Doping-induced charge transfer in conductive polymers
-
* Corresponding author.
E-mail address: lihui889@mail.sic.ac.cn (H. Li).
Citation:
Siyi Luo, Zhen Xu, Fei Zhong, Hui Li, Lidong Chen. Doping-induced charge transfer in conductive polymers[J]. Chinese Chemical Letters,
;2024, 35(1): 109014.
doi:
10.1016/j.cclet.2023.109014
B.M. K. Walzer, M. Pfeiffer, K. Leo, Chem. Rev. 107 (2007) 1233–1271.
doi: 10.1021/cr050156n
Y. Zhao, W. Wang, Z. He, et al., Chin. Chem. Lett. 34 (2023) 108094.
doi: 10.1016/j.cclet.2022.108094
C.K. Chiang, C.R. Fincher, Y.W. Park, et al., Phys. Rev. Lett. 39 (1977) 1098–1101.
doi: 10.1103/PhysRevLett.39.1098
Y. Yamamoto, K. Yoshino, Y. Inuishi, J. Phys. Soc. Jpn. 47 (1979) 1887–1891.
doi: 10.1143/JPSJ.47.1887
R. Li, G. Xing, H. Li, et al., Chin. Chem. Lett. 34 (2023) 107454.
doi: 10.1016/j.cclet.2022.04.052
R. Warren, A. Privitera, P. Kaienburg, et al., Nat. Commun. 10 (2019) 5538.
doi: 10.1038/s41467-019-13563-x
A. Nollau, M. Pfeiffer, T. Fritz, et al., J. Appl. Phys. 87 (2000) 4340–4343.
doi: 10.1063/1.373413
R.Q. Png, M.C. Ang, M.H. Teo, et al., Nat. Commun. 7 (2016) 11948.
doi: 10.1038/ncomms11948
A.F. Paterson, Y.H. Lin, A.D. Mottram, et al., Adv. Electron. Mater. 4 (2018) 1700464.
doi: 10.1002/aelm.201700464
X. Dai, L. Liu, Z. Ji, et al., Chin. Chem. Lett. 34 (2023) 107239.
doi: 10.1016/j.cclet.2022.02.044
M. Koopmans, M.A.T. Leiviska, J. Liu, et al., ACS Appl. Mater. Interfaces 12 (2020) 56222–56230.
doi: 10.1021/acsami.0c15490
F. Ghani, A. Opitz, P. Pingel, et al., J. Polym. Sci. B 53 (2015) 58–63.
doi: 10.1002/polb.23631
S.N. Patel, A.M. Glaudell, K.A. Peterson, et al., Sci. Adv. 3 (2017) e1700434.
doi: 10.1126/sciadv.1700434
B.Z. Li, X.X. Li, F. Yang, et al., ACS Appl. Energy Mater. 4 (2021) 4662–4671.
doi: 10.1021/acsaem.1c00274
H. Li, M.E. DeCoster, R.M. Ireland, et al., J. Am. Chem. Soc. 139 (2017) 11149–11157.
doi: 10.1021/jacs.7b05300
H. Li, Z. Xu, J. Song, et al., Adv. Funct. Mater. 32 (2021) 2110047.
A.F. Paterson, R. Li, A. Markina, et al., J. Mater. Chem. C 9 (2021) 4486–4495.
doi: 10.1039/d0tc05861k
K. Kang, S. Watanabe, K. Broch, et al., Nat. Mater. 15 (2016) 896–902.
doi: 10.1038/nmat4634
I.E. Jacobs, E.W. Aasen, J.L. Oliveira, et al., J. Mater. Chem. C 4 (2016) 3454–3466.
doi: 10.1039/C5TC04207K
H. Yan, Y. Tang, X. Meng, et al., ACS Appl. Mater. Interfaces 11 (2019) 4178–4184.
doi: 10.1021/acsami.8b16162
H. Zhang, X. Zhang, Y. Li, et al., Sol. RRL 6 (2022) 2101096.
doi: 10.1002/solr.202101096
S.E. Yoon, Y. Kang, S.Y. Noh, et al., ACS Appl. Mater. Interfaces 12 (2020) 1151–1158.
doi: 10.1021/acsami.9b17825
A.M. Glaudell, J.E. Cochran, S.N. Patel, et al., Adv. Energy Mater. 5 (2015) 1401072.
doi: 10.1002/aenm.201401072
H. Chai, Z. Xu, H. Li, et al., ACS Appl. Electron. Mater. 4 (2022) 4947–4954.
doi: 10.1021/acsaelm.2c00940
E.M. Thomas, K.A. Peterson, A.H. Balzer, et al., Adv. Electron. Mater. 6 (2020) 2000595.
doi: 10.1002/aelm.202000595
S.E. Yoon, Y. Kang, G.G. Jeon, et al., Adv. Funct. Mater. 30 (2020) 2004598.
doi: 10.1002/adfm.202004598
P. Li, X. Ai, Q. Zhang, et al., Chin. Chem. Lett. 32 (2021) 811–815.
doi: 10.1016/j.cclet.2020.04.046
P. Pingel, D. Neher, Phys. Rev. B 87 (2013) 035502.
T.J. Aubry, J.C. Axtell, V.M. Basile, et al., Adv. Mater. 31 (2019) e1805647.
doi: 10.1002/adma.201805647
T. Ma, B.X. Dong, J.W. Onorato, et al., J. Polym. Sci. 59 (2021) 2797–2808.
doi: 10.1002/pol.20210608
M.L. Tietze, J. Benduhn, P. Pahner, et al., Nat. Commun. 9 (2018) 1182.
doi: 10.1038/s41467-018-03302-z
I. Salzmann, G. Heimel, S. Duhm, et al., Phys. Rev. Lett. 108 (2012) 035502.
doi: 10.1103/PhysRevLett.108.035502
W.B.P. Robert S. Mulliken, J. Am. Chem. Soc. 91 (1969) 3409–3413.
doi: 10.1021/ja01041a001
M.J. Mantione, Theor. Chem. Acc. 11 (1968) 119–127.
doi: 10.1007/BF01184318
D.T. Duong, C. Wang, E. Antono, et al., Org. Electron. 14 (2013) 1330–1336.
doi: 10.1016/j.orgel.2013.02.028
H. Mendez, G. Heimel, A. Opitz, et al., Angew. Chem. Int. Ed. 52 (2013) 7751–7755.
doi: 10.1002/anie.201302396
I. Salzmann, G. Heimel, J. Electron. Spectrosc. Relat. Phenomena 204 (2015) 208–222.
doi: 10.1016/j.elspec.2015.05.001
I. Salzmann, G. Heimel, M. Oehzelt, et al., Acc. Chem. Res. 49 (2016) 370–378.
doi: 10.1021/acs.accounts.5b00438
C. Wang, D.T. Duong, K. Vandewal, et al., Phys. Rev. B 91 (2015) 085205.
doi: 10.1103/PhysRevB.91.085205
M.P. Gordon, S.A. Gregory, J.P. Wooding, et al., Appl. Phys. Lett. 118 (2021) 233301.
doi: 10.1063/5.0052604
I.E. Jacobs, C. Cendra, T.F. Harrelson, et al., Mater. Horiz. 5 (2018) 655–660.
doi: 10.1039/C8MH00223A
K.E. Watts, B. Neelamraju, E.L. Ratcliff, et al., Chem. Mater. 31 (2019) 6986–6994.
doi: 10.1021/acs.chemmater.9b01549
E. Kampar, O. Neilands, Russ. Chem. Rev. 55 (1986) 637–651.
doi: 10.1070/RC1986v055n07ABEH003213
M. Comin, V. Lemaur, A. Giunchi, et al., J. Mater. Chem. C 10 (2022) 13815–13825.
doi: 10.1039/d2tc01115h
O. Zapata-Arteaga, B. Dorling, A. Perevedentsev, et al., Macromolecules 53 (2020) 609–620.
doi: 10.1021/acs.macromol.9b02263
V. Untilova, T. Biskup, L. Biniek, et al., Macromolecules 53 (2020) 2441–2453.
doi: 10.1021/acs.macromol.9b02389
H. Hase, K. O'Neill, J. Frisch, et al., J. Phys. Chem. C 122 (2018) 25893–25899.
doi: 10.1021/acs.jpcc.8b08591
T.J. Aubry, K.J. Winchell, C.Z. Salamat, et al., Adv. Funct. Mater. 30 (2020) 2001800.
doi: 10.1002/adfm.202001800
E.M. Thomas, E.C. Davidson, R. Katsumata, et al., ACS Macro Lett. 7 (2018) 1492–1497.
doi: 10.1021/acsmacrolett.8b00778
D.A. Stanfield, Y. Wu, S.H. Tolbert, et al., Chem. Mater. 33 (2021) 2343–2356.
doi: 10.1021/acs.chemmater.0c04471
E.C. Wu, C.Z. Salamat, S.H. Tolbert, et al., ACS Appl. Mater. Interfaces 14 (2022) 26988–27001.
doi: 10.1021/acsami.2c06449
E.F. Aziz, A. Vollmer, S. Eisebitt, et al., Adv. Mater. 19 (2007) 3257–3260.
doi: 10.1002/adma.200700926
H. Wu, Y. Sun, L. Sun, et al., Chin. Chem. Lett. 32 (2021) 3007–3010.
doi: 10.1016/j.cclet.2021.03.045
H. Méndez, G. Heimel, S. Winkler, et al., Nat. Commun. 6 (2015) 8560.
doi: 10.1038/ncomms9560
C.D. Dong, S. Schumacher, J. Phys. Chem. C 123 (2019) 30863–30870.
doi: 10.1021/acs.jpcc.9b09970
M. Cui, H. Rui, X. Wu, et al., J. Phys. Chem. Lett. 12 (2021) 8533–8540.
doi: 10.1021/acs.jpclett.1c02281
Z.Y. Wang, J.Y. Wang, J. Pei, Chin. Chem. Lett. 30 (2019) 25–30.
doi: 10.1016/j.cclet.2018.07.006
R. Ghosh, A.R. Chew, J. Onorato, et al., J. Phys. Chem. C 122 (2018) 18048–18060.
doi: 10.1021/acs.jpcc.8b03873
M. Heydari Gharahcheshmeh, K.K. Gleason, Mater. Today Adv. 8 (2020) 100086.
doi: 10.1016/j.mtadv.2020.100086
L. Wang, C. Pan, Z. Chen, et al., Polym. Chem. 9 (2018) 4440–4447.
doi: 10.1039/C8PY00812D
S.J. Yoo, J.J. Kim, Macromol. Rapid Commun. 36 (2015) 984–1000.
doi: 10.1002/marc.201500026
H. Hase, M. Berteau-Rainville, S. Charoughchi, et al., Appl. Phys. Lett. 118 (2021) 203301.
doi: 10.1063/5.0052592
D. Kiefer, R. Kroon, A.I. Hofmann, et al., Nat. Mater. 18 (2019) 149–155.
doi: 10.1038/s41563-018-0263-6
P. Durand, H.Y. Zeng, T. Biskup, et al., Adv. Energy Mater. 12 (2022) 2103049.
doi: 10.1002/aenm.202103049
C. Cui, W.Y. Wong, Macromol. Rapid Commun. 37 (2016) 287–302.
doi: 10.1002/marc.201500620
J. Yang, Y. Li, S. Duhm, et al., Adv. Mater. Interfaces 1 (2014) 1300128.
doi: 10.1002/admi.201300128
J.T. Liu, H. Hase, S. Taylor, et al., Angew. Chem. Int. Ed. 59 (2020) 7146–7153.
doi: 10.1002/anie.201914458
P.Y. Yee, D.T. Scholes, B.J. Schwartz, et al., J. Phys. Chem. Lett. 10 (2019) 4929–4934.
doi: 10.1021/acs.jpclett.9b02070
B. Neelamraju, K.E. Watts, J.E. Pemberton, et al., J. Phys. Chem. Lett. 9 (2018) 6871–6877.
doi: 10.1021/acs.jpclett.8b03104
N. Sun, H. Gao, L. Sun, et al., Chin. Chem. Lett. 33 (2022) 835–841.
doi: 10.1016/j.cclet.2021.07.069
E. Lim, K.A. Peterson, G.M. Su, et al., Chem. Mater. 30 (2018) 998–1010.
doi: 10.1021/acs.chemmater.7b04849
Y. Yamashita, J. Tsurumi, M. Ohno, et al., Nature 572 (2019) 634–638.
doi: 10.1038/s41586-019-1504-9
C. Chen, I.E. Jacobs, K. Kang, et al., Adv. Energy Mater. 13 (2023) 2202797.
doi: 10.1002/aenm.202202797
D. Yuan, E. Plunkett, P.H. Nguyen, et al., Adv. Funct. Mater. 33 (2023) 2300934.
doi: 10.1002/adfm.202300934
T.L. Murrey, M.A. Riley, G. Gonel, et al., J. Phys. Chem. Lett. 12 (2021) 1284–1289.
doi: 10.1021/acs.jpclett.0c03620
S.E. Yoon, J. Park, J.E. Kwon, et al., Adv. Mater. 32 (2020) e2005129.
doi: 10.1002/adma.202005129
I.E. Jacobs, Y. Lin, Y. Huang, et al., Adv. Mater. 34 (2022) e2102988.
doi: 10.1002/adma.202102988
Y. Yamashita, J. Tsurumi, T. Kurosawa, et al., Commun. Mater. 2 (2021) 45.
doi: 10.1038/s43246-021-00148-9
Haiyan Yin , Abdusalam Ablez , Zhuangzhuang Wang , Weian Li , Yanqi Wang , Qianqian Hu , Xiaoying Huang . Novel open-framework chalcogenide photocatalysts: Cobalt cocatalyst valence state modulating critical charge transfer pathways towards high-efficiency hydrogen evolution. Chinese Journal of Structural Chemistry, 2025, 44(4): 100560-100560. doi: 10.1016/j.cjsc.2025.100560
Shu-Ran Xu , Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173
Jieqiong Xu , Wenbin Chen , Shengkai Li , Qian Chen , Tao Wang , Yadong Shi , Shengyong Deng , Mingde Li , Peifa Wei , Zhuo Chen . Organic stoichiometric cocrystals with a subtle balance of charge-transfer degree and molecular stacking towards high-efficiency NIR photothermal conversion. Chinese Chemical Letters, 2024, 35(10): 109808-. doi: 10.1016/j.cclet.2024.109808
Kangrong Yan , Ziqiu Shen , Yanchun Huang , Benfang Niu , Hongzheng Chen , Chang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516
Binhan Zhao , Zheng Li , Lan Zheng , Zhichao Ye , Yuyang Yuan , Shanshan Zhang , Bo Liang , Tianyu Li . Recent progress in the biomedical application of PEDOT:PSS hydrogels. Chinese Chemical Letters, 2024, 35(10): 109810-. doi: 10.1016/j.cclet.2024.109810
Yuchen Wang , Yaoyu Liu , Xiongfei Huang , Guanjie He , Kai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301
Yihu Ke , Shuai Wang , Fei Jin , Guangbo Liu , Zhiliang Jin , Noritatsu Tsubaki . Charge transfer optimization: Role of Cu-graphdiyne/NiCoMoO4 S-scheme heterojunction and Ohmic junction. Chinese Journal of Structural Chemistry, 2024, 43(12): 100458-100458. doi: 10.1016/j.cjsc.2024.100458
Xiao Yu , Dongyue Cui , Mengmeng Wang , Zhaojin Wang , Mengzhu Wang , Deshuang Tu , Vladimir Bregadze , Changsheng Lu , Qiang Zhao , Runfeng Chen , Hong Yan . Boron cluster-based TADF emitter via through-space charge transfer enabling efficient orange-red electroluminescence. Chinese Chemical Letters, 2025, 36(3): 110520-. doi: 10.1016/j.cclet.2024.110520
Huizhong Wu , Ruiheng Liang , Ge Song , Zhongzheng Hu , Xuyang Zhang , Minghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131
Ying Hou , Zhen Liu , Xiaoyan Liu , Zhiwei Sun , Zenan Wang , Hong Liu , Weijia Zhou . Laser constructed vacancy-rich TiO2-x/Ti microfiber via enhanced interfacial charge transfer for operando extraction-SERS sensing. Chinese Chemical Letters, 2024, 35(9): 109634-. doi: 10.1016/j.cclet.2024.109634
Hui Liu , Xiangyang Tang , Zhuang Cheng , Yin Hu , Yan Yan , Yangze Xu , Zihan Su , Futong Liu , Ping Lu . Constructing multifunctional deep-blue emitters with weak charge transfer excited state for high-performance non-doped blue OLEDs and single-emissive-layer hybrid white OLEDs. Chinese Chemical Letters, 2024, 35(10): 109809-. doi: 10.1016/j.cclet.2024.109809
Xin Jiang , Han Jiang , Yimin Tang , Huizhu Zhang , Libin Yang , Xiuwen Wang , Bing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415
Yuan Teng , Zichun Zhou , Jinghua Chen , Siying Huang , Hongyan Chen , Daibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430
Xing Xiao , Yunling Jia , Wanyu Hong , Yuqing He , Yanjun Wang , Lizhi Zhao , Huiqin An , Zhen Yin . Sulfur-defective ZnIn2S4 nanosheets decorated by TiO2 nanosheets with exposed {001} facets to accelerate charge transfer for efficient photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100474-100474. doi: 10.1016/j.cjsc.2024.100474
Guixu Pan , Zhiling Xia , Ning Wang , Hejia Sun , Zhaoqi Guo , Yunfeng Li , Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463
Minghao Hu , Tianci Xie , Yuqiang Hu , Longjie Li , Ting Wang , Tongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232
Qiang Zhang , Weiran Gong , Huinan Che , Bin Liu , Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205
Kai Han , Guohui Dong , Ishaaq Saeed , Tingting Dong , Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207
Huanyu Liu , Gang Yu , Ruoyao Guo , Hao Qi , Jiayin Zheng , Tong Jin , Zifeng Zhao , Zuqiang Bian , Zhiwei Liu . Direct identification of energy transfer mechanism in CeⅢ-MnⅡ system by constructing molecular heteronuclear complexes. Chinese Chemical Letters, 2025, 36(2): 110296-. doi: 10.1016/j.cclet.2024.110296
Weixu Li , Yuexin Wang , Lin Li , Xinyi Huang , Mengdi Liu , Bo Gui , Xianjun Lang , Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299