Re-evaluating the nano-sized inorganic protective layer on Cu current collector for anode free lithium metal batteries
-
* Corresponding author.
E-mail address: yanc@bit.edu.cn (C. Yan).
Citation:
Shuo Zhang, Haitao Liao, Zhi-Qun Liu, Chong Yan, Jia-Qi Huang. Re-evaluating the nano-sized inorganic protective layer on Cu current collector for anode free lithium metal batteries[J]. Chinese Chemical Letters,
;2024, 35(7): 109284.
doi:
10.1016/j.cclet.2023.109284
Y. Yang, L. Xu, C. Yan, et al., Energy Lab 1 (2022) 220011.
F. Luo, B. Liu, J. Zheng, et al., J. Electrochem. Soc. 162 (2015) A2509–A2528.
doi: 10.1149/2.0131514jes
D.C. Lin, Y.Y. Liu, Y. Cui, Nat. Nanotechnol. 12 (2017) 194–206.
doi: 10.1038/nnano.2017.16
G.M. Hobold, J. Lopez, R. Guo, et al., Nat. Energy 6 (2021) 951–960.
doi: 10.1038/s41560-021-00910-w
X.Z. Fan, M. Liu, R. Zhang, et al., Chin. Chem. Lett. 33 (2022) 4421–4427.
doi: 10.1016/j.cclet.2021.12.064
J. Qian, B.D. Adams, J. Zheng, et al., Adv. Funct. Mater. 26 (2016) 7094–7102.
doi: 10.1002/adfm.201602353
S. Nanda, A. Gupta, A. Manthiram, Adv. Energy Mater. 11 (2020) 2000804.
doi: 10.1002/aenm.202000804
R.V. Salvatierra, W. Chen, J.M. Tour, Adv. Energy Sustain. Res. 2 (2021) 2000110.
doi: 10.1002/aesr.202000110
B. Wu, C. Chen, L.H.J. Raijmakers, et al., Energy Stor. Mater. 57 (2023) 508–539.
doi: 10.1021/acsomega.2c04415
R. Weber, M. Genovese, A.J. Louli, et al., Nat. Energy 4 (2019) 683–689.
doi: 10.1038/s41560-019-0428-9
A.J. Louli, A. Eldesoky, R. Weber, et al., Nat. Energy 5 (2020) 693–702.
doi: 10.1038/s41560-020-0668-8
C. Jin, T. Liu, O. Sheng, et al., Nat. Energy 6 (2021) 378–387.
doi: 10.1038/s41560-021-00789-7
C.J. Huang, B. Thirumalraj, H.C. Tao, et al., Nat. Commun. 12 (2021) 1452.
doi: 10.1038/s41467-021-21683-6
J. Chen, X. Fan, Q. Li, et al., Nat. Energy 5 (2020) 386–397.
doi: 10.1038/s41560-020-0601-1
E. PELED, J. Power Sources 9 (1983) 253–266.
doi: 10.1016/0378-7753(83)87026-8
S. Zhang, M.S. Ding, K. Xu, et al., Electrochem. Solid-State Lett. 4 (2001) A206–A208.
doi: 10.1149/1.1414946
Z. Zhang, Y. Li, R. Xu, et al., Science 375 (2022) 66–70.
doi: 10.1126/science.abi8703
R. Xu, C. Yan, J.Q. Huang, Trend. Chem. 3 (2020) 5–14.
doi: 10.1117/12.2572958
X.B. Cheng, R. Zhang, C.Z. Zhao, et al., Chem. Rev. 117 (2017) 10403–10473.
doi: 10.1021/acs.chemrev.7b00115
C. Yan, R. Xu, Y. Xiao, et al., Adv. Funct. Mater. 30 (2020) 1909887.
doi: 10.1002/adfm.201909887
J.F. Ding, R. Xu, X.X. Ma, et al., Angew. Chem. Int. Ed. 61 (2021) e202115602.
doi: 10.1002/anie.202101627
B. Horstmann, J. Shi, R. Amine, et al., Energy Environ. Sci. 14 (2021) 5289–5314.
doi: 10.1039/d1ee00767j
D. Luo, M. Li, Y. Zheng, et al., Adv. Sci. 8 (2021) e2101051.
doi: 10.1002/advs.202101051
Y.X. Yao, X. Chen, C. Yan, et al., Angew. Chem. Int. Ed. 60 (2021) 4090–4097.
doi: 10.1002/anie.202011482
R. Xu, X.B. Cheng, C. Yan, et al., Matter 1 (2019) 317–344.
doi: 10.1016/j.matt.2019.05.016
C. Yan, X.B. Cheng, Y.X. Yao, et al., Adv. Mater. 30 (2018) e1804461.
doi: 10.1002/adma.201804461
R. Xu, X.Q. Zhang, X.B. Cheng, et al., Adv. Funct. Mater. 28 (2018) 1705838.
doi: 10.1002/adfm.201705838
J. Xie, L. Liao, Y. Gong, et al., Sci. Adv. 3 (2017) eaao3170.
doi: 10.1126/sciadv.aao3170
J. Ding, R. Xu, C. Yan, et al., Chin. Chem. Lett. 31 (2020) 2339–2342.
doi: 10.1016/j.cclet.2020.03.015
Y. Xiao, R. Xu, C. Yan, et al., Sci. Bull. 65 (2020) 909–916.
doi: 10.1016/j.scib.2020.02.022
J.Y. Duan, J.X. Chen, F.F. Wang, et al., J. Energy Chem. 87 (2023) 473–478.
doi: 10.1016/j.jechem.2023.08.054
D. Aurbach, J. Power Sources 89 (2000) 206–218.
doi: 10.1016/S0378-7753(00)00431-6
D. Lin, Y. Liu, W. Chen, et al., Nano Lett. 17 (2017) 3731–3737.
doi: 10.1021/acs.nanolett.7b01020
W. Chang, J.H. Park, D.A. Steingart, Nano Lett. 18 (2018) 7066–7074.
doi: 10.1021/acs.nanolett.8b03070
L. Chen, K.S. Chen, X. Chen, et al., ACS Appl. Mater. Interfaces 10 (2018) 26972–26981.
doi: 10.1021/acsami.8b04573
N. Hornsveld, W.M.M. Kessels, R.A. Synowicki, et al., Phys. Chem. Chem. Phys. 23 (2021) 9304–9314.
doi: 10.1039/d0cp05428c
C. Yan, H.R. Li, X. Chen, et al., J. Am. Chem. Soc. 141 (2019) 9422–9429.
doi: 10.1021/jacs.9b05029
X.L. Fan, X. Ji, F.D. Han, et al., Sci. Adv. 4 (2018) eaau9245.
doi: 10.1126/sciadv.aau9245
R. Xu, F. Han, X. Ji, et al., Nano Energy 53 (2018) 958–966.
doi: 10.1016/j.nanoen.2018.09.061
L. Benitez, J.M. Seminario, J. Electrochem. Soc. 164 (2017) E3159–E3170.
doi: 10.1149/2.0181711jes
T. Aashish, B.S. Mallik, J. Phys. Chem. C 123 (2019) 25015–25024.
doi: 10.1021/acs.jpcc.9b04160
X. -X. Ma, X. Shen, X. Chen, et al., Small Struct. 3 (2022) 2200071.
doi: 10.1002/sstr.202200071
S. Liu, Y. Ma, J. Wang, et al., Chem. Eng. J. 427 (2022) 131625.
doi: 10.1016/j.cej.2021.131625
J. Ko, Y.S. Yoon, Thin Solid Films 673 (2019) 119–125.
doi: 10.1016/j.tsf.2019.01.048
A. Pei, G. Zheng, F. Shi, et al., Nano Lett. 17 (2017) 1132–1139.
doi: 10.1021/acs.nanolett.6b04755
Mengwen Wang , Qintao Sun , Yue Liu , Zhengan Yan , Qiyu Xu , Yuchen Wu , Tao Cheng . Impact of lithium nitrate additives on the solid electrolyte interphase in lithium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(2): 100203-100203. doi: 10.1016/j.cjsc.2023.100203
Kunyao Peng , Xianbin Wang , Xingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274
Zhe Wang , Li-Peng Hou , Qian-Kui Zhang , Nan Yao , Aibing Chen , Jia-Qi Huang , Xue-Qiang Zhang . High-performance localized high-concentration electrolytes by diluent design for long-cycling lithium metal batteries. Chinese Chemical Letters, 2024, 35(4): 108570-. doi: 10.1016/j.cclet.2023.108570
Zhen-Zhen Dong , Jin-Hao Zhang , Lin Zhu , Xiao-Zhong Fan , Zhen-Guo Liu , Yi-Bo Yan , Long Kong . Attenuating reductive decomposition of fluorinated electrolytes for high-voltage lithium metal batteries. Chinese Chemical Letters, 2025, 36(4): 109773-. doi: 10.1016/j.cclet.2024.109773
Xi Tang , Chunlei Zhu , Yulu Yang , Shihan Qi , Mengqiu Cai , Abdullah N. Alodhayb , Jianmin Ma . Additive regulating Li+ solvation structure to construct dual LiF−rich electrode electrolyte interphases for sustaining 4.6 V Li||LiCoO2 batteries. Chinese Chemical Letters, 2024, 35(12): 110014-. doi: 10.1016/j.cclet.2024.110014
Li Lin , Song-Lin Tian , Zhen-Yu Hu , Yu Zhang , Li-Min Chang , Jia-Jun Wang , Wan-Qiang Liu , Qing-Shuang Wang , Fang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802
Jiao Wang , Shuang-Yan Lang , Zhen-Zhen Shen , Gui-Xian Liu , Jian-Xin Tian , Yuan Li , Rui-Zhi Liu , Rui Wen . In situ imaging of the interfacial processes manipulated by salt concentration on zinc anodes in zinc metal batteries. Chinese Chemical Letters, 2025, 36(4): 109815-. doi: 10.1016/j.cclet.2024.109815
Tao Wei , Jiahao Lu , Pan Zhang , Qi Zhang , Guang Yang , Ruizhi Yang , Daifen Chen , Qian Wang , Yongfu Tang . An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity. Chinese Chemical Letters, 2024, 35(8): 109122-. doi: 10.1016/j.cclet.2023.109122
Hongbin Liu , Putao Zhang . Effective approach to stabilize silicon anode: Controllable molecular construction of artificial solid electrolyte interphase. Chinese Journal of Structural Chemistry, 2025, 44(3): 100444-100444. doi: 10.1016/j.cjsc.2024.100444
Dong Sui , Jiayi Liu . Constriction-susceptible lithium support for fast cycling of solid-state lithium metal battery. Chinese Chemical Letters, 2025, 36(2): 110417-. doi: 10.1016/j.cclet.2024.110417
Caixia Li , Yi Qiu , Yufeng Zhao , Wuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846
Ying Li , Yanjun Xu , Xingqi Han , Di Han , Xuesong Wu , Xinlong Wang , Zhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189
Xuejie Gao , Xinyang Chen , Ming Jiang , Hanyan Wu , Wenfeng Ren , Xiaofei Yang , Runcang Sun . Long-lifespan thin Li anode achieved by dead Li rejuvenation and Li dendrite suppression for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109448-. doi: 10.1016/j.cclet.2023.109448
Ting Hu , Yuxuan Guo , Yixuan Meng , Ze Zhang , Ji Yu , Jianxin Cai , Zhenyu Yang . Uniform lithium deposition induced by copper phthalocyanine additive for durable lithium anode in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108603-. doi: 10.1016/j.cclet.2023.108603
Kezhen Qi , Shu-yuan Liu , Ruchun Li . Selective dissolution for stabilizing solid electrolyte interphase. Chinese Chemical Letters, 2024, 35(5): 109460-. doi: 10.1016/j.cclet.2023.109460
Haixia Wu , Kailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550
Zhihong LUO , Yan SHI , Jinyu AN , Deyi ZHENG , Long LI , Quansheng OUYANG , Bin SHI , Jiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444
Hengying Xiang , Nanping Deng , Lu Gao , Wen Yu , Bowen Cheng , Weimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182
Haiying Lu , Weijie Li . The electrolyte solvation and interfacial chemistry for anode-free sodium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(11): 100334-100334. doi: 10.1016/j.cjsc.2024.100334
Yaping Wang , Pengcheng Yuan , Zeyuan Xu , Xiong-Xiong Liu , Shengfa Feng , Mufan Cao , Chen Cao , Xiaoqiang Wang , Long Pan , Zheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776