati, S. Passerini, Angew. Chem. Int. Ed. 55 (2016) 500–513.
doi: 10.1002/anie.201504971
X. Zhang, Y. Sun, C. Ma, et al., J. Power Sources 542 (2022) 231797.
doi: 10.1016/j.jpowsour.2022.231797
Z. Cui, Y. Xu, L. Zhu, et al., J. Membr. Sci. 325 (2008) 957–963.
doi: 10.1016/j.memsci.2008.09.022
R. Zana, C. Marques, A. Johner, Adv. Colloid Interface Sci. 123-126 (2006) 345–351.
doi: 10.1016/j.cis.2006.05.011
J. Zhao, K.K. Sonigara, J. Li, et al., Angew. Chem. Int. Ed. 56 (2017) 7871–7875.
doi: 10.1002/anie.201704373
L. Ma, S. Chen, C. Long, et al., Adv. Energy Mater. 9 (2019) 1902446.
doi: 10.1002/aenm.201902446
F. Wang, O. Borodin, T. Gao, et al., Nat. Mater. 17 (2018) 543–549.
doi: 10.1038/s41563-018-0063-z
C. Zhang, J. Holoubek, X. Wu, et al., Chem. Commun. 54 (2018) 14097–14099.
doi: 10.1039/c8cc07730d
T. Nomoto, Y. Inoue, Y. Yao, et al., Sci. Adv. 6 (2020) 1722–1733.
doi: 10.1126/sciadv.aaz1722
Y. Huang, M. Zhong, Y. Huang, et al., Nat. Commun. 6 (2015) 10310.
doi: 10.1038/ncomms10310
Y. Huang, M. Zhong, F. Shi, et al., Angew Chem. Int. Ed. 56 (2017) 9141–9145.
doi: 10.1002/anie.201705212
X. Wang, F. Wang, L. Wang, et al., Adv. Mater. 28 (2016) 4904–4911.
doi: 10.1002/adma.201505370
M. Chen, J. Chen, W. Zhou, et al., Adv. Mater. 33 (2021) 2007559.
doi: 10.1002/adma.202007559
F. Mo, G. Liang, D. Wang, et al., EcoMat 1 (2019) 12008–12020.
doi: 10.1002/eom2.12008
L. Ma, Y. Zhao, X. Ji, et al., Adv. Energy Mater. 9 (2019) 1900509.
doi: 10.1002/aenm.201900509
X. Zhu, H. Yang, Y. Cao, X. Ai, Electrochim. Acta 49 (2004) 2533–2539.
doi: 10.1016/j.electacta.2004.02.008
W. Laoatiman, T. Julaphatachote, P. Boonmongkolras, S. Kheawhom, J. Electrochem. Soc. 164 (2017) A859–A865.
doi: 10.1149/2.1511704jes
L. Sartore, S. Pandini, F. Baldi, F. Bignotti, L.Di Landro, J. Appl. Polymer Sci. 134 (2017) 45655–45664.
doi: 10.1002/app.45655
M. Liu, T. Guo, J. Appl. Polymer Sci. 82 (2001) 1515–1520.
doi: 10.1002/app.1990
H. Wang, J. Liu, J. Wang, et al., ACS Appl. Mater. Interfaces 11 (2019) 49–55.
doi: 10.1021/acsami.8b18003
Y. Huang, Z. Li, Z. Pei, et al., Adv. Energy Mater. 8 (2018) 1802288.
doi: 10.1002/aenm.201802288
L. Ma, S. Chen, D. Wang, et al., Adv. Energy Mater. 9 (2019) 1803046.
doi: 10.1002/aenm.201803046
C. Guan, A. Sumboja, H. Wu, et al., Adv. Mater. 29 (2017) 1704117.
doi: 10.1002/adma.201704117
W. Zang, A. Sumboja, Y. Ma, et al., ACS Catal. 8 (2018) 8961–8969.
doi: 10.1021/acscatal.8b02556
K. Braam, V. Subramanian, Adv. Mater. 27 (2015) 689–694.
doi: 10.1002/adma.201404149
Z. Pei, Z. Yuan, C. Wang, et al., Angew. Chem. Int. Ed. 59 (2020) 4793–4799.
doi: 10.1002/anie.201915836
A. Narita, W. Shibayama, K. Sakamoto, et al., Chem. Commun. (2006) 1926–1928.
M. Yoshizawa, M. Hirao, K. Ito-Akita, H. Ohno, J. Mater. Chem. 11 (2001) 1057–1062.
doi: 10.1039/b101079o
C. Yuan, X. Zhong, P. Tian, et al., ACS Appl. Energy Mater. 5 (2022) 7530–7537.
doi: 10.1021/acsaem.2c01008
F. Mo, Z. Chen, G. Liang, et al., Adv. Energy Mater. 10 (2020) 2000035.
doi: 10.1002/aenm.202000035
T. Zhao, G. Zhang, F. Zhou, S. Zhang, C. Deng, Small 14 (2018) 1802320.
doi: 10.1002/smll.201802320
L. Ma, S. Chen, H. Li, et al., Energy Environ. Sci. 11 (2018) 2521–2530.
doi: 10.1039/c8ee01415a
H. Li, Q. Yang, F. Mo, et al., Energy Storage Mater. 19 (2019) 94–101.
doi: 10.1016/j.ensm.2018.10.005
L. Ma, S. Chen, Z. Pei, et al., ACS Nano 12 (2018) 8597–8605.
doi: 10.1021/acsnano.8b04317
Q. Tan, X. Li, B. Zhang, et al., Adv. Energy Mater. 10 (2020) 2001050.
doi: 10.1002/aenm.202001050
H. Li, C. Han, Y. Huang, et al., Energy Environ. Sci. 11 (2018) 941–951.
doi: 10.1039/c7ee03232c
Z. Liu, D. Wang, Z. Tang, et al., Energy Storage Mater. 23 (2019) 636–645.
doi: 10.1016/j.ensm.2019.03.007
D. Wang, L. Wang, G. Liang, et al., ACS Nano 13 (2019) 10643–10652.
doi: 10.1021/acsnano.9b04916
F. Mo, G. Liang, Q. Meng, et al., Energy Environ. Sci. 12 (2019) 706–715.
doi: 10.1039/c8ee02892c
M. Zhu, X. Wang, H. Tang, et al., Adv. Funct. Mater. 30 (2020) 1907218.
doi: 10.1002/adfm.201907218
Y. Zhao, L. Ma, Y. Zhu, et al., Adv. Mater. 34 (2022) 2207118.
doi: 10.1021/acsnano.9b02986
Y. Qin, H. Li, C. Han, F. Mo, X. Wang, Adv. Mater. 34 (2022) 2207118.
doi: 10.1002/adma.202207118
Z. Yang, B. Wang, Y. Chen, et al., Natl. Sci. Rev. 10 (2022) nwac268.
B. Wu, Y. Mu, Z. Li, et al., Chin. Chem. Lett. 34 (2023) 107629–107641.
doi: 10.1016/j.cclet.2022.06.052
G.G. Kumar, S. Sampath, Solid State Ionics 160 (2003) 289–300.
doi: 10.1016/S0167-2738(03)00209-1
H. Ye, J. Xu, J. Power Sources 165 (2007) 500–508.
doi: 10.1016/j.jpowsour.2006.10.042
J.P. Hoffknecht, A. Wettstein, J. Atik, et al., Adv. Energy Mater. 13 (2022) 2202789.
J.F. Fauvarque, S. Guinot, N. Bouzir, E. Salmon, J.F. Penneau, Electrochim. Acta 40 (1995) 2449–2453.
doi: 10.1016/0013-4686(95)00212-W
S. Karan, T.B. Sahu, M. Sahu, Y.K. Mahipal, R.C. Agrawal, Ionics 23 (2017) 2721–2726.
doi: 10.1007/s11581-017-2036-7
P. Hiralal, S. Imaizumi, H.E. Unalan, et al., ACS Nano 4 (2010) 2730–2734.
doi: 10.1021/nn901391q
M. Wang, A. Emree, S. Tung, et al., ACS Nano 13 (2019) 1107–1115.
J. Xu, H. Ye, J. Huang, Electrochem. Commun. 7 (2005) 1309–1317.
doi: 10.1016/j.elecom.2005.09.011
J.P. Tafur, J. Abad, E. Román, A.J.F. Romero, Electrochem. Commun. 60 (2015) 190–194.
doi: 10.1016/j.elecom.2015.09.011
L. Ma, S. Chen, N. Li, et al., Adv. Mater. 32 (2020) 1908121.
doi: 10.1002/adma.201908121
J. Feng, D. Ma, K. Ouyang, et al., Adv. Funct. Mater. 32 (2022) 2207909.
doi: 10.1002/adfm.202207909
M. Sun, Z. Zeng, W. Zhong, et al., Batteries & Supercaps 5 (2022) e202200338.
F. Mo, H. Li, Z. Pei, et al., Sci. Bull. 63 (2018) 1077–1086.
doi: 10.1016/j.scib.2018.06.019
G. Lu, H. Qiu, X. Du, et al., Chem. Mater. 34 (2022) 8975–8986.
doi: 10.1021/acs.chemmater.2c02417
Z. Han, S. Li, R. Xiong, et al., Adv. Funct. Mater. 32 (2022) 2108669.
doi: 10.1002/adfm.202108669
W. Zhang, F. Ma, Q. Wu, et al., Energy Environ. Mater. (2022) 1–8.
Z. Jiang, L. Liu, Z. Han, et al., Angew. Chem. Int. Ed. 58 (2019) 11374–11378.
doi: 10.1002/anie.201905712
H. Zhang, Z. Zeng, F. Ma, et al., Adv. Funct. Mater. 33 (2023) 2212000.
doi: 10.1002/adfm.202212000
F. Liu, W. Wang, Y. Yin, et al., Sci. Adv. 4 (2018) 5383–5392.
doi: 10.1109/bigdata.2018.8622198
Q. Zhao, X. Liu, S. Stalin, K. Khan, L.A. Archer, Nat. Energy 4 (2019) 365–373.
doi: 10.1038/s41560-019-0349-7
L. Ma, S. Chen, X. Li, et al., Angew. Chem. Int. Ed. 132 (2020) 24044–24052.
doi: 10.1002/ange.202011788
Binhan Zhao , Zheng Li , Lan Zheng , Zhichao Ye , Yuyang Yuan , Shanshan Zhang , Bo Liang , Tianyu Li . Recent progress in the biomedical application of PEDOT:PSS hydrogels. Chinese Chemical Letters, 2024, 35(10): 109810-. doi: 10.1016/j.cclet.2024.109810
Feng Cao , Chunxiang Xian , Tianqi Yang , Yue Zhang , Haifeng Chen , Xinping He , Xukun Qian , Shenghui Shen , Yang Xia , Wenkui Zhang , Xinhui Xia . Gelation-pyrolysis strategy for fabrication of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110575-. doi: 10.1016/j.cclet.2024.110575
Qianqian Song , Yunting Zhang , Jianli Liang , Si Liu , Jian Zhu , Xingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797
Meirong HAN , Xiaoyang WEI , Sisi FENG , Yuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150
Xiaoxing Ji , Xiaojuan Li , Chenggang Wang , Gang Zhao , Hongxia Bu , Xijin Xu . NixB/rGO as the cathode for high-performance aqueous alkaline zinc-based battery. Chinese Chemical Letters, 2024, 35(10): 109388-. doi: 10.1016/j.cclet.2023.109388
Hangwen Zheng , Ziqian Wang , HuiJie Zhang , Jing Lei , Rihui Li , Jian Yang , Haiyan Wang . Synthesis and applications of B, N co-doped carbons for zinc-based energy storage devices. Chinese Chemical Letters, 2025, 36(3): 110245-. doi: 10.1016/j.cclet.2024.110245
Zheyu Li , Huwei Li , Yao Li , Xinyu Fu , Hongxia Yue , Qingxing Yang , Jing Feng , Xinyu Wang , Hongjie Zhang . The effect of electron-phonon coupling on the photoluminescence properties of zinc-based halides. Chinese Chemical Letters, 2025, 36(4): 109800-. doi: 10.1016/j.cclet.2024.109800
Jun Guo , Zhenbang Zhuang , Wanqiang Liu , Gang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
Qingyan JIANG , Yanyong SHA , Chen CHEN , Xiaojuan CHEN , Wenlong LIU , Hao HUANG , Hongjiang LIU , Qi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004
Li Lin , Song-Lin Tian , Zhen-Yu Hu , Yu Zhang , Li-Min Chang , Jia-Jun Wang , Wan-Qiang Liu , Qing-Shuang Wang , Fang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802
Yajun Hou , Chuanzheng Zhu , Qiang Wang , Xiaomeng Zhao , Kun Luo , Zongshuai Gong , Zhihao Yuan . ~2.5 nm pores in carbon-based cathode promise better zinc-iodine batteries. Chinese Chemical Letters, 2024, 35(5): 108697-. doi: 10.1016/j.cclet.2023.108697
Shili Wang , Mamitiana Roger Razanajatovo , Xuedong Du , Shunli Wan , Xin He , Qiuming Peng , Qingrui Zhang . Recent advances on decomplexation mechanisms of heavy metal complexes in persulfate-based advanced oxidation processes. Chinese Chemical Letters, 2024, 35(6): 109140-. doi: 10.1016/j.cclet.2023.109140
Shuaiwen Li , Zihui Chen , Feng Yang , Wanqing Yue . The age of vanadium-based nanozymes: Synthesis, catalytic mechanisms, regulation and biomedical applications. Chinese Chemical Letters, 2024, 35(4): 108793-. doi: 10.1016/j.cclet.2023.108793
Yan Wang , Jiaqi Zhang , Xiaofeng Wu , Sibo Wang , Masakazu Anpo , Yuanxing Fang . Elucidating oxygen evolution and reduction mechanisms in nitrogen-doped carbon-based photocatalysts. Chinese Chemical Letters, 2025, 36(2): 110439-. doi: 10.1016/j.cclet.2024.110439
Jianmei Guo , Yupeng Zhao , Lei Ma , Yongtao Wang . Ultra-long room temperature phosphorescence, intrinsic mechanisms and application based on host-guest doping systems. Chinese Journal of Structural Chemistry, 2024, 43(9): 100335-100335. doi: 10.1016/j.cjsc.2024.100335
Peng Wang , Daijie Deng , Suqin Wu , Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199
Zhe Wang , Li-Peng Hou , Qian-Kui Zhang , Nan Yao , Aibing Chen , Jia-Qi Huang , Xue-Qiang Zhang . High-performance localized high-concentration electrolytes by diluent design for long-cycling lithium metal batteries. Chinese Chemical Letters, 2024, 35(4): 108570-. doi: 10.1016/j.cclet.2023.108570
Chuyuan Lin , Hui Lin , Lingxing Zeng . Optimization strategy for rechargeable Zn metal batteries over wide-pH aqueous electrolytes. Chinese Journal of Structural Chemistry, 2025, 44(1): 100407-100407. doi: 10.1016/j.cjsc.2024.100407
Zhen-Zhen Dong , Jin-Hao Zhang , Lin Zhu , Xiao-Zhong Fan , Zhen-Guo Liu , Yi-Bo Yan , Long Kong . Attenuating reductive decomposition of fluorinated electrolytes for high-voltage lithium metal batteries. Chinese Chemical Letters, 2025, 36(4): 109773-. doi: 10.1016/j.cclet.2024.109773