Surface tension of single suspended aerosol microdroplets
-
* Corresponding authors.
E-mail addresses: minhu@pku.edu.cn (M. Hu), yap@pku.edu.cn (A. Ye).
Citation:
Yukai Tong, Zhijun Wu, Bo Zhou, Min Hu, Anpei Ye. Surface tension of single suspended aerosol microdroplets[J]. Chinese Chemical Letters,
;2024, 35(4): 109062.
doi:
10.1016/j.cclet.2023.109062
M. Hallquist, J.C. Wenger, U. Baltensperger, et al., Atmos. Chem. Phys. 9 (2009) 5155–5236.
doi: 10.5194/acp-9-5155-2009
A. Mellouki, T.J. Wallington, J. Chen, Chem. Rev. 115 (2015) 3984–4014.
doi: 10.1021/cr500549n
D.K. Farmer, C.D. Cappa, S.M. Kreidenweis, Chem. Rev. 115 (2015) 4199–4217.
doi: 10.1021/cr5006292
M.D. Petters, S.M. Kreidenweis, Atmos. Chem. Phys. 7 (2007) 1961–1971.
doi: 10.5194/acp-7-1961-2007
H. Abdul-Razzak, S.J. Ghan, J. Geophys. Res. Atmos. 105 (2000) 6837–6844.
doi: 10.1029/1999JD901161
M.C. Facchini, S. Decesari, M. Mircea, et al., Atmos. Environ. 34 (2000) 4853–4857.
doi: 10.1016/S1352-2310(00)00237-5
B. Nozière, C. Baduel, J.L. Jaffrezo, Nat. Commun. 5 (2014) 3335–3341.
doi: 10.1038/ncomms4335
C.R. Ruehl, J.F. Davies, K.R. Wilson, Science 351 (2016) 1447–1450.
doi: 10.1126/science.aad4889
J. Ovadnevaite, A. Zuend, A. Laaksonen, et al., Nature 546 (2017) 637–641.
doi: 10.1038/nature22806
S.D. Forestieri, S.M. Staudt, T.M. Kuborn, et al., Atmos. Chem. Phys. 18 (2018) 10985–11005.
doi: 10.5194/acp-18-10985-2018
S.S. Petters, M.D. Petters, J. Geophys. Res. Atmos. 121 (2016) 1878–1895.
doi: 10.1002/2015JD024090
Q.T. Nguyen, K.H. Kjær, K.I. Kling, et al., Tellus B 69 (2017) 1304064.
doi: 10.1080/16000889.2017.1304064
H. Yu, W. Li, Y. Zhang, et al., Atmos. Chem. Phys. 19 (2019) 10433–10446.
doi: 10.5194/acp-19-10433-2019
Y. You, L. Renbaum-Wolff, M. Carreras-Sospedra, et al., Proc. Natl. Acad. Sci. U. S. A. 109 (2012) 13188–13193.
doi: 10.1073/pnas.1206414109
W. Li, L. Liu, J. Zhang, et al., Environ. Sci. Technol. 55 (2021) 2234–2242.
doi: 10.1021/acs.est.0c02333
N.O.A. Kwamena, J. Buajarern, J.P. Reid, J. Phys. Chem. A 114 (2010) 5787–5795.
doi: 10.1021/jp1003648
Y. Qiu, V. Molinero, J. Am. Chem. Soc. 137 (2015) 10642–10651.
doi: 10.1021/jacs.5b05579
S. Ishizaka, C. Yamamoto, H. Yamagishi, J. Phys. Chem. A 125 (2021) 7716–7722.
doi: 10.1021/acs.jpca.1c06130
M. Song, C. Marcolli, U.K. Krieger, et al., Faraday Discuss. 165 (2013) 289–316.
doi: 10.1039/c3fd00049d
J.P. Reid, B.J. Dennis-Smither, N.O.A. Kwamena, et al., Phys. Chem. Chem. Phys. 13 (2011) 15559–15572.
doi: 10.1039/c1cp21510h
K. Gorkowski, N.M. Donahue, R.C. Sullivan, Chem 6 (2020) 204–220.
doi: 10.1016/j.chempr.2019.10.018
J.D. Berry, M.J. Neeson, R.R. Dagastine, et al., J. Colloid Interf. Sci. 454 (2015) 226–237.
doi: 10.1016/j.jcis.2015.05.012
T. Beier, E.R. Cotter, M.M. Galloway, et al., ACS Earth Space Chem. 3 (2019) 1208–1215.
doi: 10.1021/acsearthspacechem.9b00123
M.Z. Shahid, M.R. Usman, M.S. Akram, et al., J. Chem. Eng. Data 62 (2017) 1198–1203.
doi: 10.1021/acs.jced.6b00703
M. Wanic, D. Cabaleiro, S. Hamze, et al., J. Therm. Anal. Calorim. 139 (2020) 799–806.
doi: 10.1007/s10973-019-08512-1
H. Zhou, Y. Yao, Q. Chen, et al., Appl. Phys. Lett. 103 (2013) 234102.
doi: 10.1063/1.4838616
H.C. Boyer, C.S. Dutcher, J. Phys. Chem. A 121 (2017) 4733–4742.
doi: 10.1021/acs.jpca.7b03189
S.D. Hudson, J.T. Cabral, W.J. Goodrum, et al., Appl. Phys. Lett. 87 (2005) 081905.
doi: 10.1063/1.2034098
J.T. Cabral, S.D. Hudson, Lab Chip 6 (2006) 427–436.
doi: 10.1039/b511976f
Y. Sun, C. Guo, Y. Jiang, et al., Rev. Sci. Instrum. 87 (2016) 114901.
doi: 10.1063/1.4963898
A.R. Metcalf, H.C. Boyer, C.S. Dutcher, Environ. Sci. Technol. 50 (2016) 1251–1259.
doi: 10.1021/acs.est.5b04880
B.R. Bzdek, R.M. Power, S.H. Simpson, et al., Chem. Sci. 7 (2016) 274–285.
doi: 10.1039/C5SC03184B
H.C. Boyer, B.R. Bzdek, J.P. Reid, et al., J. Phys. Chem. A 121 (2017) 198–205.
doi: 10.1021/acs.jpca.6b10057
B.R. Bzdek, J.P. Reid, J. Malila, et al., Proc. Natl. Acad. Sci. U. S. A. 117 (2020) 8335–8343.
doi: 10.1073/pnas.1915660117
R.E.H. Miles, M.W.J. Glerum, H.C. Boyer, et al., J. Phys. Chem. A 123 (2019) 3021–3029.
doi: 10.1021/acs.jpca.9b00903
L. Yang, B.K. Kazmierski, S.D. Hoath, et al., Phys. Fluids 26 (2014) 113103.
doi: 10.1063/1.4901823
W. Dang, W. Zhao, I. Schoegl, et al., Meas. Sci. Tech. 31 (2020) 095301.
doi: 10.1088/1361-6501/ab8b23
R.K. Wunderlich, M. Mohr, High Temp-High Press. 48 (2020) 253–277.
H. Lamb, Hydrodynamics, 6th. ed., Cambridge University Press, Cambridge, 1993.
C. Pigot, A. Hibara, Anal. Chem. 84 (2012) 2557–2561.
doi: 10.1021/ac3000804
M. Chung, C. Pigot, S. Volz, et al., Anal. Chem. 89 (2017) 8092–8096.
doi: 10.1021/acs.analchem.7b01611
T. Endo, K. Ishikawa, M. Fukuyama, et al., J. Phys. Chem. C 122 (2018) 20684–20690.
doi: 10.1021/acs.jpcc.8b03784
F. Zheng, W.C. Lam, K.H. Lai, et al., Environ. Sci. Technol. Lett. 7 (2020) 560–566.
doi: 10.1021/acs.estlett.0c00402
H.S. Morris, V.H. Grassian, A.V. Tivanski, Chem. Sci. 6 (2015) 3242–3247.
doi: 10.1039/C4SC03716B
H.D. Lee, A.D. Estillore, H.S. Morris, et al., J. Phys. Chem. A 121 (2017) 8296–8305.
doi: 10.1021/acs.jpca.7b04041
H.D. Lee, H.S. Morris, O. Laskina, et al., ACS Earth Space Chem. 4 (2020) 650–660.
doi: 10.1021/acsearthspacechem.0c00032
H.D. Lee, A.V. Tivanski, Annu. Rev. Phys. Chem. 72 (2021) 235–252.
doi: 10.1146/annurev-physchem-090419-110133
Y. Liu, P.H. Daum, J. Aerosol. Sci. 39 (2008) 974–986.
doi: 10.1016/j.jaerosci.2008.06.006
C. Cai, R.E.H. Miles, M.I. Cotterell, et al., J. Phys. Chem. A 120 (2016) 6604–6617.
doi: 10.1021/acs.jpca.6b05986
Y.C. Song, A.E. Haddrell, B.R. Bzdek, et al., J. Phys. Chem. A 120 (2016) 8123–8137.
doi: 10.1021/acs.jpca.6b07835
Y.K. Tong, Y. Liu, X. Meng, et al., Phys. Chem. Chem. Phys. 24 (2022) 10514–10523.
doi: 10.1039/D2CP00740A
Y.K. Tong, X. Meng, B. Zhou, et al., Front. Phys. 10 (2022) 969921.
doi: 10.3389/fphy.2022.969921
Y.K. Tong, T. Fang, Z. Wu, et al., Environ. Sci. Adv. 1 (2022) 781–789.
doi: 10.1039/D2VA00175F
Y. Cheng, G. Zheng, C. Wei, et al., Sci. Adv. 2 (2016) e1601530.
doi: 10.1126/sciadv.1601530
H. Wang, C. Zhong, Q. Ma, et al., Environ. Sci. Nano 7 (2020) 1092–1101.
doi: 10.1039/C9EN01474H
C. Liu, H. Wang, Q. Ma, et al., Environ. Sci. Technol. 54 (2020) 11848–11856.
doi: 10.1021/acs.est.0c05071
M. Li, F. Bao, Y. Zhang, et al., Proc. Natl. Acad. Sci. U. S. A. 115 (2018) 7717–7722.
doi: 10.1073/pnas.1804481115
S. Mosallanejad, I. Oluwoye, M. Altarawneh, et al., Phys. Chem. Chem. Phys. 22 (2020) 27698–27712.
doi: 10.1039/D0CP04874G
R. Tuckermann, Atmos. Environ. 41 (2007) 6265–6275.
doi: 10.1016/j.atmosenv.2007.03.051
N. Matubayasi, S. Tsuchihashi, R. Yoshikawa, J. Colloid Interf. Sci. 329 (2009) 357–360.
doi: 10.1016/j.jcis.2008.09.081
B. Minofar, R. Vácha, A. Wahab, et al., J. Phys. Chem. B 110 (2006) 15939–15944.
doi: 10.1021/jp060627p
A.T. Hubbard, Encyclopedia of Surface and Colloid Science, 1st ed., CRC Press, New York, 2002.
B. Wang, A. Laskin, J. Geophys. Res. Atmos. 119 (2014) 3335–3351.
doi: 10.1002/2013JD021169
Z. Chen, P. Liu, Y. Liu, et al., Acc. Chem. Res. 54 (2021) 3667–3678.
doi: 10.1021/acs.accounts.1c00318
N. Meskhidze, J. Xu, B. Gantt, et al., Atmos. Chem. Phys. 11 (2011) 11689–11705.
doi: 10.5194/acp-11-11689-2011
P. An, C.Y. Yuan, X.H. Liu, et al., Chin. Chem. Lett. 27 (2016) 527–534.
doi: 10.1016/j.cclet.2016.01.036
J. Ouyang, Y. Shao, M. Luo, et al., Chin. Chem. Lett. 33 (2022) 3516–3521.
doi: 10.1016/j.cclet.2022.03.030
L. Lyu, K. Fang, H. Jin, et al., Mar. Pollut. Bull. 161 (2020) 111741.
doi: 10.1016/j.marpolbul.2020.111741
Y. Song, J. Li, N.T. Tsona, et al., Sci. Total Environ. 851 (2022) 158122.
doi: 10.1016/j.scitotenv.2022.158122
A.M. Booth, D.O. Topping, G. McFiggans, et al., Phys. Chem. Chem. Phys. 11 (2009) 8021–8028.
doi: 10.1039/b906849j
Dong Lv , Xuelei Liu , Wei Li , Qiang Zhang , Xinhong Yu , Yanchun Han . Single droplet formation by controlling the viscoelasticity of polymer solutions during inkjet printing. Chinese Chemical Letters, 2024, 35(6): 109401-. doi: 10.1016/j.cclet.2023.109401
Yongmin Zhang , Shuang Guo , Mingyue Zhu , Menghui Liu , Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026
Yutong Dong , Huiling Xu , Yucheng Zhao , Zexin Zhang , Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022
Ruilin Han , Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023
Meng Lin , Heng Zhang , Shiling Yuan . Exploring a Combined Theory-Practice-Simulation Teaching Model in Physical Chemistry: A Case Study of Surface Tension. University Chemistry, 2025, 40(4): 189-194. doi: 10.12461/PKU.DXHX202407053
Zihong Li , Jie Cheng , Ping Huang , Guoliang Wu , Weiying Lin . Activatable photoacoustic bioprobe for visual detection of aging in vivo. Chinese Chemical Letters, 2024, 35(4): 109153-. doi: 10.1016/j.cclet.2023.109153
Wenli Xu , Yingzhao Zhang , Rui Wang , Chenyang Liu , Jialin Liu , Xiangyu Huo , Xinying Liu , He Zhang , Jianxu Ding . In-situ passivating surface defects of ultra-thin MAPbBr3 perovskite single crystal films for high performance photodetectors. Chinese Journal of Structural Chemistry, 2025, 44(1): 100454-100454. doi: 10.1016/j.cjsc.2024.100454
Tian Cao , Xuyin Ding , Qiwen Peng , Min Zhang , Guoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238
Zhi Wang , Lingpeng Yan , Yelin Hao , Jingxia Zheng , Yongzhen Yang , Xuguang Liu . Highly efficient and photothermally stable CDs@ZIF-8 for laser illumination. Chinese Chemical Letters, 2024, 35(10): 109430-. doi: 10.1016/j.cclet.2023.109430
Fengkai Zou , Borui Su , Han Leng , Nini Xin , Shichao Jiang , Dan Wei , Mei Yang , Youhua Wang , Hongsong Fan . Red-emissive carbon quantum dots minimize phototoxicity for rapid and long-term lipid droplet monitoring. Chinese Chemical Letters, 2024, 35(10): 109523-. doi: 10.1016/j.cclet.2024.109523
Huamei Zhang , Jingjing Liu , Mingyue Li , Shida Ma , Xucong Zhou , Aixia Meng , Weina Han , Jin Zhou . Imaging polarity changes in pneumonia and lung cancer using a lipid droplet-targeted near-infrared fluorescent probe. Chinese Chemical Letters, 2024, 35(12): 110020-. doi: 10.1016/j.cclet.2024.110020
Jing Chen , Peisi Xie , Pengfei Wu , Yu He , Zian Lin , Zongwei Cai . MALDI coupled with laser-postionization and trapped ion mobility spectrometry contribute to the enhanced detection of lipids in cancer cell spheroids. Chinese Chemical Letters, 2024, 35(4): 108895-. doi: 10.1016/j.cclet.2023.108895
Zhiwei Zhong , Yanbin Huang , Wantai Yang . A simple photochemical method for surface fluorination using perfluoroketones. Chinese Chemical Letters, 2024, 35(5): 109339-. doi: 10.1016/j.cclet.2023.109339
Yu He , Hao Jiang , Shaoxuan Yuan , Jiayi Lu , Qiang Sun . On-surface photo-induced dechlorination. Chinese Chemical Letters, 2024, 35(9): 109807-. doi: 10.1016/j.cclet.2024.109807
Xin Li , Zhen Xu , Donglei Bu , Jinming Cai , Huamei Chen , Qi Chen , Ting Chen , Fang Cheng , Lifeng Chi , Wenjie Dong , Zhenchao Dong , Shixuan Du , Qitang Fan , Xing Fan , Qiang Fu , Song Gao , Jing Guo , Weijun Guo , Yang He , Shimin Hou , Ying Jiang , Huihui Kong , Baojun Li , Dengyuan Li , Jie Li , Qing Li , Ruoning Li , Shuying Li , Yuxuan Lin , Mengxi Liu , Peinian Liu , Yanyan Liu , Jingtao Lü , Chuanxu Ma , Haoyang Pan , JinLiang Pan , Minghu Pan , Xiaohui Qiu , Ziyong Shen , Shijing Tan , Bing Wang , Dong Wang , Li Wang , Lili Wang , Tao Wang , Xiang Wang , Xingyue Wang , Xueyan Wang , Yansong Wang , Yu Wang , Kai Wu , Wei Xu , Na Xue , Linghao Yan , Fan Yang , Zhiyong Yang , Chi Zhang , Xue Zhang , Yang Zhang , Yao Zhang , Xiong Zhou , Junfa Zhu , Yajie Zhang , Feixue Gao , Yongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055
Xin Li , Zhen Xu , Donglei Bu , Jinming Cai , Huamei Chen , Qi Chen , Ting Chen , Fang Cheng , Lifeng Chi , Wenjie Dong , Zhenchao Dong , Shixuan Du , Qitang Fan , Xing Fan , Qiang Fu , Song Gao , Jing Guo , Weijun Guo , Yang He , Shimin Hou , Ying Jiang , Huihui Kong , Baojun Li , Dengyuan Li , Jie Li , Qing Li , Ruoning Li , Shuying Li , Yuxuan Lin , Mengxi Liu , Peinian Liu , Yanyan Liu , Jingtao Lü , Chuanxu Ma , Haoyang Pan , JinLiang Pan , Minghu Pan , Xiaohui Qiu , Ziyong Shen , Qiang Sun , Shijing Tan , Bing Wang , Dong Wang , Li Wang , Lili Wang , Tao Wang , Xiang Wang , Xingyue Wang , Xueyan Wang , Yansong Wang , Yu Wang , Kai Wu , Wei Xu , Na Xue , Linghao Yan , Fan Yang , Zhiyong Yang , Chi Zhang , Xue Zhang , Yang Zhang , Yao Zhang , Xiong Zhou , Junfa Zhu , Yajie Zhang , Feixue Gao , Li Wang . Recent progress on surface chemistry Ⅱ: Property and characterization. Chinese Chemical Letters, 2025, 36(1): 110100-. doi: 10.1016/j.cclet.2024.110100
Ying Hou , Zhen Liu , Xiaoyan Liu , Zhiwei Sun , Zenan Wang , Hong Liu , Weijia Zhou . Laser constructed vacancy-rich TiO2-x/Ti microfiber via enhanced interfacial charge transfer for operando extraction-SERS sensing. Chinese Chemical Letters, 2024, 35(9): 109634-. doi: 10.1016/j.cclet.2024.109634
Kun Tang , Yu-Wu Zhong . Water reduction by an organic single-chromophore photocatalyst. Chinese Journal of Structural Chemistry, 2024, 43(8): 100376-100376. doi: 10.1016/j.cjsc.2024.100376
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105
Ce Liang , Qiuhui Sun , Adel Al-Salihy , Mengxin Chen , Ping Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306