Piezoelectric materials for pollutants degradation: State-of-the-art accomplishments and prospects
-
* Corresponding authors.
E-mail addresses: lqye@ctgu.edu.cn (L. Ye), chem_ctgu@126.com (Y. Huang)
Citation:
Yuqing Zhu, Haohao Chen, Li Wang, Liqun Ye, Houle Zhou, Qintian Peng, Huaiyong Zhu, Yingping Huang. Piezoelectric materials for pollutants degradation: State-of-the-art accomplishments and prospects[J]. Chinese Chemical Letters,
;2024, 35(4): 108884.
doi:
10.1016/j.cclet.2023.108884
R. Huang, J. Wu, E. Lin, et al., Nanoscale Adv. 3 (2021) 3159–3166.
doi: 10.1039/d1na00024a
T. Han, H. Zhang, W. Hu, et al., Environ. Sci. Pollut. Res. Int. 22 (2015) 8201–8215.
doi: 10.1007/s11356-014-3920-6
T.I. Moiseenko, Sci. Total Environ. 236 (1999) 19–39.
doi: 10.1016/S0048-9697(99)00280-6
S.A. Ostroumov, Russ. J. Org. Chem. 80 (2011) 2754–2761.
Y. Chen, X.M. Deng, J.Y. Wen, J. Zhu, Z.F. Bian, Appl. Catal. B 258 (2019) 118024.
doi: 10.1016/j.apcatb.2019.118024
W. Lv, L.J. Kong, S.Y. Lan, et al., J. Chem. Technol. Biotechnol. 92 (2017) 152–156.
doi: 10.1002/jctb.4981
J. Wang, C. Hu, L. Shi, et al., J. Mater. Chem. A 9 (2021) 12400–12432.
doi: 10.1039/d1ta02531g
S. Li, Z. Zhao, J. Zhao, et al., ACS Appl. Nano Mater. 3 (2020) 1063–1079.
doi: 10.1021/acsanm.0c00039
Z.R. Liu, X. Yu, L.L. Li, Chinese J Catal. 41 (2020) 534–549.
doi: 10.1016/S1872-2067(19)63431-5
J. Li, X. Liu, G. Zhao, et al., Sci. Total Environ. 869 (2023) 161767.
doi: 10.1016/j.scitotenv.2023.161767
V. Govorukha, M. Kamlah, V. Loboda, Y. Lapusta, Smart Mater. Sturct. 25 (2016) 023001.
doi: 10.1088/0964-1726/25/2/023001
W. Dong, H.Y. Xiao, Y.M. Jia, et al., Adv. Sci. 9 (2022) 2105368.
doi: 10.1002/advs.202105368
S. Li, Z.C. Zhao, D.F. Yu, Nano Energy 66 (2019) 104083.
doi: 10.1016/j.nanoen.2019.104083
S. Lan, X. Ke, Z. Li, et al., ACS ES&T Water 2 (2022) 367–375.
doi: 10.1021/acsestwater.1c00411
M. Acosta, N. Novak, V. Rojas, et al., Appl. Phys. Rev. 4 (2017) 041305.
doi: 10.1063/1.4990046
S.K. Ray, J. Cho, J. Hur, J. Environ. Manage 290 (2021) 112679.
doi: 10.1016/j.jenvman.2021.112679
J. Wu, Q. Xu, E. Lin, B. Yuan, et al., ACS Appl. Mater. Interfaces 10 (2018) 17842–17849.
doi: 10.1021/acsami.8b01991
R. Yuan, Z. Liu, P.V. Balachandran, et al., Adv. Mater. 30 (2018) 1702884.
doi: 10.1002/adma.201702884
P. Zhu, Y. Chen, J. Shi, Adv. Mater. 32 (2020) 2001976.
doi: 10.1002/adma.202001976
C.Y. Yu, M.X. Tan, C.D. Tao, et al., J. Am. Ceram. Soc. 11 (2022) 414–426.
doi: 10.1007/s40145-021-0544-4
X. Liu, L. Xiao, Y. Zhang, H. Sun, J. Materiomics 6 (2020) 256–262.
doi: 10.1016/j.jmat.2020.03.004
Y. Li, R. Li, Y. Zhai, et al., Appl. Surf. Sci. 570 (2021) 151146.
doi: 10.1016/j.apsusc.2021.151146
W. Qian, K. Zhao, D. Zhang, et al., ACS Appl. Mater. Interfaces 11 (2019) 27862–27869.
doi: 10.1021/acsami.9b07857
L. Shi, C. Lu, L. Chen, Q. Zhang, Y. Li, T. Zhang, X. Hao, J. Alloys Compd. 895 (2022) 162591.
doi: 10.1016/j.jallcom.2021.162591
R. Zhang, X. Wu, Y. Li, et al., RSC Adv. 10 (2020) 7443–7451.
doi: 10.1039/d0ra01101k
Y. Liu, Y. Ji, Y. Yang, Nanomaterials 11 (2021) 1724.
doi: 10.3390/nano11071724
Y. Bai, J. Zhao, Z. Lv, K. Lu, J. Mater. Sci. 55 (2020) 14112–14124.
doi: 10.1007/s10853-020-05053-z
Y. Chen, J. Fang, B. Dai, et al., Catal. Sci. Technol. 10 (2020) 2337–2342.
doi: 10.1039/c9cy02509j
B. Kumar, S.W. Kim, Nano Energy 1 (2012) 342–355.
doi: 10.1016/j.nanoen.2012.02.001
S. Li, M. Zhang, Y. Gao, B. Bao, S. Wang, Nano Energy 2 (2013) 1329–1336.
doi: 10.1016/j.nanoen.2013.06.015
Y. Li, H. Chen, L. Wang, et al., Ultrason. Sonochem. 78 (2021) 105754.
doi: 10.1016/j.ultsonch.2021.105754
Q. Nie, Y. Xie, J. Ma, J. Wang, G. Zhang, J. Cleaner Prod. 242 (2020) 118532.
doi: 10.1016/j.jclepro.2019.118532
R. Pagano, C. Ingrosso, G. Giancane, L. Valli, S. Bettini, Materials 13 (2020) 2938.
doi: 10.3390/ma13132938
H. Parangusan, D. Ponnamma, M.A.A. Al-Maadeed, Sci. Rep. 8 (2018) 754.
doi: 10.1038/s41598-017-19082-3
W. Wu, X. Yin, B. Dai, et al., Appl. Surf. Sci. 517 (2020) 146119.
doi: 10.1016/j.apsusc.2020.146119
C. Zhang, N. Li, D. Chen, et al., J. Alloys Compd. 885 (2021) 160987.
doi: 10.1016/j.jallcom.2021.160987
W.X. Ma, M.L. Lv, F.P. Cao, et al., J. Environ. Chem. Eng. 10 (2022) 107840.
doi: 10.1016/j.jece.2022.107840
J. Hu, C. Yu, C. Li, et al., Nano Energy 101 (2022) 107583.
doi: 10.1016/j.nanoen.2022.107583
X. Zhou, F. Yan, S. Wu, et al., Small 16 (2020) 2001573.
doi: 10.1002/smll.202001573
K. Fan, C. Yu, S. Cheng, S. Lan, M. Zhu, Surf. Interfaces 26 (2021) 101335.
doi: 10.1016/j.surfin.2021.101335
H. Huang, C. Zeng, K. Xiao, Y. Zhang, J. Colloid Interface Sci. 504 (2017) 257–267.
doi: 10.1016/j.jcis.2017.05.048
A. Durairaj, S. Ramasundaram, T. Sakthivel, et al., Appl. Surf. Sci. 493 (2019) 1268–1277.
doi: 10.1016/j.apsusc.2019.07.127
L. Li, M.A. Boda, C. Chen, et al., Cryst. Growth Des. 21 (2021) 7179–7185.
doi: 10.1021/acs.cgd.1c01026
X. Yang, X. Yang, Y. Peng, et al., Ind. Eng. Chem. Res. 61 (2022) 1704–1714.
doi: 10.1021/acs.iecr.1c03616
J. Hu, Y. Chen, Y. Zhou, et al., Appl. Catal. B 311 (2022) 121369.
doi: 10.1016/j.apcatb.2022.121369
S. Lan, C. Yu, F. Sun, et al., Nano Energy 93 (2022) 106792.
doi: 10.1016/j.nanoen.2021.106792
J.J. Long, T.T. Ren, J. Han, et al., Sep. Purif. Technol. 290 (2022) 120861.
doi: 10.1016/j.seppur.2022.120861
G. Jian, F. Xue, Y. Guo, et al., Materials 11 (2018) 2441.
doi: 10.3390/ma11122441
V. Teodoro, A. Barrios Trench, L. Guerreiro da Trindade, et al., Chem. Phys. Lett. 785 (2021) 139123.
doi: 10.1016/j.cplett.2021.139123
J. Chen, H. Lei, S. Ji, et al., J. Colloid Interface Sci. 601 (2021) 704–713.
doi: 10.1016/j.jcis.2021.05.151
M.Y. Cha, H. Liu, T.Y. Wang, et al., AIP Adv. 10 (2020) 065107.
doi: 10.1063/5.0010829
Y. Chen, S. Lan, M. Zhu, Chin. Chem. Lett. 32 (2021) 2052–2056.
doi: 10.1016/j.cclet.2020.11.016
S. Liu, B. Jing, C. Nie, et al., Environ. Sci. Nano 8 (2021) 784–794.
doi: 10.1039/D0EN01237H
J.M. Wu, W.E. Chang, Y.T. Chang, C.K. Chang, Adv. Mater. 28 (2016) 3718–3725.
doi: 10.1002/adma.201505785
X. Zhao, Y. Lei, G. Liu, et al., RSC Adv. 10 (2020) 38715–38726.
doi: 10.1039/D0RA06532C
C. Zheng, C. Ma, D. Wang, et al., Mater. Lett. 272 (2020) 127800.
doi: 10.1016/j.matlet.2020.127800
J.T. Lee, M.C. Lin, J.M. Wu, Nano Energy 98 (2022) 107280.
doi: 10.1016/j.nanoen.2022.107280
W.T. Yein, Q. Wang, Y. Li, X.H. Wu, Catal. Commun. 125 (2019) 61–65.
doi: 10.1016/j.catcom.2019.03.023
H. Lei, Q. He, M. Wu, et al., J. Hazard. Mater. 421 (2022) 126696.
doi: 10.1016/j.jhazmat.2021.126696
M.H. Wu, J.T. Lee, Y.J. Chung, M. Srinivaas, J.M. Wu, Nano Energy 40 (2017) 369–375.
doi: 10.1016/j.nanoen.2017.08.042
M. Chai, W. Tong, Z. Wang, et al., J. Hazard. Mater. 430 (2022) 128446.
doi: 10.1016/j.jhazmat.2022.128446
F. Liu, N.A. Hashim, Y. Liu, M.R.M. Abed, K. Li, J. Membr. Sci. 375 (2011) 1–27.
doi: 10.1016/j.memsci.2011.03.014
L. Wan, W. Tian, N. Li, et al., Nano Energy 94 (2022) 106930.
doi: 10.1016/j.nanoen.2022.106930
X. Zheng, Y. Liu, X. Liu, Q. Li, Y. Zheng, Ecotoxicol. Environ. Saf. 210 (2021) 111866.
doi: 10.1016/j.ecoenv.2020.111866
G. Dong, L. Yang, F. Wang, L. Zang, C. Wang, ACS Catal. 6 (2016) 6511–6519.
doi: 10.1021/acscatal.6b01657
R. Tang, D. Gong, Y. Zhou, et al., Appl. Catal. B 303 (2022) 120929.
doi: 10.1016/j.apcatb.2021.120929
R. Agrawal, H.D. Espinosa, Nano. Lett. 11 (2011) 786–790.
doi: 10.1021/nl104004d
Z. Kang, K. Ke, E. Lin, et al., J. Colloid Interface Sci. 607 (2022) 1589–1602.
doi: 10.1016/j.jcis.2021.09.007
R. Turner, P.A. Fuierer, R. Newnham, T.R. Shrout, Appl. Acoust. 41 (1994) 299–324.
doi: 10.1016/0003-682X(94)90091-4
Z.M. Dang, J.K. Yuan, J.W. Zha, et al., Prog. Mater. Sci. 57 (2012) 660–723.
doi: 10.1016/j.pmatsci.2011.08.001
M. Qin, F. Gao, J. Cizek, et al., Acta. Mater. 164 (2019) 76–89.
doi: 10.1016/j.actamat.2018.10.025
Z. Liang, C.F. Yan, S. Rtimi, J. Bandara, Appl. Catal B: Environ. 241 (2019) 256–269.
doi: 10.1016/j.apcatb.2018.09.028
J.F. Alder, J.J. McCallum, Analyst 108 (1983) 1169–1189.
doi: 10.1039/an9830801169
K.S. SUSLICK, Sonochemistry, Science 247 (1990) 1439–1445.
doi: 10.1126/science.247.4949.1439
N.N. Rosman, R.M. Yunus, L.J. Minggu, et al., Int. J. Hydroger Energy 43 (2018) 18925–18945.
doi: 10.1016/j.ijhydene.2018.08.126
P.F. Wu, X.M. Wang, W.J. Lin, L.X. Bai, Ultrasonics. Sonochem. 82 (2022) 105878.
doi: 10.1016/j.ultsonch.2021.105878
Timothy J. Mason, J.Phillip Lorimer, Applied Sonochemistry: the Uses of Power Ultrasound in Chemistry and Processing, Wiley-Vch, Weinheim, 2002.
S. Lan, C. Yu, E. Wu, M. Zhu, D.D. Dionysiou, ACS ES&T Eng. 2 (2022) 101–109.
C. Yu, J. He, S. Lan, W. Guo, M. Zhu, Environ. Sci. Ecotechnol. 10 (2022) 100165.
doi: 10.1016/j.ese.2022.100165
S. Lan, Y. Chen, L. Zeng, et al., J. Hazard. Mater. 393 (2020) 122448.
doi: 10.1016/j.jhazmat.2020.122448
B.M. Jun, J. Han, C.M. Park, Y. Yoon, Ultrason. Sonochem. 64 (2020) 104993.
doi: 10.1016/j.ultsonch.2020.104993
H. Lei, M. Wu, F. Mo, et al., Environ. Sci-Nano. 8 (2021) 1398–1407.
doi: 10.1039/D0EN01028F
W. Liu, P. Wang, Y. Ao, et al., Adv. Mater. 34 (2022) 2202508.
doi: 10.1002/adma.202202508
C. Yu, S. Lan, S. Cheng, L. Zeng, M. Zhu, J. Hazard. Mater. 424 (2022) 127440.
doi: 10.1016/j.jhazmat.2021.127440
M. Pan, C. Zhang, J. Wang, et al., Environ. Sci. Technol. 53 (2019) 8342–8351.
doi: 10.1021/acs.est.9b02355
J. Ling, K. Wang, Z. Wang, H. Huang, G. Zhang, Ultrason. Sonochem. 61 (2020) 104819.
doi: 10.1016/j.ultsonch.2019.104819
Y. Long, H. Xu, J. He, C. Li, M. Zhu, Surf. Interfaces 31 (2022) 102056.
doi: 10.1016/j.surfin.2022.102056
M. Li, H. Huang, S. Yu, et al., ChemCatChem 10 (2018) 4477–4496.
doi: 10.1002/cctc.201800859
S. Yu, H. Huang, F. Dong, et al., ACS Appl. Mater. Interfaces 7 (2015) 27925–27933.
doi: 10.1021/acsami.5b09994
H. Huang, X. Li, J. Wang, et al., ACS Catal. 5 (2015) 4094–4103.
doi: 10.1021/acscatal.5b00444
X. Li, J. Qiu, X. Chen, et al., Mater. Lett. 325 (2022) 132867.
doi: 10.1016/j.matlet.2022.132867
T. Chen, L. Liu, C. Hu, H. Huang, Chin. J. Catal. 42 (2021) 1413–1438.
doi: 10.1016/S1872-2067(20)63769-X
C. Lei, L. Song, S. Zhang, Ceram. Int. 46 (2020) 29344–29351.
doi: 10.1016/j.ceramint.2020.08.084
J. Silva, A. Reyes, H. Esparza, H. Camacho, L. Integr. Ferroelectr. 126 (2011) 47–59.
doi: 10.1080/10584587.2011.574986
N. Wang, X. Luo, L. Han, et al., Nanomicro. Lett. 12 (2020) 81.
F. Mushtaq, X. Chen, M. Hoop, et al., iScience 4 (2018) 236–246.
doi: 10.1016/j.isci.2018.06.003
Z. Li, X. Meng, Z. Zhang, J. Photochem. Photobiol. C 35 (2018) 39–55.
doi: 10.1016/j.jphotochemrev.2017.12.002
J. Low, S. Cao, J. Yu, S. Wageh, Chem. Commun. 50 (2014) 10768–10777.
doi: 10.1039/C4CC02553A
Z.C. Tu, X. Hu, Phys. Rev. B. 74 (2006) 10768–10777.
Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, et al., J. Appl. Phys. 98 (2005) 11.
R. Araneo, F. Bini, M. Pea, et al., IEEE Trans. Nanotechnol. 15 (2016) 512–520.
doi: 10.1109/TNANO.2016.2538798
J. Zhang, R.J. Wang, C.Y. Wang, Phys. E (Amsterdam, Neth.) 46 (2012) 105–112.
doi: 10.1270/jsbbs.62.105
Y. Wen, J. Chen, X. Gao, et al., Nano Energy 101 (2022) 107614.
doi: 10.1016/j.nanoen.2022.107614
D. Yadav, N. Tyagi, H. Yadav, et al., J. Mater. Sci. 58 (2023) 223111.
H. Song, X. Meng, S. Wang, et al., J. Am. Chem. Soc. 141 (2019) 107394.
doi: 10.1016/j.cclet.2022.03.117
Y. Chen, M. Xu, J. Wen, et al., Nat. Sustain. 4 (2021) 618–626.
doi: 10.1038/s41893-021-00697-4
X. Li, Y. Chen, Y. Tao, et al., Chem. Catal. 2 (2022) 1315–1345.
doi: 10.1016/j.checat.2022.04.007
X. Ning, A. Hao, Y. Cao, et al., J. Colloid Interface Sci. 577 (2020) 290–299.
doi: 10.1016/j.jcis.2020.05.082
H. Wei, H. Wang, Y. Xia, et al., J. Mater. Chem. C 6 (2018) 12446–12467.
doi: 10.1039/c8tc04515a
K.S. Ramadan, D. Sameoto, S. Evoy, Smart. Mater. Struct. 23 (2014) 290–299.
A. Petchsuk, W. Supmak, A. Thanaboonsombut, J. Am. Ceram. Soc. 94 (2011) 2126–2134.
doi: 10.1111/j.1551-2916.2010.04367.x
Q. Lu, L. Liu, X. Lan, Y. Liu, J. Leng, Compos. Struct. 153 (2016) 843–850.
doi: 10.1016/j.compstruct.2016.07.008
X. Cui, X. Ni, Y. Zhang, J. Alloy. Compd. 675 (2016) 306–310.
doi: 10.1016/j.jallcom.2016.03.129
P. Saxena, P. Shukla, Adv. Compos. Hybrid Mater. 4 (2021) 8–26.
doi: 10.1007/s42114-021-00217-0
G.D. Zhu, Z.G. Zeng, L. Zhang, X.J. Yan, Comp. Mater. Sci. 44 (2008) 224–229.
doi: 10.1016/j.commatsci.2008.03.016
G. Kalimuldina, N. Turdakyn, I. Abay, et al., Sensors 20 (2020) 306–310.
J.A. Christman, R.R. Woolcott, A.I. Kingon, R.J. Nemanich, Appl. Phys. Lett. 73 (1998) 3851–3853.
doi: 10.1063/1.122914
H.J. Xiang, J. Yang, J.G. Hou, Q. Zhu, Appl. Phys. Lett. 89 (2006) 223111.
doi: 10.1063/1.2397013
E.K. Akdogan, A. Safari, J. Appl. Phys. 101 (2007) 064114.
doi: 10.1063/1.2713081
P. Ayyub, V.R. Palkar, S. Chattopadhyay, M. Multani, Phys. Rev. B 51 (1995) 6135–6138.
doi: 10.1103/PhysRevB.51.6135
S. Gorfman, H. Choe, N. Zhang, P. Thomas, U. Pietsch, Acta Cryst. 73 (2017) C824-C824.
L.H. Luo, P. Du, W.P. Li, W.D. Tao, H.B. Chen, J. Appl. Phys. 114 (2013) 124104.
doi: 10.1063/1.4823812
X.H. He, T.H. Kai, P. Ding, Environ. Chem. Lett. 19 (2021) 4563–4601.
doi: 10.1007/s10311-021-01295-8
H.L. Wang, L.S. Zhang, Z.G. Chen, et al., Chem. Soc. Rev. 43 (2014) 5234–5244.
doi: 10.1039/C4CS00126E
L. Guo, Y. Chen, Z. Ren, et al., Ultrason. Sonochem. 81 (2021) 105849.
doi: 10.1016/j.ultsonch.2021.105849
X. Li, J. Yu, J. Low, et al., J. Mater. Chem. A 3 (2015) 2485–2534.
doi: 10.1039/C4TA04461D
C. Liu, M. Peng, A. Yu, et al., Nano Energy 26 (2016) 417–424.
doi: 10.1016/j.nanoen.2016.05.041
Z. Liu, L. Wang, X. Yu, et al., Adv. Funct. Mater. 29 (2019) 1807279.
doi: 10.1002/adfm.201807279
J. Shi, M.B. Starr, X. Wang, Adv. Mater. 24 (2012) 4683–4691.
doi: 10.1002/adma.201104386
Z. Wang, C. Li, K. Domen, Chem. Soc. Rev. 48 (2019) 2109–2125.
doi: 10.1039/C8CS00542G
S. Goktas, A. Goktas, J. Alloy. Compd. 863 (2021) 158734.
doi: 10.1016/j.jallcom.2021.158734
H.W. Lin, A. Jiang, S.B. Xing, et al., Nanomater 12 (2022) 910.
doi: 10.3390/nano12060910
V. Soni, P. Singh, A.A.P. Khan, et al., J. Nanostruct. Chem. 13 (2023) 129–166.
doi: 10.1007/s40097-021-00462-1
L. Zhou, S. Dai, S. Xu, Y. She, et al., Appl. Catal. B 291 (2021) 120019.
doi: 10.1016/j.apcatb.2021.120019
L. Wang, J. Wang, C. Ye, et al., Ultrason. Sonochem. 80 (2021) 105813.
doi: 10.1016/j.ultsonch.2021.105813
A. Wang, J. Li, T. Zhang, Nat. Rev. Chem. 2 (2018) 65–81.
doi: 10.1038/s41570-018-0010-1
S. Lan, B. Jing, C. Yu, et al., Small 18 (2022) 2105279.
doi: 10.1002/smll.202105279
L. Pan, S. Sun, Y. Chen, et al., Adv. Energy Mater. 10 (2020) 2000214.
doi: 10.1002/aenm.202000214
Quan Zhang , Shunjie Xing , Jingqian Han , Li Feng , Jianchun Li , Zhaosheng Qian , Jin Zhou . Organic pollutant sensing for human health based on carbon dots. Chinese Chemical Letters, 2025, 36(1): 110117-. doi: 10.1016/j.cclet.2024.110117
Yinyin Xu , Yuanyuan Li , Jingbo Feng , Chen Wang , Yan Zhang , Yukun Wang , Xiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838
Menglu Guo , Ying-Qi Song , Junfei Cheng , Guoqiang Dong , Xun Sun , Chunquan Sheng . Hydrophobic tagging-induced degradation of NAMPT in leukemia cells. Chinese Chemical Letters, 2024, 35(9): 109392-. doi: 10.1016/j.cclet.2023.109392
Yunlong Sun , Wei Ding , Yanhao Wang , Zhening Zhang , Ruyun Wang , Yinghui Guo , Zhiyuan Gao , Haiyan Du , Dong Ma . New insight into manganese-enhanced abiotic degradation of microplastics: Processes and mechanisms. Chinese Chemical Letters, 2025, 36(3): 109941-. doi: 10.1016/j.cclet.2024.109941
Fengrui Yang , Debing Wang , Xinying Zhang , Jie Zhang , Zhichao Wu , Qiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, 2024, 35(10): 109599-. doi: 10.1016/j.cclet.2024.109599
Xinlong Zheng , Zhongyun Shao , Jiaxin Lin , Qizhi Gao , Zongxian Ma , Yiming Song , Zhen Chen , Xiaodong Shi , Jing Li , Weifeng Liu , Xinlong Tian , Yuhao Liu . Recent advances of CuSbS2 and CuPbSbS3 as photocatalyst in the application of photocatalytic hydrogen evolution and degradation. Chinese Chemical Letters, 2025, 36(3): 110533-. doi: 10.1016/j.cclet.2024.110533
Shuo Li , Xinran Liu , Yongjie Zheng , Jun Ma , Shijie You , Heshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971
Zimo Yang , Yan Tong , Yongbo Liu , Qianlong Liu , Zhihao Ni , Yuna He , Yu Rao . Developing selective PI3K degraders to modulate both kinase and non-kinase functions. Chinese Chemical Letters, 2024, 35(11): 109577-. doi: 10.1016/j.cclet.2024.109577
Mengmeng Ao , Jian Wei , Chuan-Shu He , Heng Zhang , Zhaokun Xiong , Yonghui Song , Bo Lai . Insight into the activation of peroxymonosulfate by N-doped copper-based carbon for efficient degradation of organic pollutants: Synergy of nonradicals. Chinese Chemical Letters, 2025, 36(1): 109882-. doi: 10.1016/j.cclet.2024.109882
Zhi Zhu , Xiaohan Xing , Qi Qi , Wenjing Shen , Hongyue Wu , Dongyi Li , Binrong Li , Jialin Liang , Xu Tang , Jun Zhao , Hongping Li , Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194
Cunjun Li , Wencong Liu , Xianlei Chen , Liang Li , Shenyu Lan , Mingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652
Haijing Cui , Weihao Zhu , Chuning Yue , Ming Yang , Wenzhi Ren , Aiguo Wu . Recent progress of ultrasound-responsive titanium dioxide sonosensitizers in cancer treatment. Chinese Chemical Letters, 2024, 35(10): 109727-. doi: 10.1016/j.cclet.2024.109727
Shaohua Zhang , Liyao Liu , Yingqiao Ma , Chong-an Di . Advances in theoretical calculations of organic thermoelectric materials. Chinese Chemical Letters, 2024, 35(8): 109749-. doi: 10.1016/j.cclet.2024.109749
Teng Wang , Jiachun Cao , Juan Li , Didi Li , Zhimin Ao . A novel photocatalytic mechanism of volatile organic compounds degradation on BaTiO3 under visible light: Photo-electrons transfer from photocatalyst to pollutant. Chinese Chemical Letters, 2025, 36(3): 110078-. doi: 10.1016/j.cclet.2024.110078
Hui Liu , Xi Xiang , Jian-Bo Huang , Bi-Hui Zhu , Li-Yun Wang , Yuan-Jiao Tang , Fang-Xue Du , Ling Li , Feng Yan , Lang Ma , Li Qiu . Corrigendum to "Ultrasound augmenting injectable chemotaxis hydrogel for articular cartilage repair in osteoarthritis" [Chinese Chemical Letters 32 (2021) 1759-1764]. Chinese Chemical Letters, 2025, 36(2): 110562-. doi: 10.1016/j.cclet.2024.110562
Genlin Sun , Yachun Luo , Zhihong Yan , Hongdeng Qiu , Weiyang Tang . Chiral metal-organic frameworks-based materials for chromatographic enantioseparation. Chinese Chemical Letters, 2024, 35(12): 109787-. doi: 10.1016/j.cclet.2024.109787
Jiayin Zhou , Depeng Liu , Longqiang Li , Min Qi , Guangqiang Yin , Tao Chen . Responsive organic room-temperature phosphorescence materials for spatial-time-resolved anti-counterfeiting. Chinese Chemical Letters, 2024, 35(11): 109929-. doi: 10.1016/j.cclet.2024.109929
Pu Zhang , Xiang Mao , Xuehua Dong , Ling Huang , Liling Cao , Daojiang Gao , Guohong Zou . Two UV organic-inorganic hybrid antimony-based materials with superior optical performance derived from cation-anion synergetic interactions. Chinese Chemical Letters, 2024, 35(9): 109235-. doi: 10.1016/j.cclet.2023.109235
Xiaotao Jin , Yanlan Wang , Yingping Huang , Di Huang , Xiang Liu . Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism. Chinese Chemical Letters, 2024, 35(10): 109499-. doi: 10.1016/j.cclet.2024.109499
Haibo Ye , Qianyu Li , Juan Li , Didi Li , Zhimin Ao . Review on the abiotic degradation of biodegradable plastic poly(butylene adipate-terephthalate): Mechanisms and main factors of the degradation. Chinese Chemical Letters, 2025, 36(1): 109861-. doi: 10.1016/j.cclet.2024.109861