Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis
-
* Corresponding authors.
E-mail addresses: gdju@tjnu.edu.cn (G. Ju), chwang@tjnu.edu.cn (C. Wang).
Citation:
Haoran Shi, Jiaxin Wang, Yuqin Zhu, Hongyang Li, Guodong Ju, Lanlan Zhang, Chao Wang. Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis[J]. Chinese Chemical Letters,
;2024, 35(7): 109333.
doi:
10.1016/j.cclet.2023.109333
A. Vasseur, J. Bruffaerts, I. Marek, Nat. Chem. 8 (2016) 209–219.
doi: 10.1038/nchem.2445
S.W.M. Crossley, C. Obradors, R.M. Martinez, R.A. Shenvi, Chem. Rev. 116 (2016) 8912–9000.
doi: 10.1021/acs.chemrev.6b00334
N.A. Eberhardt, H. Guan, Chem. Rev. 116 (2016) 8373–8426.
doi: 10.1021/acs.chemrev.6b00259
M.T. Pirnot, Y.M. Wang, S.L. Buchwald, Angew. Chem. Int. Ed. 55 (2016) 48–57.
doi: 10.1002/anie.201507594
H. Sommer, F. Juliá-Hernández, R. Martin, I. Marek, ACS Cent. Sci. 4 (2018) 153–165.
doi: 10.1021/acscentsci.8b00005
D. Janssen-Müller, B. Sahoo, S.Z. Sun, R. Martin, Isr. J. Chem. 60 (2020) 195–206.
doi: 10.1002/ijch.201900072
D. Fiorito, S. Scaringi, C. Mazet, Chem. Soc. Rev. 50 (2021) 1391–1406.
doi: 10.1039/d0cs00449a
Y. Wang, Y. He, S. Zhu, Acc. Chem. Res. 55 (2022) 3519–3536.
doi: 10.1021/acs.accounts.2c00628
Y. He, J. Chen, X. Jiang, S. Zhu, Chin. J. Chem. 2022 (40) 651–661.
doi: 10.1002/cjoc.202100763
Y. He, R. Tao, S. Zhu, Synlett 33 (2021) 224–230.
Y. Schramm, M. Takeuchi, K. Semba, Y. Nakao, J.F. Hartwig, J. Am. Chem. Soc. 137 (2015) 12215–12218.
doi: 10.1021/jacs.5b08039
S.D. Friis, M.T. Pirnot, S.L. Buchwald, J. Am. Chem. Soc. 138 (2016) 8372–8375.
doi: 10.1021/jacs.6b04566
K. Semba, K. Ariyama, H. Zheng, et al., Angew. Chem. Int. Ed. 55 (2016) 6275–6279.
doi: 10.1002/anie.201511975
S.A. Green, J.L.M. Matos, A. Yagi, R.A. Shenvi, J. Am. Chem. Soc. 138 (2016) 12779–12782.
doi: 10.1021/jacs.6b08507
S.D. Friis, M.T. Pirnot, L.N. Dupuis, S.L. Buchwald, Angew. Chem. Int. Ed. 56 (2017) 7242–7246.
doi: 10.1002/anie.201703400
C. Wang, G. Xiao, T. Guo, et al., J. Am. Chem. Soc. 140 (2018) 9332–9336.
doi: 10.1021/jacs.8b03619
L.J. Xiao, L. Cheng, W.M. Feng, et al., Angew. Chem. Int. Ed. 57 (2018) 461–464.
doi: 10.1002/anie.201710735
H. Wang, Z. Bai, T. Jiao, et al., J. Am. Chem. Soc. 140 (2018) 3542–3546.
doi: 10.1021/jacs.8b00641
Y.G. Chen, B. Shuai, X.T. Xu, et al., J. Am. Chem. Soc. 141 (2019) 3395–3399.
doi: 10.1021/jacs.8b13524
H. Lv, H. Kang, B. Zhou, et al., Nat. Commun. 10 (2019) 5025.
doi: 10.1038/s41467-019-12949-1
N.I. Saper, A. Ohgi, D.W. Small, et al., Nat. Chem. 12 (2020) 276–283.
doi: 10.1038/s41557-019-0409-4
Z.Q. Li, Y. Fu, R. Deng, et al., Angew. Chem. Int. Ed. 59 (2020) 23306–23312.
doi: 10.1002/anie.202010840
L. Cheng, M.M. Li, M.L. Li, et al., CCS Chem. 4 (2021) 2612–2619.
Y. He, H. Song, J. Chen, S. Zhu, Nat. Commun. 12 (2021) 638.
doi: 10.1038/s41467-020-20888-5
S. Cuesta-Galisteo, J. Schörgenhumer, X. Wei, E. Merino, C. Nevado, Angew. Chem. Int. Ed. 60 (2021) 1605–1609.
doi: 10.1002/anie.202011342
L. Zhang, C. Luo, H. Shi, et al., Chem. Commun. 58 (2022) 13511–13514.
doi: 10.1039/D2CC04932E
D.M. Wang, L.Q. She, Y. Wu, C. Zhu, P. Wang, Nat. Commun. 13 (2022) 6878.
doi: 10.1038/s41467-022-34675-x
Y. He, Y. Cai, S. Zhu, J. Am. Chem. Soc. 139 (2017) 1061–1064.
doi: 10.1021/jacs.6b11962
Y. He, J. Ma, H. Song, et al., Nat. Commun. 13 (2022) 2471.
doi: 10.1038/s41467-022-30006-2
Y. Zhang, B. Han, S. Zhu, Angew. Chem. Int. Ed. 58 (2019) 13860–13864.
doi: 10.1002/anie.201907185
S. Bera, X. Hu, Angew. Chem. Int. Ed. 58 (2019) 13854–13859.
doi: 10.1002/anie.201907045
Y. Zhang, J. Ma, J. Chen, et al., Chem 7 (2021) 3171–3188.
doi: 10.1016/j.chempr.2021.10.015
Y. He, B. Han, S. Zhu, Organometallics 40 (2021) 2253–2264.
doi: 10.1021/acs.organomet.0c00819
Y.C. Luo, C. Xu, X. Zhang, Chin. J. Chem. 38 (2020) 1371–1394.
doi: 10.1002/cjoc.202000224
J. Derosa, O. Apolinar, T. Kang, V.T. Tran, K.M. Engle, Chem. Sci. 11 (2020) 4287–4296.
doi: 10.1039/c9sc06006e
L.M. Wickham, R. Giri, Acc. Chem. Res. 54 (2021) 3415–3437.
doi: 10.1021/acs.accounts.1c00329
S. Zhu, X. Zhao, H. Li, L. Chu, Chem. Soc. Rev. 50 (2021) 10836–10856.
doi: 10.1039/d1cs00399b
B.C. Lee, C.F. Liu, L.Q.H. Lin, et al., Chem. Soc. Rev. 52 (2023) 2946–2991.
doi: 10.1039/d2cs00972b
J. Han, R. He, C. Wang, Chem. Catal. 3 (2023) 100690.
doi: 10.1016/j.checat.2023.100690
X. Chen, W. Rao, T. Yang, M.J. Koh, Nat. Commun. 11 (2020) 5857.
doi: 10.1038/s41467-020-19717-6
X.X. Wang, Y.T. Xu, Z.L. Zhang, X. Lu, Y. Fu, Nat. Commun. 13 (2022) 1890.
doi: 10.1038/s41467-022-29554-4
L. Zhao, Y. Zhu, M. Liu, et al., Angew. Chem. Int. Ed. 61 (2022) e202204716.
doi: 10.1002/anie.202204716
J.W. Wang, D.G. Liu, Z. Chang, et al., Angew. Chem. Int. Ed. 61 (2022) e202205537.
doi: 10.1002/anie.202205537
P.F. Yang, W. Shu, Angew. Chem. Int. Ed. 61 (2022) e202208018.
doi: 10.1002/anie.202208018
J.W. Wang, Z. Li, D. Liu, et al., J. Am. Chem. Soc. 145 (2023) 10411–10421.
doi: 10.1021/jacs.3c02950
J. Rodrigalvarez, H. Wang, R. Martin, J. Am. Chem. Soc. 145 (2023) 3869–3874.
doi: 10.1021/jacs.2c12915
X. Wang, J. Xue, Z.Q. Rong, J. Am. Chem. Soc. 145 (2023) 15456–15464.
doi: 10.1021/jacs.3c03900
C. Chen, W. Guo, D. Qiao, S. Zhu, Angew. Chem. Int. Ed. 62 (2023) e202308320.
doi: 10.1002/anie.202308320
B. Du, Y. Ouyang, Q. Chen, W.Y. Yu, J. Am. Chem. Soc. 143 (2021) 14962–14968.
doi: 10.1021/jacs.1c05834
Y. Hwang, S.B. Baek, D. Kim, S. Chang, J. Am. Chem. Soc. 144 (2022) 4277–4285.
doi: 10.1021/jacs.2c00948
C. Lee, H. Seo, J. Jeon, S. Hong, Nat. Commun. 12 (2021) 5657.
doi: 10.1038/s41467-021-25696-z
Song, Y. Luo, K. Wang, et al., ACS Catal. 13 (2023) 4409–4420.
doi: 10.1021/acscatal.3c00238
L. Xie, J. Liang, H. Bai, et al., ACS Catal. 13 (2023) 10041–10047.
doi: 10.1021/acscatal.3c01845
X. Yu, H. Zhao, S. Xi, et al., Nat. Catal. 3 (2020) 585–592.
doi: 10.1038/s41929-020-0470-9
T.C. Jankins, R. Martin-Montero, P. Cooper, R. Martin, K.M. Engle, J. Am. Chem. Soc. 143 (2021) 14981–14986.
doi: 10.1021/jacs.1c07162
Iiyama, K. Fukaya, Y. Yamaguchi, et al., Org. Lett. 24 (2022) 202–206.
doi: 10.1021/acs.orglett.1c03851
A.K. Ghosh, J. Takayama, Y. Aubin, et al., J. Med. Chem. 52 (2009) 5228–5240.
doi: 10.1021/jm900611t
D.S. Palacios, E. Meredith, T. Kawanami, et al., Med. Chem. Lett. 28 (2018) 365–370.
doi: 10.1016/j.bmcl.2017.12.037
Y. Zhao, J. Chen, Q. Liu, Y. Li, Molecules 25 (2020) 406.
doi: 10.3390/molecules25020406
J.H. Xie, S.F. Zhu, Q.L. Zhou, Chem. Rev. 111 (2011) 1713–1760.
doi: 10.1021/cr100218m
O.I. Afanasyev, E. Kuchuk, D.L. Usanov, D. Chusov, Chem. Rev. 119 (2019) 11857–11911.
doi: 10.1021/acs.chemrev.9b00383
A. Trowbridge, S.M. Walton, M.J. Gaunt, Chem. Rev. 120 (2020) 2613–2692.
doi: 10.1021/acs.chemrev.9b00462
K. Matsumura, H. Shimizu, T. Saito, H. Kumobayashi, Adv. Synth. Catal. 345 (2003) 180–184.
doi: 10.1002/adsc.200390008
J. Zhang, Y. Li, Z. Wang, K. Ding, Angew. Chem. Int. Ed. 50 (2011) 11743–11747.
doi: 10.1002/anie.201104912
Á. Chávez, S. Vargas, A. Suárez, E. Álvarez, A. Pizzano, Adv. Synth. Catal. 353 (2011) 2775–2794.
doi: 10.1002/adsc.201000611
T.X. Métro, J. Bonnamour, T. Reidon, et al., Chem. Commun. 48 (2012) 11781–11783.
doi: 10.1039/c2cc36352f
D.C. Lenstra, D.T. Nguyen, J. Mecinović, Tetrahedron 71 (2015) 5547–5553.
doi: 10.1016/j.tet.2015.06.066
A.W. Rand, H. Yin, L. Xu, et al., ACS Catal. 10 (2020) 4671–4676.
doi: 10.1021/acscatal.0c01318
X. Shu, D. Zhong, Y. Lin, X. Qin, H. Huo, J. Am. Chem. Soc. 144 (2022) 8797–8806.
doi: 10.1021/jacs.2c02795
Z. Li, L. Huan, J. Li, et al., Angew. Chem. Int. Ed. 62 (2023) e202305889.
doi: 10.1002/anie.202305889
S. Wang, C. Luo, L. Zhao, et al., Cell Rep. Phys. Sci. 2 (2021) 100574.
doi: 10.1016/j.xcrp.2021.100574
L. Xie, S. Wang, L. Zhang, et al., Nat. Commun. 12 (2021) 6280.
doi: 10.1038/s41467-021-26527-x
L. Zhao, X. Meng, Y. Zou, et al., Org. Lett. 23 (2021) 8516–8521.
doi: 10.1021/acs.orglett.1c03210
L. Zhu, X. Meng, L. Xie, et al., Org. Chem. Front. 9 (2022) 3068–3074.
doi: 10.1039/d2qo00396a
X. Meng, L. Zhu, J. Liang, et al., Org. Lett. 24 (2022) 6962–6967.
doi: 10.1021/acs.orglett.2c02768
Z.K. Zhang, Y.L. Feng, Z. Ruan, et al., Chem. Commun. 58 (2022) 11709–11712.
doi: 10.1039/d2cc04382c
J. Zhao, L. Bao, L. Zhu, et al., Org. Chem. Front. 9 (2022) 6556–6565.
doi: 10.1039/d2qo01182d
J. Han, Y. Tang, J. Huang, et al., Chin. J. Chem. 41 (2023) 631–636.
doi: 10.1002/cjoc.202200647
J. Diccianni, Q. Lin, T. Diao, Acc. Chem. Res. 53 (2020) 906–919.
doi: 10.1021/acs.accounts.0c00032
X. Lu, B. Xiao, Z. Zhang, et al., Nat. Commun. 7 (2016) 11129.
doi: 10.1038/ncomms11129
Y. Cheng, Z. Gui, R. Tao, Y. Wang, S. Zhu, Green Synth. Catal. 3 (2022) 377–379.
doi: 10.1016/j.gresc.2022.03.009
C. Sun, G. Yin, Chin. Chem. Lett. 33 (2022) 5096–5100.
doi: 10.1016/j.cclet.2022.04.026
S.X. Ni, Y.L. Li, H.Q. Ni, et al., Chin. Chem. Lett. 34 (2023) 107614.
doi: 10.1016/j.cclet.2022.06.037
G. Dong, S. Wang, Z. Miao, et al., J. Med. Chem. 55 (2012) 7593–7613.
doi: 10.1021/jm300605m
T. Cernak, K.D. Dykstra, S. Tyagarajan, P. Vachal, S.W. Krska, Chem. Soc. Rev. 45 (2016) 546–576.
doi: 10.1039/C5CS00628G
Zhenkang Ai , Hui Chen , Xuebin Liao . Nickel-catalyzed decarboxylative difluoromethylation and alkylation of alkenes. Chinese Chemical Letters, 2025, 36(3): 109954-. doi: 10.1016/j.cclet.2024.109954
Jian Han , Li-Li Zeng , Qin-Yu Fei , Yan-Xiang Ge , Rong-Hui Huang , Fen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647
Wujun Jian , Mong-Feng Chiou , Yajun Li , Hongli Bao , Song Yang . Cu-catalyzed regioselective diborylation of 1,3-enynes for the efficient synthesis of 1,4-diborylated allenes. Chinese Chemical Letters, 2024, 35(5): 108980-. doi: 10.1016/j.cclet.2023.108980
Junxin Li , Chao Chen , Yuzhen Dong , Jian Lv , Jun-Mei Peng , Yuan-Ye Jiang , Daoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732
Er-Meng Wang , Ziyi Wang , Xu Ban , Xiaowei Zhao , Yanli Yin , Zhiyong Jiang . Chemoselective photocatalytic sulfenylamination of alkenes with sulfenamides via energy transfer. Chinese Chemical Letters, 2024, 35(12): 109843-. doi: 10.1016/j.cclet.2024.109843
Hongjin Shi , Guoyin Yin , Xi Lu , Yangyang Li . Stereoselective synthesis of 2-deoxy-α-C-glycosides from glycals. Chinese Chemical Letters, 2024, 35(12): 109674-. doi: 10.1016/j.cclet.2024.109674
Heng Yang , Zhijie Zhou , Conghui Tang , Feng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
Ruilong Geng , Lingzi Peng , Chang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433
Kun Tang , Fen Su , Shijie Pan , Fengfei Lu , Zhongfu Luo , Fengrui Che , Xingxing Wu , Yonggui Robin Chi . Enones from aldehydes and alkenes by carbene-catalyzed dehydrogenative couplings. Chinese Chemical Letters, 2024, 35(9): 109495-. doi: 10.1016/j.cclet.2024.109495
Boqiang Wang , Yongzhuo Xu , Jiajia Wang , Muyang Yang , Guo-Jun Deng , Wen Shao . Transition-metal free trifluoromethylimination of alkenes enabled by direct activation of N-unprotected ketimines. Chinese Chemical Letters, 2024, 35(9): 109502-. doi: 10.1016/j.cclet.2024.109502
Yunqiang Li , Yongxian Huang , Sinuo Li , He Huang , Zhiwei Jiao . Elaborating azaaryl alkanes enabled by photoredox/palladium dual catalyzed dialkylation of azaaryl alkenes. Chinese Chemical Letters, 2025, 36(4): 110051-. doi: 10.1016/j.cclet.2024.110051
Xiao-Ming Chen , Lianhui Song , Jun Pan , Fei Zeng , Yi Xie , Wei Wei , Dong Yi . Visible-light-induced four-component difunctionalization of alkenes to construct phosphorodithioate-containing quinoxalin-2(1H)-ones. Chinese Chemical Letters, 2024, 35(11): 110112-. doi: 10.1016/j.cclet.2024.110112
Huaixiang Yang , Miao-Miao Li , Aijun Zhang , Jiefei Guo , Yongqi Yu , Wei Ding . Visible-light-induced photocatalyst- and metal-free radical phosphinoyloximation of alkenes with tert-butyl nitrite as bifunctional reagent. Chinese Chemical Letters, 2025, 36(3): 110425-. doi: 10.1016/j.cclet.2024.110425
Conghui Wang , Lei Xu , Zhenhua Jia , Teck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075
Wei Chen , Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412
Lin Zhang , Chaoran Li , Thongthai Witoon , Xingda An , Le He . Nano-thermometry in photothermal catalysis. Chinese Journal of Structural Chemistry, 2025, 44(4): 100456-100456. doi: 10.1016/j.cjsc.2024.100456
Yu Mao , Yilin Liu , Xiaochen Wang , Shengyang Ni , Yi Pan , Yi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443
Jiaqi Jia , Kathiravan Murugesan , Chen Zhu , Huifeng Yue , Shao-Chi Lee , Magnus Rueping . Multiphoton photoredox catalysis enables selective hydrodefluorinations. Chinese Chemical Letters, 2025, 36(2): 109866-. doi: 10.1016/j.cclet.2024.109866
Xiao-Bo Liu , Ren-Ming Liu , Xiao-Di Bao , Hua-Jian Xu , Qi Zhang , Yu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783