Mitochondria-targeted nano-AIEgens as a powerful inducer for evoking immunogenic cell death
-
* Corresponding author.
E-mail address: swhuang@whu.edu.cn (S.-W. Huang)
Citation:
Kun-Heng Li, Hong-Yang Zhao, Dan-Dan Wang, Ming-Hui Qi, Zi-Jian Xu, Jia-Mi Li, Zhi-Li Zhang, Shi-Wen Huang. Mitochondria-targeted nano-AIEgens as a powerful inducer for evoking immunogenic cell death[J]. Chinese Chemical Letters,
;2024, 35(5): 108882.
doi:
10.1016/j.cclet.2023.108882
N. Casares, M.O. Pequignot, A. Tesniere, et al., J. Exp. Med. 202 (2005) 1691–1701.
doi: 10.1084/jem.20050915
M. Jiang, J. Zeng, L. Zhao, et al., Nanoscale 13 (2021) 17218–17235.
doi: 10.1039/d1nr05512g
Q. Chen, J. Chen, Z. Yang, et al., Adv. Mater. 31 (2019) 1802228.
doi: 10.1002/adma.201802228
S. Jia, Z. Gao, Z. Wu, et al., CCS Chem. 4 (2022) 501–514.
doi: 10.31635/ccschem.021.202101458
Z. Wang, F. Zhang, D. Shao, et al., Adv. Sci. 6 (2019) 1901690.
doi: 10.1002/advs.201901690
D. Wei, Y. Chen, Y. Huang, et al., Nano Today 41 (2021) 101288.
doi: 10.1016/j.nantod.2021.101288
A.D. Garg, A.M. Dudek-Peric, E. Romano, P. Agostinis, Int. J. Dev. Biol. 59 (2015) 131–140.
doi: 10.1387/ijdb.150061pa
D.V. Krysko, A.D. Garg, A. Kaczmarek, et al., Nat. Rev. Cancer 12 (2012) 860–875.
doi: 10.1038/nrc3380
L. Fu, X. Ma, Y. Liu, Z. Xu, Z. Sun, Chin. Chem. Lett. 33 (2022) 1718–1728.
doi: 10.1016/j.cclet.2021.10.074
D. Ding, X. Jiang, Small Methods 7 (2023) 2300354.
doi: 10.1002/smtd.202300354
B. Ji, M. Wei, B. Yang, Theranostics 12 (2022) 434–458.
doi: 10.7150/thno.67300
M. Zhang, Y. Zhao, H. Ma, Y. Sun, J. Cao, Theranostics 12 (2022) 4629–4655.
doi: 10.7150/thno.72465
M. Korbelik, J. Banath, K.M. Saw, W. Zhang, E. Ciplys, Front. Oncol. 5 (2015) 15.
J. Li, J. Dai, Z. Zhuang, et al., Biomaterials 291 (2022) 121899.
doi: 10.1016/j.biomaterials.2022.121899
F. Jin, D. Liu, X. Xu, J. Ji, Y. Du, Int. J. Nanomed. 16 (2021) 4693–4712.
doi: 10.2147/ijn.s314506
T. Panaretakis, O. Kepp, U. Brockmeier, et al., EMBO J. 28 (2009) 578–590.
doi: 10.1038/emboj.2009.1
M. Obeid, A. Tesniere, F. Ghiringhelli, et al., Nat. Med. 13 (2007) 54–61.
doi: 10.1038/nm1523
S.J. Gardai, K.A. McPhillips, S.C. Frasch, et al., Cell 123 (2015) 321–334.
O. Kepp, L. Menger, E. Vacchelli, et al., Cytokine Growth Factor Rev. 24 (2013) 311–318.
doi: 10.1016/j.cytogfr.2013.05.001
X. Liu, Y. Liu, X. Li, et al., ACS Nano 16 (2022) 9240–9253.
doi: 10.1021/acsnano.2c01669
H. Ma, Y. Lu, Z. Huang, et al., J. Am. Chem. Soc. 144 (2022) 3477–3486.
doi: 10.1021/jacs.1c11886
H. Deng, Z. Zhou, W. Yang, et al., Nano Lett. 20 (2020) 1928–1933.
doi: 10.1021/acs.nanolett.9b05210
P. Zheng, B. Ding, Z. Jiang, et al., Nano Lett. 21 (2021) 2088–2093.
doi: 10.1021/acs.nanolett.0c04778
Q. Jiang, C. Zhang, H. Wang, et al., Front. Oncol. 9 (2019) 1196.
doi: 10.3389/fonc.2019.01196
J. Zhang, D. Zhang, Q. Li, et al., ACS Appl. Mater. Interfaces 11 (2019) 42904–42916.
doi: 10.1021/acsami.9b13556
K. Deng, H. Yu, J.M. Li, et al., Biomaterials 275 (2021) 120959.
doi: 10.1016/j.biomaterials.2021.120959
H. Zhao, J. Xu, C. Feng, et al., Adv. Mater. 34 (2022) 2106390.
doi: 10.1002/adma.202106390
J. Qi, H. Ou, Q. Liu, D. Ding, Aggregate 2 (2021) 95–113.
doi: 10.1002/agt2.25
H. Wang, Z. He, X.A. Liu, et al., Small Struct. 3 (2022) 2200036.
doi: 10.1002/sstr.202200036
Y. Wang, N. Niu, Y. Huang, et al., Small methods 6 (2022) 2200393.
doi: 10.1002/smtd.202200393
H. Zhao, N. Li, C. Ma, et al., Chin. Chem. Lett. 34 (2023) 107699.
doi: 10.1016/j.cclet.2022.07.042
J. Li, H. Gao, R. Liu, et al., Sci. China Chem. 63 (2020) 1428–1434.
doi: 10.1007/s11426-020-9846-4
S. Wang, C. Chen, J. Wu, et al., Sci. China Chem. 65 (2022) 870–876.
doi: 10.1007/s11426-021-1207-0
C. Chen, X. Ni, S. Jia, et al., Adv. Mater. 31 (2019) 1904914.
doi: 10.1002/adma.201904914
Zhongyu Wang , Lijun Wang , Huaixin Zhao . DNA-based nanosystems to generate reactive oxygen species for nanomedicine. Chinese Chemical Letters, 2024, 35(11): 109637-. doi: 10.1016/j.cclet.2024.109637
Liangliang Jia , Ye Hong , Xinyu He , Ying Zhou , Liujiao Ren , Hongjun Du , Bin Zhao , Bin Qin , Zhe Yang , Di Gao . Fighting hypoxia to improve photodynamic therapy-driven immunotherapy: Alleviating, exploiting and disregarding. Chinese Chemical Letters, 2025, 36(2): 109957-. doi: 10.1016/j.cclet.2024.109957
Yihao Zhang , Yang Jiao , Xianchao Jia , Qiaojia Guo , Chunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748
Xinyue Lan , Junguang Liang , Churan Wen , Xiaolong Quan , Huimin Lin , Qinqin Xu , Peixian Chen , Guangyu Yao , Dan Zhou , Meng Yu . Photo-manipulated polyunsaturated fatty acid-doped liposomal hydrogel for flexible photoimmunotherapy. Chinese Chemical Letters, 2024, 35(4): 108616-. doi: 10.1016/j.cclet.2023.108616
Xuejian Xing , Pan Zhu , E Pang , Shaojing Zhao , Yu Tang , Zheyu Hu , Quchang Ouyang , Minhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452
Leichen Wang , Anqing Mei , Na Li , Xiaohong Ruan , Xu Sun , Yu Cai , Jinjun Shao , Xiaochen Dong . Aza-BODIPY dye with unexpected bromination and high singlet oxygen quantum yield for photoacoustic imaging-guided synergetic photodynamic/photothermal therapy. Chinese Chemical Letters, 2024, 35(6): 108974-. doi: 10.1016/j.cclet.2023.108974
Yunyan Li , Zimin Cai , Zhicheng Wang , Sifeng Zhu , Wendian Liu , Cheng Wang . Construction of biomimetic hybrid nanovesicles based on M1 macrophage-derived exosomes for therapy of cancer. Chinese Chemical Letters, 2025, 36(4): 109942-. doi: 10.1016/j.cclet.2024.109942
Jiaqi Huang , Renjiang Kong , Yanmei Li , Ni Yan , Yeyang Wu , Ziwen Qiu , Zhenming Lu , Xiaona Rao , Shiying Li , Hong Cheng . Feedback enhanced tumor targeting delivery of albumin-based nanomedicine to amplify photodynamic therapy by regulating AMPK signaling and inhibiting GSTs. Chinese Chemical Letters, 2024, 35(8): 109254-. doi: 10.1016/j.cclet.2023.109254
Zekun Gao , Xiuli Zheng , Weimin Liu , Jie Sha , Shuaishuai Bian , Haohui Ren , Jiasheng Wu , Wenjun Zhang , Chun-Sing Lee , Pengfei Wang . GSH-activatable copper-elsinochrome off-on photosensitizer for combined specific NIR-Ⅱ two-photon photodynamic/chemodynamic therapy. Chinese Chemical Letters, 2025, 36(3): 109874-. doi: 10.1016/j.cclet.2024.109874
Qinyu Zhao , Yunchao Zhao , Songjing Zhong , Zhaoyang Yue , Zhuoheng Jiang , Shaobo Wang , Quanhong Hu , Shuncheng Yao , Kaikai Wen , Linlin Li . Urchin-like piezoelectric ZnSnO3/Cu3P p-n heterojunction for enhanced cancer sonodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109644-. doi: 10.1016/j.cclet.2024.109644
Wei Su , Xiaoyan Luo , Peiyuan Li , Ying Zhang , Chenxiang Lin , Kang Wang , Jianzhuang Jiang . Phthalocyanine self-assembled nanoparticles for type Ⅰ photodynamic antibacterial therapy. Chinese Chemical Letters, 2024, 35(12): 109522-. doi: 10.1016/j.cclet.2024.109522
Yu Qin , Mingyang Huang , Chenlu Huang , Hannah L. Perry , Linhua Zhang , Dunwan Zhu . O2-generating multifunctional polymeric micelles for highly efficient and selective photodynamic-photothermal therapy in melanoma. Chinese Chemical Letters, 2024, 35(7): 109171-. doi: 10.1016/j.cclet.2023.109171
Yiling Li , Zekun Gao , Xiuxiu Yue , Minhuan Lan , Xiuli Zheng , Benhua Wang , Shuang Zhao , Xiangzhi Song . FRET-based two-photon benzo[a] phenothiazinium photosensitizer for fluorescence imaging-guided photodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109133-. doi: 10.1016/j.cclet.2023.109133
Hao Cai , Xiaoyan Wu , Lei Jiang , Feng Yu , Yuxiang Yang , Yan Li , Xian Zhang , Jian Liu , Zijian Li , Hong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946
Wenkai Liu , Yanxian Hou , Weijian Liu , Ran Wang , Shan He , Xiang Xia , Chengyuan Lv , Hua Gu , Qichao Yao , Qingze Pan , Zehou Su , Danhong Zhou , Wen Sun , Jiangli Fan , Xiaojun Peng . Se-substituted pentamethine cyanine for anticancer photodynamic therapy mediated using the hot band absorption process. Chinese Chemical Letters, 2024, 35(12): 109631-. doi: 10.1016/j.cclet.2024.109631
Du Liu , Yuyan Li , Hankun Zhang , Benhua Wang , Chaoyi Yao , Minhuan Lan , Zhanhong Yang , Xiangzhi Song . Three-in-one erlotinib-modified NIR photosensitizer for fluorescence imaging and synergistic chemo-photodynamic therapy. Chinese Chemical Letters, 2025, 36(2): 109910-. doi: 10.1016/j.cclet.2024.109910
Qihang Wu , Hui Wen , Wenhai Lin , Tingting Sun , Zhigang Xie . Alkyl chain engineering of boron dipyrromethenes for efficient photodynamic antibacterial treatment. Chinese Chemical Letters, 2024, 35(12): 109692-. doi: 10.1016/j.cclet.2024.109692
Yuequan Wang , Congtian Wu , Chengcheng Feng , Qin Chen , Zhonggui He , Shenwu Zhang , Cong Luo , Jin Sun . Spatiotemporally-controlled supramolecular hybrid nanoassembly enabling ferroptosis-augmented photodynamic immunotherapy of cancer. Chinese Chemical Letters, 2025, 36(3): 109902-. doi: 10.1016/j.cclet.2024.109902
Feifei Wang , Hang Yao , Xinyue Wu , Yijian Tang , Yang Bai , Hui Chong , Huan Pang . Metal–organic framework and its composites modulate macrophage polarization in the treatment of inflammatory diseases. Chinese Chemical Letters, 2024, 35(5): 108821-. doi: 10.1016/j.cclet.2023.108821
Haijing Cui , Weihao Zhu , Chuning Yue , Ming Yang , Wenzhi Ren , Aiguo Wu . Recent progress of ultrasound-responsive titanium dioxide sonosensitizers in cancer treatment. Chinese Chemical Letters, 2024, 35(10): 109727-. doi: 10.1016/j.cclet.2024.109727