Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review
-
*Corresponding author.
E-mail address: wangchongchen@bucea.edu.cn (C.-C. Wang).
Citation:
Xiao-Hong Yi, Chong-Chen Wang. Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review[J]. Chinese Chemical Letters,
;2024, 35(5): 109094.
doi:
10.1016/j.cclet.2023.109094
X.Y. Ren, C.C. Wang, Y. Li, et al., Chem. Eng. J. 442 (2022) 136306.
doi: 10.1016/j.cej.2022.136306
Y.H. Li, C.C. Wang, X. Zeng, et al., Chem. Eng. J. 442 (2022) 136276.
doi: 10.1016/j.cej.2022.136276
C.C. Wang, X.Y. Ren, P. Wang, C. Chang, Chemosphere 303 (2022) 134949.
doi: 10.1016/j.chemosphere.2022.134949
J. Guo, K.X. Fu, J.J. Pei, et al., J. Colloid Interface Sci. 630 (2023) 666–675.
Y.X. Jiang, Z.C. Qin, F.H. Liang, et al., J. Chromatogr. A 1638 (2021) 461887.
doi: 10.1016/j.chroma.2021.461887
X.H. Yi, H.D. Ji, C.C. Wang, et al., Appl. Catal. B: Environ. 293 (2021) 120229.
doi: 10.1016/j.apcatb.2021.120229
F.X. Wang, C.C. Wang, X.D. Du, et al., Chem. Eng. J. 429 (2022) 132495.
doi: 10.1016/j.cej.2021.132495
Z.D. Zhou, S.Q. Li, Y. Liu, et al., RSC Adv. 12 (2022) 7780–7788.
doi: 10.1039/D2RA00376G
Y.C. Wei, M. f. Wang, W. Qi, Z.M. He, Process Saf. Environ. 163 (2022) 636–644.
doi: 10.1016/j.psep.2022.05.072
T.L. Xia, Y.C. Lin, W.Z. Li, M.T. Ju, Chin. Chem. Lett. 32 (2021) 2975–2984.
doi: 10.1016/j.cclet.2021.02.058
C.C. Wang, Z.C. Zhang, X.H. Yi, Chin. Chem. Lett. 34 (2023) 108182.
doi: 10.1016/j.cclet.2023.108182
J.F. Meng, F. Li, T.H. Li, W. Cao, Appl. Surf. Sci. 614 (2023) 156183.
doi: 10.1016/j.apsusc.2022.156183
W.L. Xiang, H.W. Liu, J.B. Zhu, H.Y. Gong, Q.Z. Cao, Chem. Eur. J. 29 (2023) e202300662.
doi: 10.1002/chem.202300662
M.H. Li, Y.B. Liu, F. Li, et al., Environ. Sci. Technol. 55 (2021) 13209–13218.
J.N. Yan, M.Y. Ma, K.Y. Liu, Y. Bao, F.H. Li, ACS EST Eng. 3 (2023) 467–478.
doi: 10.1021/acsestengg.2c00324
A. Liu, C.C. Wang, C.Z. Wang, et al., J. Colloid Interface Sci. 512 (2018) 730–739.
doi: 10.1016/j.jcis.2017.10.099
H.Y. Chu, T.Y. Wang, C.C. Wang, Prog. Chem. 34 (2022) 2700–2714.
A. Liu, C.Z. Wang, C. Chu, et al., J. Environ. Chem. Eng. 6 (2018) 4961–4969.
doi: 10.1016/j.jece.2018.07.035
J.J. Yang, J.X. Qin, Z.Y. Guo, Y. Hu, X. Zhang, Chin. Chem. Lett. 32 (2021) 1819–1822.
doi: 10.1016/j.cclet.2020.11.023
Y.J. Ma, Q. Tang, W.Y. Sun, et al., Appl. Catal. B: Environ. 270 (2020) 118856.
doi: 10.1016/j.apcatb.2020.118856
Y. Zhang, M. Sun, M. Peng, et al., Chin. Chem. Lett. 34 (2023) 107478.
doi: 10.1016/j.cclet.2022.04.076
Y.F. Chen, X.Q. Huang, S.H. Zhang, et al., J. Am. Chem. Soc. 138 (2016) 10810–10813.
doi: 10.1021/jacs.6b06959
J.S. Wang, X.H. Yi, X.T. Xu, et al., Chem. Eng. J. 431 (2022) 133213.
doi: 10.1016/j.cej.2021.133213
D. Pang, C.C. Wang, P. Wang, et al., Chemosphere 254 (2020) 126829.
doi: 10.1016/j.chemosphere.2020.126829
Q. Zhao, X.H. Yi, C.C. Wang, P. Wang, W.W. Zheng, Chem. Eng. J. 429 (2022) 132497.
doi: 10.1016/j.cej.2021.132497
Z.D. Zhou, C.Y. Wang, G.S. Zhu, et al., J. Mol. Struct. 1251 (2022) 132009.
doi: 10.1016/j.molstruc.2021.132009
X.D. Du, X.H. Yi, P. Wang, et al., Chem. Eng. J. 356 (2019) 393–399.
doi: 10.1016/j.cej.2018.09.084
X.H. Yi, Y. Gao, C.C. Wang, et al., Chin. Chem. Lett. 34 (2023) 108029.
doi: 10.1016/j.cclet.2022.108029
Q. Hu, L.C. Xu, K.X. Fu, et al., Nano Res. 15 (2022) 2961–2970.
doi: 10.1007/s12274-021-3918-6
X.W. Zhang, M.Y. Lan, F. Wang, et al., Chem. Eng. J. 450 (2022) 138082.
doi: 10.1016/j.cej.2022.138082
X.W. Zhang, F. Wang, C.C. Wang, et al., Chem. Eng. J. 426 (2021) 131927.
doi: 10.1016/j.cej.2021.131927
M. Zhu, Y.C. Liu, M.Y. Chen, et al., Chin. Chem. Lett. 31 (2020) 2683–2688.
doi: 10.1016/j.cclet.2020.04.011
R.D. Zhang, S.Y. Gao, R. Cao, Chin. Chem. Lett. 33 (2022) 4013–4016.
doi: 10.1016/j.cclet.2021.12.007
K.Y. Andrew Lin, H.A. Chang, J. Mater. Chem. A 3 (2015) 20060–20064.
doi: 10.1039/C5TA04427H
H.Z. Li, M.Z. Li, W.B. Li, et al., Phys. Chem. Chem. Phys. 19 (2017) 5746–5752.
doi: 10.1039/C6CP06617H
N. Huang, H. Drake, J.L. Li, et al., Angew. Chem. Int. Ed. 57 (2018) 8916–8920.
doi: 10.1002/anie.201803096
M. Shi, D. Lin, R. Huang, et al., Ind. Eng. Chem. Res. 59 (2020) 13220–13227.
doi: 10.1021/acs.iecr.0c00731
M.B. Shi, R.L. Huang, W. Qi, R.X. Su, Z.M. He, Colloid. Surface A 602 (2020) 125102.
doi: 10.1016/j.colsurfa.2020.125102
K.X. Fu, X. Liu, C.Y. Lv, et al., Environ. Sci. Technol. 56 (2022) 2677–2688.
doi: 10.1021/acs.est.1c07480
Z.J. Cai, X.T. Hu, Z.A. Li, et al., Water Res. 227 (2022) 119341.
doi: 10.1016/j.watres.2022.119341
J.P. Zhong, J. Zhou, M.S. Xiao, et al., Chin. Chem. Lett. 33 (2022) 973–978.
doi: 10.1016/j.cclet.2021.07.040
X.D. Du, C.C. Wang, J.G. Liu, et al., J. Colloid Interface Sci. 506 (2017) 437–441.
doi: 10.1016/j.jcis.2017.07.073
J.J. Li, C.C. Wang, H.F. Fu, et al., Dalton Trans. 46 (2017) 10197–10201.
doi: 10.1039/C7DT02208E
X.Y. Ren, C.C. Wang, Y. Li, P. Wang, S.J. Gao, J. Hazard. Mater. 445 (2023) 130552.
doi: 10.1016/j.jhazmat.2022.130552
M.Y. Lei, F.Y. Ge, S.S. Ren, X.J. Gao, H.G. Zheng, Sep. Purif. Technol. 286 (2022) 120433.
doi: 10.1016/j.seppur.2021.120433
Y.J. Chen, Y.F. Chen, C. Miao, et al., J. Mater. Chem. A 8 (2020) 14644–14652.
doi: 10.1039/D0TA04891G
J. Li, J.L. Gong, G.M. Zeng, et al., J. Colloid Interface Sci. 527 (2018) 267–279.
doi: 10.1016/j.jcis.2018.05.028
H. Zhu, Q. Zhang, B.G. Li, S.P. Zhu, Adv. Mater. Interfaces 4 (2017) 1700560.
doi: 10.1002/admi.201700560
Y. Zhang, N. Zhang, S. Zhou, et al., Ind. Eng. Chem. Res. 58 (2019) 17380–17388.
doi: 10.1021/acs.iecr.9b03208
J.F. Meng, B.Y. Song, F. Li, T.H. Li, Mater. Today Chem. 28 (2023) 101371.
doi: 10.1016/j.mtchem.2022.101371
H.P. Jing, C.C. Wang, Y.W. Zhang, P. Wang, R. Li, RSC Adv. 4 (2014) 54454–54462.
doi: 10.1039/C4RA08820D
C.C. Wang, J.R. Li, X.L. Lv, Y.Q. Zhang, G.S. Guo, Energy Environ. Sci. 7 (2014) 2831–2867.
doi: 10.1039/C4EE01299B
C.C. Wang, X.D. Du, J. Li, et al., Appl. Catal. B: Environ. 193 (2016) 198–216.
doi: 10.1016/j.apcatb.2016.04.030
Z.C. Zhang, F.X. Wang, F. Wang, C.C. Wang, P. Wang, Sep. Purif. Technol. 307 (2023) 122864.
doi: 10.1016/j.seppur.2022.122864
K.X. Shi, F.G. Qiu, P. Wang, H.Y. Li, C.C. Wang, Sep. Purif. Technol. 301 (2022) 121965.
doi: 10.1016/j.seppur.2022.121965
J.F. Wang, Y. Liu, P. Shao, et al., Environ. Res. 210 (2022) 112937.
doi: 10.1016/j.envres.2022.112937
H.F. Fu, X.X. Song, L. Wu, et al., Mater. Res. Bull. 125 (2020) 110806.
doi: 10.1016/j.materresbull.2020.110806
X.D. Zhao, C.W. Zhang, B.S. Liu, et al., Resour. Conserv. Recy. 188 (2023) 106647.
doi: 10.1016/j.resconrec.2022.106647
L. Zhang, C.Y. Wang, C.C. Wang, Resour. Conserv. Recy. 190 (2023) 106805.
doi: 10.1016/j.resconrec.2022.106805
L. Zheng, Y.F. Gu, B.L. Hua, J.R. Fu, F.T. Li, Chemosphere 307 (2022) 135728.
doi: 10.1016/j.chemosphere.2022.135728
C.D. Qi, Y.N. Wen, Y.J. Zhao, et al., Chin. Chem. Lett. 33 (2022) 2125–2128.
doi: 10.1016/j.cclet.2021.10.087
Y.H. Dai, H. Cao, C.D. Qi, et al., Chem. Eng. J. 451 (2023) 138588.
doi: 10.1016/j.cej.2022.138588
H. Cao, Y.H. Dai, L.L. Wu, et al., Sep. Purif. Technol. 319 (2023) 124083.
doi: 10.1016/j.seppur.2023.124083
J. Beyer, H.C. Trannum, T. Bakke, P.V. Hodson, T.K. Collier, Mar. Pollut. Bull. 110 (2016) 28–51.
doi: 10.1016/j.marpolbul.2016.06.027
Z. Wang, P.P. Luo, X.B. Zha, et al., J. Clean. Prod. 379 (2022) 134043.
doi: 10.1016/j.jclepro.2022.134043
C. Zhu, Y. Li, Y. Zhang, et al., Colloid. Surf. A 642 (2022) 128657.
doi: 10.1016/j.colsurfa.2022.128657
Z.Y. Zhan, X.Y. Liang, X.L. Zhang, Y.J. Jia, M. Hu, Dalton Trans. 48 (2019) 1786–1794.
doi: 10.1039/C8DT04653K
H.H. Ding, C.G. Li, H.L. Zhang, et al., Chin. Chem. Lett. 34 (2023) 107725.
doi: 10.1016/j.cclet.2022.08.005
C.Y. Wang, H.F. Fu, P. Wang, C.C. Wang, Appl. Organomet. Chem. 33 (2019) e5021.
doi: 10.1002/aoc.5021
Y. Zhang, S. Sheng, S. Mao, et al., Water Res. 163 (2019) 114883.
doi: 10.1016/j.watres.2019.114883
Y.Q. Zhang, J.X. Liu, X.H. Wu, W.Q. Tao, Z. Li, Anal. Chim. Acta 1131 (2020) 68–79.
doi: 10.1016/j.aca.2020.07.026
Y. Wang, Y.Q. Hu, Q.Y. He, et al., Biosensors 169 (2020) 112604.
X.X. Song, H.F. Fu, P. Wang, et al., J. Colloid Interface Sci. 532 (2018) 598–604.
doi: 10.1016/j.jcis.2018.08.029
Z.S. Li, X.H. Xu, H.R. Quan, et al., Chem. Eng. J. 410 (2021) 128268.
doi: 10.1016/j.cej.2020.128268
Muhammad Riaz , Rakesh Kumar Gupta , Di Sun , Mohammad Azam , Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427
Longlong Geng , Huiling Liu , Wenfeng Zhou , Yong-Zheng Zhang , Hongliang Huang , Da-Shuai Zhang , Hui Hu , Chao Lv , Xiuling Zhang , Suijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120
Fengxing Liang , Yongzheng Zhu , Nannan Wang , Meiping Zhu , Huibing He , Yanqiu Zhu , Peikang Shen , Jinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461
Xudong Zhao , Yuxuan Wang , Xinxin Gao , Xinli Gao , Meihua Wang , Hongliang Huang , Baosheng Liu . Anchoring thiol-rich traps in 1D channel wall of metal-organic framework for efficient removal of mercury ions. Chinese Chemical Letters, 2025, 36(2): 109901-. doi: 10.1016/j.cclet.2024.109901
Haodong Wang , Xiaoxu Lai , Chi Chen , Pei Shi , Houzhao Wan , Hao Wang , Xingguang Chen , Dan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473
Tengjia Ni , Xianbiao Hou , Huanlei Wang , Lei Chu , Shuixing Dai , Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210
Xi Feng , Ding-Yi Hu , Zi-Jun Liang , Mu-Yang Zhou , Zhi-Shuo Wang , Wen-Yu Su , Rui-Biao Lin , Dong-Dong Zhou , Jie-Peng Zhang . A metal azolate framework with small aperture for highly efficient ternary benzene/cyclohexene/cyclohexane separation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100540-100540. doi: 10.1016/j.cjsc.2025.100540
Fangling Cui , Zongjie Hu , Jiayu Huang , Xiaoju Li , Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337
Manoj Kumar Sarangi , L․D Patel , Goutam Rath , Sitansu Sekhar Nanda , Dong Kee Yi . Metal organic framework modulated nanozymes tailored with their biomedical approaches. Chinese Chemical Letters, 2024, 35(11): 109381-. doi: 10.1016/j.cclet.2023.109381
Ze Liu , Xiaochen Zhang , Jinlong Luo , Yingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500
Jiayu Huang , Kuan Chang , Qi Liu , Yameng Xie , Zhijia Song , Zhiping Zheng , Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097
Rui Wang , He Qi , Haijiao Zheng , Qiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215
Fereshte Hassanzadeh-Afruzi , Mina Azizi , Iman Zare , Ehsan Nazarzadeh Zare , Anwarul Hasan , Siavash Iravani , Pooyan Makvandi , Yi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564
Shuai Li , Liuting Zhang , Fuying Wu , Yiqun Jiang , Xuebin Yu . Efficient catalysis of FeNiCu-based multi-site alloys on magnesium-hydride for solid-state hydrogen storage. Chinese Chemical Letters, 2025, 36(1): 109566-. doi: 10.1016/j.cclet.2024.109566
Fahui Xiang , Lu Li , Zhen Yuan , Wuji Wei , Xiaoqing Zheng , Shimin Chen , Yisi Yang , Liangji Chen , Zizhu Yao , Jianwei Fu , Zhangjing Zhang , Shengchang Xiang . Enhanced C2H2/CO2 separation in tetranuclear Cu(Ⅱ) cluster-based metal-organic frameworks by adjusting divider length of pore space partition. Chinese Chemical Letters, 2025, 36(3): 109672-. doi: 10.1016/j.cclet.2024.109672
Jiaxuan Wang , Tonghe Liu , Bingxiang Wang , Ziwei Li , Yuzhong Niu , Hou Chen , Ying Zhang . Synthesis of polyhydroxyl-capped PAMAM dendrimer/silica composites for the adsorption of aqueous Hg(II) and Ag(I). Chinese Chemical Letters, 2024, 35(12): 109900-. doi: 10.1016/j.cclet.2024.109900
Congyan Liu , Xueyao Zhou , Fei Ye , Bin Jiang , Bo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
Yue Li , Minghao Fan , Conghui Wang , Yanxun Li , Xiang Yu , Jun Ding , Lei Yan , Lele Qiu , Yongcai Zhang , Longlu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764
Wenbiao Zhang , Bolong Yang , Zhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630