Boron-doped carbon dots: Doping strategies, performance effects, and applications
-
* Corresponding author.
E-mail address: qiang.fu@qfnu.edu.cn (Q. Fu).
1 These authors contributed equally to this work.
Citation:
Qiang Fu, Shouhong Sun, Kangzhi Lu, Ning Li, Zhanhua Dong. Boron-doped carbon dots: Doping strategies, performance effects, and applications[J]. Chinese Chemical Letters,
;2024, 35(7): 109136.
doi:
10.1016/j.cclet.2023.109136
X. Xu, R. Ray, Y. Gu, et al., J. Am. Chem. Soc. 126 (2004) 12736–12737.
doi: 10.1021/ja040082h
B.B. Chen, M.L. Liu, C.M. Li, C.Z. Huang, Adv. Colloid Interf. Sci. 270 (2019) 165–190.
doi: 10.1016/j.cis.2019.06.008
Y. Liu, L. Zhou, Y. Li, R. Deng, H. Zhang, Nanoscale 9 (2017) 491–496.
doi: 10.1039/C6NR07123F
S. Miao, K. Liang, J. Zhu, et al., Nano Today 33 (2020) 100879.
doi: 10.1016/j.nantod.2020.100879
S.J. Park, J.Y. Park, J.W. Chung, et al., Chem. Eng. J. 383 (2020) 123200.
doi: 10.1016/j.cej.2019.123200
H. Tao, K. Yang, Z. Ma, et al., Small 8 (2012) 281–290.
doi: 10.1002/smll.201101706
Q. Liu, S. Xu, C. Niu, et al., Biosens. Bioelectron. 64 (2015) 119–125.
doi: 10.1016/j.bios.2014.08.052
Y. Liu, J. Chen, Z. Xu, et al., Environ. Chem. Lett. 20 (2022) 3415–3420.
doi: 10.1007/s10311-022-01475-0
S. Ren, B. Liu, M. Wang, et al., J. Mater. Chem. C 10 (2022) 11338–11346.
doi: 10.1039/D2TC02664C
B. Wang, G.I.N. Waterhouse, S. Lu, Trends Chem. 5 (2023) 76–87.
doi: 10.1016/j.trechm.2022.10.005
S. Zhu, J. Zhang, S. Tang, et al., Adv. Funct. Mater. 22 (2012) 4732–4740.
doi: 10.1002/adfm.201201499
A.B. Bourlinos, G. Trivizas, M.A. Karakassides, et al., Carbon 83 (2015) 173–179.
doi: 10.1016/j.carbon.2014.11.032
K. Jiang, S. Sun, L. Zhang, et al., Angew. Chem. Int. Ed. 54 (2015) 5360–5363.
doi: 10.1002/anie.201501193
X. Li, M. Zheng, H. Wang, et al., J. Colloid Interf. Sci. 609 (2022) 54–64.
doi: 10.1016/j.jcis.2021.11.179
Y. Li, H. Lin, C. Luo, et al., RSC Adv. 7 (2017) 32225–32228.
doi: 10.1039/C7RA04781A
X. Zhang, Y. Ren, Z. Ji, J. Fan, J. Mol. Liquids 311 (2020) 113278.
doi: 10.1016/j.molliq.2020.113278
Y. Ma, A.Y. Chen, Y.Y. Huang, et al., Carbon 162 (2020) 234–244.
doi: 10.1016/j.carbon.2020.02.048
K. Yuan, X. Zhang, X. Li, et al., Chem. Eng. J. 397 (2020) 125487.
doi: 10.1016/j.cej.2020.125487
X. Shan, L. Chai, J. Ma, et al., Analyst 139 (2014) 2322–2325.
doi: 10.1039/C3AN02222F
C. Shen, J. Wang, Y. Cao, Y. Lu, J. Mater. Chem. C 3 (2015) 6668–6675.
doi: 10.1039/C5TC01156F
S. Kim, B.K. Yoo, Y. Choi, B.S. Kim, O.H. Kwon, Phys. Chem. Chem. Phys. 20 (2018) 11673–11681.
doi: 10.1039/C8CP01619D
S.V. Carneiro, J.J.P. Oliveira, V.S.F. Rodrigues, et al., ACS Appl. Mater. Interfaces 14 (2022) 43597–43611.
doi: 10.1021/acsami.2c09197
J. Zhou, H. Zhou, J. Tang, et al., Microchim. Acta 184 (2016) 343–368.
P. Shen, Y. Xia, Anal. Chem. 86 (2014) 5323–5329.
doi: 10.1021/ac5001338
Y. Jia, Y. Hu, Y. Li, et al., Microchim. Acta 186 (2019) 84.
doi: 10.1007/s00604-018-3196-5
S. Xu, S. Che, P. Ma, et al., Talanta 197 (2019) 548–552.
doi: 10.1016/j.talanta.2019.01.074
X. Zhao, L. Dong, Y. Ming, et al., Talanta 200 (2019) 9–14.
doi: 10.1016/j.talanta.2019.03.022
L. Largitte, N.A. Travlou, M. Florent, J. Secor, T.J. Bandosz, J. Photochem. Photobiol. A: Chem. 405 (2021) 112903.
doi: 10.1016/j.jphotochem.2020.112903
F. Wang, Q. Hao, Y. Zhang, Y. Xu, W. Lei, Microchim. Acta 183 (2015) 273–279.
Z.X. Wang, X.H. Yu, F. Li, et al., Microchim. Acta 184 (2017) 4775–4783.
doi: 10.1007/s00604-017-2526-3
Z. Fan, Y. Li, X. Li, et al., Carbon 70 (2014) 149–156.
doi: 10.1016/j.carbon.2013.12.085
M. Li, X. Li, M. Jiang, et al., Chem. Eng. J. 399 (2020) 125741.
doi: 10.1016/j.cej.2020.125741
Z. Peng, Y. Zhou, C. Ji, et al., Nanomaterials 10 (2020) 1560.
doi: 10.3390/nano10081560
T. Van Tam, S.G. Kang, K.F. Babu, et al., J. Mater. Chem. A 5 (2017) 10537–10543.
doi: 10.1039/C7TA01485F
J. Vinoth Kumar, V. Arul, R. Arulmozhi, N. Abirami, New J. Chem. 46 (2022) 7464–7476.
doi: 10.1039/D2NJ00786J
A. Wibrianto, D.F. Putri, S.C.W. Sakti, H.V. Lee, M.Z. Fahmi, RSC Adv. 11 (2021) 37375–37382.
doi: 10.1039/D1RA06148H
R. Liang, L. Huo, A. Yu, et al., Chin. Chem. Lett. 33 (2022) 243–246.
doi: 10.1016/j.cclet.2021.05.046
A. Wibrianto, S.Q. Khairunisa, S.C.W. Sakti, et al., RSC Adv. 11 (2020) 1098–1108.
K.B. Cai, H.Y. Huang, M.L. Hsieh, et al., ACS Nano 16 (2022) 3994–4003.
doi: 10.1021/acsnano.1c09582
S. Mandal, J. Pal, R. Subramanian, P. Das, Nano Res. 13 (2020) 2770–2776.
doi: 10.1007/s12274-020-2927-1
Y. Ding, X. Wang, M. Tang, H. Qiu, Adv. Sci. 9 (2022) e2103833.
doi: 10.1002/advs.202103833
Q. Feng, Z. Xie, M. Zheng, Chem. Eng. J. 420 (2021) 127647.
doi: 10.1016/j.cej.2020.127647
S. Cui, B. Wang, Y. Zan, et al., Chem. Eng. J. 431 (2022) 133373.
doi: 10.1016/j.cej.2021.133373
T. Li, C. Wu, M. Yang, et al., Langmuir 38 (2022) 2287–2293.
doi: 10.1021/acs.langmuir.1c02973
X. Niu, T. Song, H. Xiong, Chin. Chem. Lett. 32 (2021) 1953–1956.
doi: 10.1016/j.cclet.2021.01.006
L. Ji, L. Chen, P. Wu, D.F. Gervasio, C. Cai, Anal. Chem. 88 (2016) 3935–3944.
doi: 10.1021/acs.analchem.6b00131
A. Meng, Y. Zhang, X. Wang, et al., Colloids Surfaces A: Physicochem. Eng. Aspects 648 (2022) 129150.
doi: 10.1016/j.colsurfa.2022.129150
X. Hai, Q.X. Mao, W.J. Wang, et al., J. Mater. Chem. B 3 (2015) 9109–9114.
doi: 10.1039/C5TB01954K
H.K. Sadhanala, S. Pagidi, A. Gedanken, J. Mater. Chem. C 9 (2021) 1632–1640.
doi: 10.1039/D0TC05081D
W.S. Zou, C.H. Ye, Y.Q. Wang, W.H. Li, X.H. Huang, Sensors Actuators B: Chem. 271 (2018) 54–63.
doi: 10.1016/j.snb.2018.05.115
M. Cheng, L. Cao, H. Guo, W. Dong, L. Li, Sensors 22 (2022) 2944.
doi: 10.3390/s22082944
W. Li, W. Zhou, Z. Zhou, et al., Angew. Chem. Int. Ed. 58 (2019) 7278–7283.
doi: 10.1002/anie.201814629
J. Shi, Y. Zhou, J. Ning, et al., Spectrochim. Acta A: Mol. Biomol. Spectrosc. 281 (2022) 121597.
doi: 10.1016/j.saa.2022.121597
Y. Yue, B. Wang, S. Wang, et al., Chem. Commun. 56 (2020) 5174–5177.
doi: 10.1039/C9CC09701E
L. Zhang, Z.Y. Zhang, R.P. Liang, Y.H. Li, J.D. Qiu, Anal. Chem. 86 (2014) 4423–4430.
doi: 10.1021/ac500289c
S. Huang, E. Yang, J. Yao, Y. Liu, Q. Xiao, Anal. Chim. Acta 1035 (2018) 192–202.
doi: 10.1016/j.aca.2018.06.051
L.F. Pang, H. Wu, M.J. Fu, X.F. Guo, H. Wang, Microchim. Acta 186 (2019) 708.
doi: 10.1007/s00604-019-3852-4
C. She, Z. Wang, J. Zeng, F.G. Wu, Carbon 191 (2022) 636–645.
doi: 10.1016/j.carbon.2022.02.005
Q. Cheng, Y. He, Y. Ge, G. Song, Micro Nano Lett. 13 (2018) 1175–1178.
doi: 10.1049/mnl.2017.0779
Y. Hu, R. Guan, X. Shao, et al., J. Fluoresc. 30 (2020) 1447–1456.
doi: 10.1007/s10895-020-02592-1
M. Jia, L. Peng, M. Yang, et al., Carbon 182 (2021) 42–50.
doi: 10.1016/j.carbon.2021.05.050
M. Mao, T. Tian, Y. He, et al., Microchim. Acta 185 (2017) 17.
P. Ni, J. Xie, C. Chen, Y. Jiang, Y. Lu, X. Hu, Microchim. Acta 186 (2019) 202.
doi: 10.1007/s00604-019-3303-2
L. Peng, M. Yang, M. Zhang, M. Jia, Food Chem. 392 (2022) 133265.
doi: 10.1016/j.foodchem.2022.133265
Y.R. Wang, X. Chen, Chin. Chem. Lett. 28 (2017) 1119–1124.
doi: 10.1016/j.cclet.2016.12.009
T. Tian, Y. He, Y. Ge, G. Song, Sensors Actuators B: Chem. 240 (2017) 1265–1271.
doi: 10.1016/j.snb.2016.09.114
N. Xiao, S.G. Liu, S. Mo, et al., Talanta 184 (2018) 184–192.
doi: 10.1016/j.talanta.2018.02.114
N. Xiao, S.G. Liu, S. Mo, et al., Sensors Actuators B: Chem. 273 (2018) 1735–1743.
doi: 10.1016/j.snb.2018.07.097
V. Arul, P. Chandrasekaran, G. Sivaraman, M.G. Sethuraman, Diamond Rel. Mater. 116 (2021) 108437.
doi: 10.1016/j.diamond.2021.108437
Q. Fu, C. Long, J. Huang, et al., J. Environ. Chem. Eng. 9 (2021) 106882.
doi: 10.1016/j.jece.2021.106882
H.L. Tran, W. Darmanto, R.A. Doong, Nanomaterials 10 (2020) 1883.
doi: 10.3390/nano10091883
J. Xu, Y. Guo, L. Qin, et al., Ceramics Int. 49 (2023) 7546–7555.
doi: 10.1016/j.ceramint.2022.10.253
Z. Liu, Z. Mo, N. Liu, et al., J. Photochem. Photobiol. A: Chem. 389 (2020) 112255.
doi: 10.1016/j.jphotochem.2019.112255
Y. Ma, Z. Ma, X. Huo, et al., J. Agric. Food. Chem. 68 (2020) 10223–10231.
doi: 10.1021/acs.jafc.0c04251
F. Pschunder, M.A. Huergo, J.M. Ramallo-López, et al., J. Phys. Chem. C 124 (2019) 1121–1128.
R. Shokri, M. Amjadi, J. Photochem. Photobiol. A: Chem. 425 (2022) 113694.
doi: 10.1016/j.jphotochem.2021.113694
B. Tian, T. Fu, Y. Wan, et al., J. Nanobiotechnol. 19 (2021) 456.
doi: 10.1186/s12951-021-01211-w
Y. Wei, L. Chen, J. Wang, et al., Opt. Mater. 100 (2020) 109647.
doi: 10.1016/j.optmat.2019.109647
J. Xu, Y. Guo, T. Gong, et al., Inorg. Chem. Commun. 145 (2022) 110047.
doi: 10.1016/j.inoche.2022.110047
Y. Guo, Y. Chen, F. Cao, et al., RSC Adv. 7 (2017) 48386–48393.
doi: 10.1039/C7RA09785A
Y. Liu, W. Li, P. Wu, et al., Sensors Actuators B: Chem. 281 (2019) 34–43.
doi: 10.1016/j.snb.2018.10.075
Y. Wang, X. Hu, W. Li, et al., Spectrochim. Acta A: Mol. Biomol. Spectrosc. 243 (2020) 118807.
doi: 10.1016/j.saa.2020.118807
Z. Yan, W. Yao, K. Mai, et al., RSC Adv. 12 (2022) 8202–8210.
doi: 10.1039/D1RA08219A
S. Dey, A. Govindaraj, K. Biswas, C.N.R. Rao, Chem. Phys. Lett. 595-596 (2014) 203–208.
X. Gu, L. Zhu, D. Shen, C. Li, Polymers 14 (2022) 2779.
doi: 10.3390/polym14142779
W. Jiang, L. Liu, Y. Wu, et al., Nanoscale Adv. 3 (2021) 4536–4540.
doi: 10.1039/D1NA00252J
H. Wang, Q. Mu, K. Wang, et al., Appl. Mater. Today 14 (2019) 108–117.
doi: 10.1016/j.apmt.2018.11.011
L. Zhu, D. Shen, K. Hong Luo, J. Colloid Interf. Sci. 617 (2022) 557–567.
doi: 10.1016/j.jcis.2022.03.039
R.K. Das, S. Mohapatra, J. Mater. Chem. B 5 (2017) 2190–2197.
doi: 10.1039/C6TB03141B
J. Du, N. Xu, C. Wang, et al., J. Mater. Sci. 57 (2022) 21693–21708.
doi: 10.1007/s10853-022-07988-x
Y. Huang, Z. Cheng, Nano 12 (2017) 1750123.
doi: 10.1142/S1793292017501235
W.K. Li, J.T. Feng, Z.Q. Ma, Carbon 161 (2020) 685–693.
doi: 10.1016/j.carbon.2020.01.098
Y. Liu, W. Duan, W. Song, et al., ACS Appl. Mater. Interfaces 9 (2017) 12663–12672.
doi: 10.1021/acsami.6b15746
Y. Liu, Z. Wei, W. Duan, et al., Dyes Pigm. 149 (2018) 491–497.
doi: 10.1016/j.dyepig.2017.10.039
M. Masteri Farahani, F. Ghorbani, N. Mosleh, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 245 (2021) 118892.
doi: 10.1016/j.saa.2020.118892
S. Mohapatra, R.K. Das, Anal. Chim. Acta 1058 (2019) 146–154.
doi: 10.1016/j.aca.2019.01.021
B. Peng, J. Xu, M. Fan, et al., Anal. Bioanal. Chem. 412 (2020) 861–870.
doi: 10.1007/s00216-019-02284-1
S. Song, J. Hu, M. Li, et al., Mater. Sci. Eng. C Mater. Biol. Appl. 118 (2021) 111478.
doi: 10.1016/j.msec.2020.111478
C. Yin, M. Wu, T. Liu, et al., Microchem. J. 178 (2022) 107405.
doi: 10.1016/j.microc.2022.107405
L. Chen, Y. Liu, G. Cheng, et al., Sci. Total Environ. 759 (2021) 143432.
doi: 10.1016/j.scitotenv.2020.143432
P. Tiwari, N. Kaur, V. Sharma, S.M. Mobin, J. Photochem. Photobiol. A: Chem. 403 (2020) 112847.
doi: 10.1016/j.jphotochem.2020.112847
Z. Wang, J. Shen, B. Xu, et al., Adv. Opt. Mater. 9 (2021) 2100421.
doi: 10.1002/adom.202100421
C. Karami, M.A. Taher, M. Shahlaei, J. Mater. Sci. : Mater. Electron. 31 (2020) 5975–5983.
doi: 10.1007/s10854-020-03157-5
M. Molaparast, P. Eslampour, J. Soleymani, V. Shafiei Irannejad, Iran. J. Pharm. Res. 21 (2022) e126918.
Y. Choi, B. Kang, J. Lee, Chem. Mater. 28 (2016) 6840–6847.
doi: 10.1021/acs.chemmater.6b01710
C. Wang, Q. Sun, C. Li, et al., J. Fan, Mater. Res. Bull. 155 (2022) 111970.
doi: 10.1016/j.materresbull.2022.111970
Q. Cheng, Z. Chen, L. Hu, et al., Chin. Chem. Lett. 34 (2023) 108070.
doi: 10.1016/j.cclet.2022.108070
Y. Li, Q. Li, S. Meng, et al., Chin. Chem. Lett. 34 (2023) 107794.
doi: 10.1016/j.cclet.2022.107794
Q. Li, Y. Li, S. Meng, et al., J. Mater. Chem. C 9 (2021) 6796–6801.
doi: 10.1039/D1TC01001H
L. Yang, Q. Zhang, Y. Huang, et al., J. Colloid Interf. Sci. 632 (2023) 129–139.
doi: 10.1016/j.jcis.2022.11.062
M.R. Nabid, Y. Bide, N. Fereidouni, New J. Chem. 40 (2016) 8823–8828.
doi: 10.1039/C6NJ01650B
Y. Pei, H. Song, Y. Liu, et al., J. Colloid Interf. Sci. 600 (2021) 865–871.
doi: 10.1016/j.jcis.2021.05.089
Y.X. Wang, M. Rinawati, W.H. Huang, et al., Carbon 186 (2022) 406–415.
doi: 10.1016/j.carbon.2021.10.027
Y.Z. Guo, J.L. Liu, Y.F. Chen, et al., Anal. Chem. 94 (2022) 7601–7608.
doi: 10.1021/acs.analchem.2c00763
K.H. Kim, H.J. Ahn, Int. J. Energy Res. 46 (2022) 8367–8375.
doi: 10.1002/er.7738
T. Zhang, D. Long, X. Gu, M. Yang, Microchim. Acta 189 (2022) 389.
doi: 10.1007/s00604-022-05483-3
S. Ghosh, A. Ghosh, G. Ghosh, K. Marjit, A. Patra, J. Phys. Chem. Lett. 12 (2021) 8080–8087.
doi: 10.1021/acs.jpclett.1c02116
H. Wang, R. Revia, K. Wang, et al., Adv. Mater. 29 (2017) 1605416.
doi: 10.1002/adma.201605416
P. Yang, J. Su, R. Guo, F. Yao, C. Yuan, Analyt. Methods 11 (2019) 1879–1883.
doi: 10.1039/C9AY00249A
X. Li, L. Zhao, Y. Wu, et al., Spectrochim. Acta A: Mol. Biomol. Spectrosc. 282 (2022) 121638.
doi: 10.1016/j.saa.2022.121638
H. Wang, Z. Zhang, Q. Yan, ChemistrySelect 5 (2020) 13969–13973.
doi: 10.1002/slct.202004009
S.N. Karadag, O. Ustun, A. Yilmaz, M. Yilmaz, Chem. Phys. 562 (2022) 111678.
doi: 10.1016/j.chemphys.2022.111678
M. Fang, B. Wang, X. Qu, et al., Chin. Chem. Lett. 35 (2024) 108423.
doi: 10.1016/j.cclet.2023.108423
X. Yang, X. Li, B. Wang, et al., Chin. Chem. Lett. 33 (2022) 613–625.
doi: 10.1016/j.cclet.2021.08.077
Wu-Jian Long , Yang Yu , Chuang He . A novel and promising engineering application of carbon dots: Enhancing the chloride binding performance of cement. Chinese Chemical Letters, 2024, 35(6): 108943-. doi: 10.1016/j.cclet.2023.108943
Boran Cheng , Lei Cao , Chen Li , Fang-Yi Huo , Qian-Fang Meng , Ganglin Tong , Xuan Wu , Lin-Lin Bu , Lang Rao , Shubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969
Rui Cheng , Xin Huang , Tingting Zhang , Jiazhuang Guo , Jian Yu , Su Chen . Solid superacid catalysts promote high-performance carbon dots with narrow-band fluorescence emission for luminescence solar concentrators. Chinese Chemical Letters, 2024, 35(8): 109278-. doi: 10.1016/j.cclet.2023.109278
Chenghao Liu , Xiaofeng Lin , Jing Liao , Min Yang , Min Jiang , Yue Huang , Zhizhi Du , Lina Chen , Sanjun Fan , Qitong Huang . Carbon dots-based dopamine sensors: Recent advances and challenges. Chinese Chemical Letters, 2024, 35(12): 109598-. doi: 10.1016/j.cclet.2024.109598
Quan Zhang , Shunjie Xing , Jingqian Han , Li Feng , Jianchun Li , Zhaosheng Qian , Jin Zhou . Organic pollutant sensing for human health based on carbon dots. Chinese Chemical Letters, 2025, 36(1): 110117-. doi: 10.1016/j.cclet.2024.110117
Yuan Liu , Boyang Wang , Yaxin Li , Weidong Li , Siyu Lu . Understanding excitonic behavior and electroluminescence light emitting diode application of carbon dots. Chinese Chemical Letters, 2025, 36(2): 110426-. doi: 10.1016/j.cclet.2024.110426
Jianye Kang , Xinyu Yang , Xuhao Yang , Jiahui Sun , Yuhang Liu , Shutao Wang , Wenlong Song . Carbon dots-enhanced pH-responsive lubricating hydrogel based on reversible dynamic covalent bondings. Chinese Chemical Letters, 2024, 35(5): 109297-. doi: 10.1016/j.cclet.2023.109297
Rui Cheng , Tingting Zhang , Xin Huang , Jian Yu . Facile synthesis of high-brightness green-emitting carbon dots with narrow bandwidth towards backlight display. Chinese Chemical Letters, 2024, 35(5): 108763-. doi: 10.1016/j.cclet.2023.108763
Qiang Li , Jiangbo Fan , Hongkai Mu , Lin Chen , Yongzhen Yang , Shiping Yu . Nucleus-targeting orange-emissive carbon dots delivery adriamycin for enhanced anti-liver cancer therapy. Chinese Chemical Letters, 2024, 35(6): 108947-. doi: 10.1016/j.cclet.2023.108947
Xiaoning Li , Quanyu Shi , Meng Li , Ningxin Song , Yumeng Xiao , Huining Xiao , Tony D. James , Lei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021
Hao Cai , Xiaoyan Wu , Lei Jiang , Feng Yu , Yuxiang Yang , Yan Li , Xian Zhang , Jian Liu , Zijian Li , Hong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946
Liwen Wang , Boyang Wang , Siyu Lu , Shubo Lv , Xiaoli Qu . High quantum yield yellow emission carbon dots for the construction of blue light blocking films. Chinese Chemical Letters, 2025, 36(2): 110497-. doi: 10.1016/j.cclet.2024.110497
Meiling Xu , Xinyang Li , Pengyuan Liu , Junjun Liu , Xiao Han , Guodong Chai , Shuangling Zhong , Bai Yang , Liying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860
Xiuzheng Deng , Changhai Liu , Xiaotong Yan , Jingshan Fan , Qian Liang , Zhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942
Binyang Qin , Mengqi Wang , Shimei Wu , Yining Li , Chilin Liu , Yufei Zhang , Haosen Fan . Carbon dots confined nanosheets assembled NiCo2S4@CDs cross-stacked architecture for enhanced sodium ion storage. Chinese Chemical Letters, 2024, 35(7): 108921-. doi: 10.1016/j.cclet.2023.108921
Chaoqun Ma , Yuebo Wang , Ning Han , Rongzhen Zhang , Hui Liu , Xiaofeng Sun , Lingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632
Shuangying Li , Qingxiang Zhou , Zhi Li , Menghua Liu , Yanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693
Xiuzheng Deng , Yi Ke , Jiawen Ding , Yingtang Zhou , Hui Huang , Qian Liang , Zhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064
Jie Wu , Xiaoqing Yu , Guoxing Li , Su Chen . Engineering particles towards 3D supraballs-based passive cooling via grafting CDs onto colloidal photonic crystals. Chinese Chemical Letters, 2024, 35(4): 109234-. doi: 10.1016/j.cclet.2023.109234
Zhi Wang , Lingpeng Yan , Yelin Hao , Jingxia Zheng , Yongzhen Yang , Xuguang Liu . Highly efficient and photothermally stable CDs@ZIF-8 for laser illumination. Chinese Chemical Letters, 2024, 35(10): 109430-. doi: 10.1016/j.cclet.2023.109430