Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting
-
* Corresponding authors.
E-mail addresses: zhit@njupt.edu.cn (T. Zhi), wanglonglu@njupt.edu.cn (L. Wang).
Citation:
Wenhao Chen, Jian Du, Hanbin Zhang, Hancheng Wang, Kaicheng Xu, Zhujun Gao, Jiaming Tong, Jin Wang, Junjun Xue, Ting Zhi, Longlu Wang. Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting[J]. Chinese Chemical Letters,
;2024, 35(9): 109168.
doi:
10.1016/j.cclet.2023.109168
K. Ohashi, J. McCann, J.O.M.J.N. Bockris, Nature 266 (1977) 610–611.
doi: 10.1038/266610a0
M. Gratzel, Nature 414 (2001) 338–344.
doi: 10.1038/35104607
M. Gratzel, Nature 421 (2003) 586–587.
doi: 10.1038/421586a
X. Chen, S. Shen, L. Guo, S.S. Mao, Chem. Rev. 110 (2010) 6503–6570.
doi: 10.1021/cr1001645
M.G. Walter, E.L. Warren, J.R. McKone, et al., Chem. Rev. 110 (2010) 6446–6473.
doi: 10.1021/cr1002326
H.M. Chen, C.K. Chen, R.S. Liu, et al., Chem. Soc. Rev. 41 (2012) 5654–5671.
doi: 10.1039/c2cs35019j
S.D. Tilley, M. Grätzel, Energy Procedia 22 (2012) 1–2.
doi: 10.1016/j.egypro.2012.05.230
T. Wang, J. Gong, Angew. Chem. Int. Ed. 54 (2015) 10718–10732.
doi: 10.1002/anie.201503346
D. Cao, B. Wang, X. Yan, et al., Cryst. Growth Des. 23 (2023) 1530–1537.
doi: 10.1021/acs.cgd.2c01117
C. Ramesh, P. Tyagi, V. Aggarwal, et al., ACS Appl. Nano Mater. 6 (2023) 1898–1909.
doi: 10.1021/acsanm.2c04864
A. Abdullah, A. Waseem, I.V. Bagal, et al., ACS Appl. Nano Mater. 6 (2023) 1395–1404.
doi: 10.1021/acsanm.2c05021
Z. Liu, D. Jiang, L. Yang, et al., Nano Energy 88 (2021) 106302.
doi: 10.1016/j.nanoen.2021.106302
F. Tong, X. Liang, M. Liu, et al., ACS Catal. 12 (2022) 3558–3565.
doi: 10.1021/acscatal.2c00486
J. Zhang, A. Reda Woldu, X. Zhao, et al., Appl. Surf. Sci. 598 (2022) 153745.
doi: 10.1016/j.apsusc.2022.153745
M. Liu, Y. Chen, J. Su, et al., Nat. Energy 1 (2016) 16151.
doi: 10.1038/nenergy.2016.151
L. Cheng, Q. Chen, J. Li, H. Liu, Appl. Catal. B 267 (2020) 118379.
doi: 10.1016/j.apcatb.2019.118379
Z.X. Bi, R.T. Guo, X.Y. Ji, et al., Int. J. Hydrogen Energy 47 (2022) 34430–34443.
doi: 10.1016/j.ijhydene.2022.08.028
S. Jayachitra, D. Mahendiran, P. Ravi, et al., Appl. Catal. B 307 (2022) 121159.
doi: 10.1016/j.apcatb.2022.121159
B. AlOtaibi, M. Harati, S. Fan, et al., Nanotechnology 24 (2013) 175401.
doi: 10.1088/0957-4484/24/17/175401
J. Benton, J. Bai, T. Wang, Appl. Phys. Lett. 102 (2013) 173905.
doi: 10.1063/1.4803926
H. Son, P. Uthirakumar, T.H. Chung, et al., Appl. Surf. Sci. 547 (2021) 149105.
doi: 10.1016/j.apsusc.2021.149105
H. Zheng, C. Zhao, S. Hu, et al., Phys. Status Solidi A 220 (2023) 2300037.
doi: 10.1002/pssa.202300037
M.W. Chen, J.R.D. Retamal, C.Y. Chen, J.H. He, IEEE Electron Device Lett. 33 (2012) 411–413.
doi: 10.1109/LED.2011.2180012
H.P. Wang, T.Y. Lin, C.W. Hsu, et al., ACS Nano 7 (2013) 9325–9335.
doi: 10.1021/nn404015y
J.R.D. Retamal, C.Y. Chen, D.H. Lien, et al., ACS Photonics 1 (2014) 354–359.
doi: 10.1021/ph4001108
D.H. Lien, J.R. Retamal, J.J. Ke, et al., Nanoscale 7 (2015) 19874–19884.
doi: 10.1039/C5NR06494E
S. Noh, J. Shin, Y.T. Yu, et al., Nanomaterials 13 (2023) 358 (Basel).
A. Abdullah, I.V. Bagal, A. Waseem, et al., Mater. Today Phys. 28 (2022) 100846.
doi: 10.1016/j.mtphys.2022.100846
B. AlOtaibi, H.P. Nguyen, S. Zhao, et al., Nano Lett. 13 (2013) 4356–4361.
doi: 10.1021/nl402156e
M.G. Kibria, H.P. Nguyen, K. Cui, et al., ACS Nano 7 (2013) 7886–7893.
doi: 10.1021/nn4028823
B. AlOtaibi, S. Fan, S. Vanka, et al., Nano Lett. 15 (2015) 6821–6828.
doi: 10.1021/acs.nanolett.5b02671
S. Fan, B. AlOtaibi, S.Y. Woo, et al., Nano Lett. 15 (2015) 2721–2726.
doi: 10.1021/acs.nanolett.5b00535
Y. Wang, B. AlOtaibi, F.A. Chowdhury, et al., APL Mater. 3 (2015) 116106.
doi: 10.1063/1.4935307
A. Abdullah, A. Waseem, I.V. Bagal, et al., ACS Appl. Energy Mater. 4 (2021) 13759–13765.
doi: 10.1021/acsaem.1c02486
D. Wang, W. Wu, S. Fang, et al., Light Sci. Appl. 11 (2022) 227.
doi: 10.1038/s41377-022-00912-7
C.Y. Chen, J.R.D. Retamal, I.W. Wu, et al., ACS Nano 6 (2012) 9366–9372.
doi: 10.1021/nn205097e
M. Sato, Y. Imazeki, T. Takeda, et al., J. Phys. Chem. C 125 (2021) 25807–25815.
doi: 10.1021/acs.jpcc.1c07110
N. Kumar, A. Kumar, F. Chand, Appl. Phys. Lett. 122 (2023) 013503.
doi: 10.1063/5.0134242
Y. Xiao, S. Vanka, T.A. Pham, et al., Nano Lett. 22 (2022) 2236–2243.
doi: 10.1021/acs.nanolett.1c04220
P. Varadhan, H.C. Fu, D. Priante, et al., Nano Lett. 17 (2017) 1520–1528.
doi: 10.1021/acs.nanolett.6b04559
H. Son, J.H. Park, P. Uthirakumar, et al., Appl. Surf. Sci. 532 (2020) 147465.
doi: 10.1016/j.apsusc.2020.147465
J.L. Lee, J.K. Kim, J.W. Lee, et al., Solid State Electron. 43 (1999) 435–438.
doi: 10.1016/S0038-1101(98)00265-2
J. Sun, K.A. Rickert, J.M. Redwing, et al., Appl. Phys. Lett. 76 (2000) 415–417.
doi: 10.1063/1.125772
S. Deng, D. Sun, C. Wu, et al., Electrochim. Acta 111 (2013) 707–712.
doi: 10.1016/j.electacta.2013.08.055
K. Deng, X. Wang, S. Huang, et al., ACS Appl. Mater. Interfaces 15 (2023) 25058–25065.
doi: 10.1021/acsami.3c03094
X.D. Wang, Y.H. Huang, J.F. Liao, et al., Nat. Commun. 12 (2021) 1202.
doi: 10.1038/s41467-021-21487-8
Z. Xu, S. Zhang, J. Liang, et al., J. Power Sources 419 (2019) 65–71.
doi: 10.1016/j.jpowsour.2019.02.050
M. Reddeppa, B.G. Park, S. Majumder, et al., Nanotechnology 31 (2020) 475201.
doi: 10.1088/1361-6528/aba301
Q. Yu, M. Yang, X. Luo, et al., Appl. Phys. Lett. 119 (2021) 013903.
doi: 10.1063/5.0047079
M.A. Hassan, J.H. Kang, M.A. Johar, et al., Acta Mater. 146 (2018) 171–175.
doi: 10.1016/j.actamat.2017.12.063
C. Wang, S. Wei, F. Li, et al., Nanoscale 12 (2020) 3259–3266.
doi: 10.1039/c9nr09502k
X. Wan, Y. Xu, X. Wang, et al., Appl. Surf. Sci. 573 (2022) 151492.
doi: 10.1016/j.apsusc.2021.151492
H.M. Li, Z.Y. Wang, H.J. Jing, et al., Appl. Catal. B 284 (2021) 119760.
doi: 10.1016/j.apcatb.2020.119760
Tianli Hui , Tao Zheng , Xiaoluo Cheng , Tonghui Li , Rui Zhang , Xianghai Meng , Haiyan Liu , Zhichang Liu , Chunming Xu . A review of plasma treatment on nano-microstructure of electrochemical water splitting catalysts. Chinese Journal of Structural Chemistry, 2025, 44(3): 100520-100520. doi: 10.1016/j.cjsc.2025.100520
Hongye Bai , Lihao Yu , Jinfu Xu , Xuliang Pang , Yajie Bai , Jianguo Cui , Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096
Lina Wang , Hairu Wang , Qian Bu , Qiong Mei , Junbo Zhong , Bo Bai , Qizhao Wang . Al-O bridged NiFeOx/BiVO4 photoanode for exceptional photoelectrochemical water splitting. Chinese Chemical Letters, 2025, 36(4): 110139-. doi: 10.1016/j.cclet.2024.110139
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Kai Han , Guohui Dong , Ishaaq Saeed , Tingting Dong , Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207
Entian Cui , Yulian Lu , Zhaoxia Li , Zhilei Chen , Chengyan Ge , Jizhou Jiang . Interfacial B-O bonding modulated S-scheme B-doped N-deficient C3N4/O-doped-C3N5 for efficient photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(1): 110288-. doi: 10.1016/j.cclet.2024.110288
Hualin Jiang , Wenxi Ye , Huitao Zhen , Xubiao Luo , Vyacheslav Fominski , Long Ye , Pinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984
Hailang Deng , Abebe Reda Woldu , Abdul Qayum , Zanling Huang , Weiwei Zhu , Xiang Peng , Paul K. Chu , Liangsheng Hu . Killing two birds with one stone: Enhancing the photoelectrochemical water splitting activity and stability of BiVO4 by Fe ions association. Chinese Chemical Letters, 2024, 35(12): 109892-. doi: 10.1016/j.cclet.2024.109892
Honglin Gao , Chunlin Yuan , Hongyu Chen , Aiyi Dong , Pan Gao , Guangjin Hou . Surface gallium hydride on Ga2O3 polymorphs: A comparative solid-state NMR study. Chinese Journal of Structural Chemistry, 2025, 44(4): 100561-100561. doi: 10.1016/j.cjsc.2025.100561
Zhao Lu , Hu Lv , Qinzhuang Liu , Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005
Shuyuan Pan , Zehui Yang , Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373
Kun Wang , Jiaxuan Qiu , Zefei Wu , Yang Liu , Yongqi Liu , Xiangpeng Chen , Bao Zang , Jianmei Chen , Yunchao Lei , Longlu Wang , Qiang Zhao . Wafer-level GaN-based nanowires photocatalyst for water splitting. Chinese Chemical Letters, 2025, 36(3): 109993-. doi: 10.1016/j.cclet.2024.109993
Chao-Long Chen , Rong Chen , La-Sheng Long , Lan-Sun Zheng , Xiang-Jian Kong . Anchoring heterometallic cluster on P-doped carbon nitride for efficient photocatalytic nitrogen fixation in water and air ambient. Chinese Chemical Letters, 2024, 35(4): 108795-. doi: 10.1016/j.cclet.2023.108795
Zhenyu Hu , Zhenchun Yang , Shiqi Zeng , Kun Wang , Lina Li , Chun Hu , Yubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526
Yuchen Guo , Xiangyu Zou , Xueling Wei , Weiwei Bao , Junjun Zhang , Jie Han , Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206
Ji Chen , Yifan Zhao , Shuwen Zhao , Hua Zhang , Youyu Long , Lingfeng Yang , Min Xi , Zitao Ni , Yao Zhou , Anran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268
Rui Deng , Wenjie Jiang , Tianqi Yu , Jiali Lu , Boyao Feng , Panagiotis Tsiakaras , Shibin Yin . Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(7): 100290-100290. doi: 10.1016/j.cjsc.2024.100290
Shudi Yu , Jie Li , Jiongting Yin , Wanyu Liang , Yangping Zhang , Tianpeng Liu , Mengyun Hu , Yong Wang , Zhengying Wu , Yuefan Zhang , Yukou Du . Built-in electric field and core-shell structure of the reconstructed sulfide heterojunction accelerated water splitting. Chinese Chemical Letters, 2024, 35(12): 110068-. doi: 10.1016/j.cclet.2024.110068
Lu Qi , Zhaoyang Chen , Xiaoyu Luan , Zhiqiang Zheng , Yurui Xue , Yuliang Li . Atomically dispersed Mn enhanced catalytic performance for overall water splitting on graphdiyne-coated copper hydroxide nanowire. Chinese Journal of Structural Chemistry, 2024, 43(1): 100197-100197. doi: 10.1016/j.cjsc.2023.100197
Limin Wang , Feiyi Huang , Xinyi Liang , Rajkumar Devasenathipathy , Xiaotian Liu , Qiulan Huang , Zhongyun Yang , Dujuan Huang , Xinglan Peng , Du-Hong Chen , Youjun Fan , Wei Chen . Photoelectric synergy induced synchronous functionalization of graphene and its applications in water splitting and desalination. Chinese Journal of Structural Chemistry, 2025, 44(2): 100501-100501. doi: 10.1016/j.cjsc.2024.100501