Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction
-
* Corresponding author.
E-mail address: dongfan@uestc.edu.cn (F. Dong).
Citation:
Xueyang Zhao, Bangwei Deng, Hongtao Xie, Yizhao Li, Qingqing Ye, Fan Dong. Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction[J]. Chinese Chemical Letters,
;2024, 35(7): 109139.
doi:
10.1016/j.cclet.2023.109139
K. Zhao, X. Quan, ACS Catal. 11 (2021) 2076–2097.
doi: 10.1021/acscatal.0c04714
A. Liu, M. Gao, X. Ren, et al., J. Mater. Chem. A 8 (2020) 3541–3562.
doi: 10.1039/C9TA11966C
N.S. Spinner, J.A. Vega, W.E. Mustain, Catal. Sci. Technol. 2 (2012) 19–28.
doi: 10.1039/C1CY00314C
Y. Wang, J. Liu, Y. Wang, et al., Small 13 (2017) 1701809.
doi: 10.1002/smll.201701809
H. Yoshio, W. Hidethi, T. Toshio, K. Osamu, Electrochim. Acta 39 (1994) 1833–1839.
doi: 10.1016/0013-4686(94)85172-7
J. Tuo, Y. Zhu, L. Cheng, et al., ChemSusChem 12 (2019) 2644–2650.
doi: 10.1002/cssc.201901058
Y. Wang, P. Han, X. Lv, et al., Joule 2 (2018) 2551–2582.
doi: 10.1016/j.joule.2018.09.021
T.N. Nguyen, M. Salehi, Q.V. Le, et al., ACS Catal. 10 (2020) 10068–10095.
doi: 10.1021/acscatal.0c02643
J. Gu, C.S. Hsu, L. Bai, et al., Science 364 (2019) 1091–1094.
doi: 10.1126/science.aaw7515
F. Pan, H. Zhang, K. Liu, et al., ACS Catal. 8 (2018) 3116–3122.
doi: 10.1021/acscatal.8b00398
X. Zheng, B. Li, Q. Wang, et al., Nano Res. 15 (2022) 7806–7839.
doi: 10.1007/s12274-022-4429-9
C. Yan, H. Li, Y. Ye, et al., Energ. Environ. Sci. 11 (2018) 1204–1210.
doi: 10.1039/C8EE00133B
X. Wang, Z. Chen, X. Zhao, et al., Angew. Chem. Int. Ed. 57 (2018) 1944–1948.
doi: 10.1002/anie.201712451
Y. Zhang, L. Jiao, W. Yang, et al., Angew. Chem. Int. Ed. 60 (2021) 7607–7611.
doi: 10.1002/anie.202016219
K. Li, S. Zhang, X. Zhang, et al., Nano Lett. 22 (2022) 1557–1565.
doi: 10.1021/acs.nanolett.1c04382
X. Wang, Y. Wang, X. Sang, et al., Angew. Chem. Int. Ed. 60 (2021) 4192–4198.
doi: 10.1002/anie.202013427
W. Ni, Z. Liu, Y. Zhang, et al., Adv. Mater. 33 (2021) 2003238.
doi: 10.1002/adma.202003238
D. Liu, Q. He, S. Ding, L. Song, Adv. Energy Mater. 10 (2020) 2001482.
doi: 10.1002/aenm.202001482
X. Guo, J. Gu, S. Lin, et al., J. Am. Chem. Soc. 142 (2020) 5709–5721.
doi: 10.1021/jacs.9b13349
J. Jiao, R. Lin, S. Liu, et al., Nat. Chem. 11 (2019) 222–228.
doi: 10.1038/s41557-018-0201-x
Y. Wang, X. Cui, J. Zhang, et al., Prog. Mater. Sci. 128 (2022) 100964.
doi: 10.1016/j.pmatsci.2022.100964
H. Wang, M.S. Bootharaju, J.H. Kim, et al., J. Am. Chem. Soc. 145 (2023) 2264–2270.
doi: 10.1021/jacs.2c10435
Y. Chen, J. Lin, B. Jia, et al., Adv. Mater. 34 (2022) e2201796.
doi: 10.1002/adma.202201796
C. Dong, Y. Li, D. Cheng, et al., ACS Catal. 10 (2020) 11011–11045.
doi: 10.1021/acscatal.0c02818
W. Zhang, Y. Chao, W. Zhang, et al., Adv. Mater. 33 (2021) e2102576.
doi: 10.1002/adma.202102576
F. Li, X. Liu, Z. Chen, Small Methods 3 (2019) 1800480.
doi: 10.1002/smtd.201800480
Y. Zang, Q. Wu, S. Wang, et al., Phys. Rev. Appl. 19 (2023) 024003.
doi: 10.1103/PhysRevApplied.19.024003
L. Jiao, W. Ye, Y. Kang, et al., Nano Res. 15 (2021) 959–964.
T. He, A.R.P. Santiago, Y. Kong, et al., Small 18 (2022) e2106091.
doi: 10.1002/smll.202106091
D. Yao, C. Tang, X. Zhi, et al., Adv. Mater. 35 (2023) e2209386.
doi: 10.1002/adma.202209386
J. Ding, F. Li, J. Zhang, et al., J. Am. Chem. Soc. 145 (2023) 11829–11836.
doi: 10.1021/jacs.3c03426
Y. Chen, J. Lin, Q. Pan, et al., Angew. Chem. Int. Ed. 62 (2023) e202306469.
doi: 10.1002/anie.202306469
A. Pedersen, J. Barrio, A. Li, et al., Adv. Energy Mater. 12 (2022) 2102715.
doi: 10.1002/aenm.202102715
J. Zhang, Q. Huang, J. Wang, et al., Chinese J. Catal. 41 (2020) 783–798.
doi: 10.1016/S1872-2067(20)63536-7
Z. Zhang, X. Xu, ACS Appl. Mater. Interfaces 12 (2020) 56987–56994.
doi: 10.1021/acsami.0c16362
L. Pan, J. Wang, F. Lu, et al., Angew. Chem. Int. Ed. 62 (2023) e202216835.
doi: 10.1002/anie.202216835
X. Zhou, K. Han, K. Li, et al., Adv. Mater. 34 (2022) e2201859.
doi: 10.1002/adma.202201859
Y. Peng, B. Lu, S. Chen, Adv. Mater. 30 (2018) 1801995.
doi: 10.1002/adma.201801995
Y. Hu, Z. Li, B. Li, C. Yu, Small 18 (2022) 2203589.
doi: 10.1002/smll.202203589
H. Zhang, H. Wang, L. Zhou, et al., Appl. Catal. B 328 (2023) 122544.
doi: 10.1016/j.apcatb.2023.122544
W. Ren, X. Tan, W. Yang, et al., Angew. Chem. Int. Ed. 58 (2019) 6972–6976.
doi: 10.1002/anie.201901575
T. Ding, X. Liu, Z. Tao, et al., J. Am. Chem. Soc. 143 (2021) 11317–11324.
doi: 10.1021/jacs.1c05754
M. Fan, R.K. Miao, P. Ou, et al., Nat. Commun. 14 (2023) 3314.
doi: 10.1038/s41467-023-38935-2
L. Jiao, H.L. Jiang, Chem 5 (2019) 786–804.
doi: 10.1016/j.chempr.2018.12.011
H. Cheng, X. Wu, M. Feng, et al., ACS Catal. 11 (2021) 12673–12681.
doi: 10.1021/acscatal.1c02319
W. Ye, S. Chen, Y. Lin, et al., Chem 5 (2019) 2865–2878.
doi: 10.1016/j.chempr.2019.07.020
P. Jiao, D. Ye, C. Zhu, et al., Nanoscale 14 (2022) 14322–14340.
doi: 10.1039/D2NR03687H
B. Jiang, H. Sun, T. Yuan, et al., Energy Fuels 35 (2021) 8173–8180.
doi: 10.1021/acs.energyfuels.1c00758
Z. Zeng, L.Y. Gan, H.B. Yang, et al., Nat. Commun. 12 (2021) 4088.
doi: 10.1038/s41467-021-24052-5
Z. Lu, B. Wang, Y. Hu, et al., Angew. Chem. Int. Ed. 58 (2019) 2622–2626.
doi: 10.1002/anie.201810175
L. Zhang, R. Si, H. Liu, et al., Nat. Commun. 10 (2019) 4936.
doi: 10.1038/s41467-019-12887-y
H. Chen, Y. Zhang, Q. He, et al., J. Mater. Chem. A 8 (2020) 2364–2368.
doi: 10.1039/C9TA13192B
X. Zhao, K. Zhao, Y. Liu, et al., ACS Catal. 12 (2022) 11412–11420.
doi: 10.1021/acscatal.2c03149
C. Du, Y. Gao, H. Chen, et al., J. Mater. Chem. A 8 (2020) 16994–17001.
doi: 10.1039/D0TA06485H
J.J. Rehr, R.C. Albers, Rev. Mod. Phys. 72 (2000) 621–654.
doi: 10.1103/RevModPhys.72.621
J. Chan, M.E. Merrifield, A.V. Soldatov, M.J. Stillman, Inorg. Chem. 44 (2005) 4923–4933.
doi: 10.1021/ic048871n
H. Zhang, G. Liu, L. Shi, J. Ye, Adv. Energy Mater. 8 (2018) 1701343.
doi: 10.1002/aenm.201701343
R. Qin, K. Liu, Q. Wu, N. Zheng, Chem. Rev. 120 (2020) 11810–11899.
doi: 10.1021/acs.chemrev.0c00094
K. Leng, J. Zhang, Y. Wang, et al., Adv. Funct. Mater. 32 (2022) 2205637.
doi: 10.1002/adfm.202205637
Z. Zhao, M. Hu, T. Nie, et al., Environ. Sci. Technol. 57 (2023) 4556–4567.
doi: 10.1021/acs.est.2c09336
L. Li, K. Yuan, Y. Chen, Acc. Mater. Res. 3 (2022) 584–596.
doi: 10.1021/accountsmr.1c00264
S. Back, Y. Jung, ACS Energy Lett. 2 (2017) 969–975.
doi: 10.1021/acsenergylett.7b00152
X. Cui, W. An, X. Liu, et al., Nanoscale 10 (2018) 15262–15272.
doi: 10.1039/C8NR04961K
Y. Li, H. Su, S.H. Chan, Q. Sun, ACS Catal. 5 (2015) 6658–6664.
doi: 10.1021/acscatal.5b01165
G. Luo, Y. Jing, Y. Li, J. Mater. Chem. A 8 (2020) 15809–15815.
doi: 10.1039/D0TA00033G
Q. Huang, H. Liu, W. An, et al., ACS Sustain. Chem. Eng. 7 (2019) 19113–19121.
doi: 10.1021/acssuschemeng.9b05042
Y. Ouyang, L. Shi, X. Bai, et al., Chem. Sci. 11 (2020) 1807–1813.
doi: 10.1039/C9SC05236D
J. Su, R. Ge, Y. Dong, et al., J. Mater. Chem. A 6 (2018) 14025–14042.
doi: 10.1039/C8TA04064H
X.M. Liang, H.J. Wang, C. Zhang, et al., Appl. Catal. B 322 (2023) 122073.
doi: 10.1016/j.apcatb.2022.122073
H. Yang, Y. Wu, G. Li, et al., J. Am. Chem. Soc. 141 (2019) 12717–12723.
doi: 10.1021/jacs.9b04907
S. Chen, B. Wang, J. Zhu, et al., Nano Lett. 21 (2021) 7325–7331.
doi: 10.1021/acs.nanolett.1c02502
K. Zhao, X. Nie, H. Wang, et al., Nat. Commun. 11 (2020) 2455.
doi: 10.1038/s41467-020-16381-8
J.D. Yi, X. Gao, H. Zhou, et al., Angew. Chem. Int. Ed. 61 (2022) e202212329.
doi: 10.1002/anie.202212329
Y. Shen, H. Zhang, B. Chen, et al., Appl. Catal. B 330 (2023) 122654.
doi: 10.1016/j.apcatb.2023.122654
X. Zu, X. Li, W. Liu, et al., Adv. Mater. 31 (2019) 1808135.
doi: 10.1002/adma.201808135
H. Shang, T. Wang, J. Pei, et al., Angew. Chem. Int. Ed. 59 (2020) 22465–22469.
doi: 10.1002/anie.202010903
W. Xie, H. Li, G. Cui, et al., Angew. Chem. Int. Ed. 60 (2021) 7382–7388.
doi: 10.1002/anie.202014655
Z. Fan, R. Luo, Y. Zhang, et al., Angew. Chem. Int. Ed. 62 (2023) e202216326.
doi: 10.1002/anie.202216326
W. Liu, H. Li, P. Ou, et al., Nano Res. 16 (2023) 8729–8736.
doi: 10.1007/s12274-023-5513-5
X. Cao, L. Zhao, B. Wulan, et al., Angew. Chem. Int. Ed. 61 (2022) e202113918.
doi: 10.1002/anie.202113918
M.J. Sun, Z.W. Gong, J.D. Yi, et al., Chem. Commun. 56 (2020) 8798–8801.
doi: 10.1039/D0CC03410J
Y. Li, C. Chen, R. Cao, et al., Appl. Catal. B 268 (2020) 118747.
doi: 10.1016/j.apcatb.2020.118747
L. Jiao, X. Li, W. Wei, et al., Appl. Catal. B 330 (2023) 122638.
doi: 10.1016/j.apcatb.2023.122638
Y. Li, B. Wei, M. Zhu, et al., Adv. Mater. 33 (2021) 2102212.
doi: 10.1002/adma.202102212
F. Wang, H. Xie, T. Liu, et al., Appl. Energ. 269 (2020) 115029.
doi: 10.1016/j.apenergy.2020.115029
R. Yun, F. Zhan, X. Wang, et al., Small 17 (2021) e2006951.
doi: 10.1002/smll.202006951
M. Feng, X. Wu, H. Cheng, et al., J. Mater. Chem. A 9 (2021) 23817–23827.
doi: 10.1039/D1TA02833B
H. Han, J. Im, M. Lee, D. Choo, Appl. Catal. B 320 (2023) 121953.
doi: 10.1016/j.apcatb.2022.121953
B. Deng, M. Huang, K. Li, et al., Angew. Chem. Int. Ed. 61 (2022) e202114080.
doi: 10.1002/anie.202114080
B. Deng, X. Zhao, Y. Li, et al., Sci. China Chem. 66 (2022) 78–95.
X. Wei, Y. Liu, X. Zhu, et al., Adv. Mater. 35 (2023) e2300020.
doi: 10.1002/adma.202300020
X. Qin, S. Zhu, F. Xiao, et al., ACS Energy Lett. 4 (2019) 1778–1783.
doi: 10.1021/acsenergylett.9b01015
B. Deng, M. Huang, X. Zhao, et al., ACS Catal. 12 (2021) 331–362.
Z. Chen, K. Mou, S. Yao, L. Liu, ChemSusChem 11 (2018) 2944–2952.
doi: 10.1002/cssc.201800925
L.D. Chen, M. Urushihara, K. Chan, J.K. Nørskov, ACS Catal. 6 (2016) 7133–7139.
doi: 10.1021/acscatal.6b02299
J. Hao, H. Zhu, Y. Li, et al., Chem. Eng. J. 404 (2021) 126523.
doi: 10.1016/j.cej.2020.126523
T. Gan, D. Wang, Nano Res. 17 (2024) 18–38.
doi: 10.1007/s12274-023-5700-4
H. Zhang, J. Li, S. Xi, et al., Angew. Chem. Int. Ed. 58 (2019) 14871–14876.
doi: 10.1002/anie.201906079
C. Shi, H.A. Hansen, A.C. Lausche, J.K. Norskov, Phys. Chem. Chem. Phys. 16 (2014) 4720–4727.
doi: 10.1039/c3cp54822h
H. Gu, J. Wu, L. Zhang, Nano Res. 15 (2022) 9747–9763.
doi: 10.1007/s12274-022-4270-1
Q. Sun, C. Jia, Y. Zhao, C. Zhao, Chin. J. Catal. 43 (2022) 1547–1597.
doi: 10.1016/S1872-2067(21)64000-7
J. Zhang, W. Cai, F.X. Hu, et al., Chem. Sci. 12 (2021) 6800–6819.
doi: 10.1039/D1SC01375K
W. Dong, N. Zhang, S. Li, et al., J. Mater. Chem. A 10 (2022) 10892–10901.
doi: 10.1039/D2TA01285E
H.B. Yang, S.F. Hung, S. Liu, et al., Nat. Energy 3 (2018) 140–147.
doi: 10.1038/s41560-017-0078-8
W. Ju, A. Bagger, G.P. Hao, et al., Nat. Commun. 8 (2017) 944.
doi: 10.1038/s41467-017-01035-z
J. Jin, J. Wicks, Q. Min, et al., Nature 617 (2023) 724–729.
doi: 10.1038/s41586-023-05918-8
Xin Li , Xuan Ding , Junkun Zhou , Hui Shi , Zhenxi Dai , Jiayi Liu , Yongcun Ma , Penghui Shao , Liming Yang , Xubiao Luo . Utilizing synergistic effects of bifunctional polymer hydrogel PAM-PAMPS for selective capture of Pb(Ⅱ) from wastewater. Chinese Chemical Letters, 2024, 35(7): 109158-. doi: 10.1016/j.cclet.2023.109158
Tinghui Yang , Min Kuang , Jianping Yang . Mesoporous CuCe dual-metal catalysts for efficient electrochemical reduction of CO2 to methane. Chinese Journal of Structural Chemistry, 2024, 43(8): 100350-100350. doi: 10.1016/j.cjsc.2024.100350
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
Tianbo Jia , Lili Wang , Zhouhao Zhu , Baikang Zhu , Yingtang Zhou , Guoxing Zhu , Mingshan Zhu , Hengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692
Yufei Jia , Fei Li , Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255
Qian-Qian Tang , Li-Fang Feng , Zhi-Peng Li , Shi-Hao Wu , Long-Shuai Zhang , Qing Sun , Mei-Feng Wu , Jian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454
Linlu Bai , Wensen Li , Xiaoyu Chu , Haochun Yin , Yang Qu , Ekaterina Kozlova , Zhao-Di Yang , Liqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931
Jingtai Bi , Yupeng Cheng , Mengmeng Sun , Xiaofu Guo , Shizhao Wang , Yingying Zhao . Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation. Chinese Chemical Letters, 2024, 35(11): 109639-. doi: 10.1016/j.cclet.2024.109639
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
Yaoyin Lou , Xiaoyang Jerry Huang , Kuang-Min Zhao , Mark J. Douthwaite , Tingting Fan , Fa Lu , Ouardia Akdim , Na Tian , Shigang Sun , Graham J. Hutchings . Stable core-shell Janus BiAg bimetallic catalyst for CO2 electrolysis into formate. Chinese Chemical Letters, 2025, 36(3): 110300-. doi: 10.1016/j.cclet.2024.110300
Shu-Ran Xu , Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173
Yuhao Guo , Na Li , Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320
Ziyi Liu , Feifei Guo , Tingting Cao , Youxuan Sun , Xutang Tao , Zeliang Gao . High thermal conductivity in Ga2TeO6 crystals: Synergistic effects of rigid polyhedral frameworks and stereochemically inert cations. Chinese Journal of Structural Chemistry, 2025, 44(4): 100544-100544. doi: 10.1016/j.cjsc.2025.100544
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Qin Cheng , Ming Huang , Qingqing Ye , Bangwei Deng , Fan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112
Di Wang , Qing-Song Chen , Yi-Ran Lin , Yun-Xin Hou , Wei Han , Juan Yang , Xin Li , Zhen-Hai Wen . Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(8): 100346-100346. doi: 10.1016/j.cjsc.2024.100346
Yuxiang Zhang , Jia Zhao , Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415
Xiangyu Chen , Aihao Xu , Dong Wei , Fang Huang , Junjie Ma , Huibing He , Jing Xu . Atomic cerium-doped CuOx catalysts for efficient electrocatalytic CO2 reduction to CH4. Chinese Chemical Letters, 2025, 36(1): 110175-. doi: 10.1016/j.cclet.2024.110175
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416