Continuous microflow visible-light photocatalytic N-formylation of piperidine and its kinetic study
-
* Corresponding authors.
E-mail addresses: fzhao1@ecust.edu.cn (F. Zhao), guoxuhong@ecust.edu.cn (X. Guo).
Citation:
Yangyang Xu, Fang Zhao, Xuhong Guo. Continuous microflow visible-light photocatalytic N-formylation of piperidine and its kinetic study[J]. Chinese Chemical Letters,
;2024, 35(1): 108642.
doi:
10.1016/j.cclet.2023.108642
Z. Wu, Y. Zhai, W. Zhao, et al., Green Chem. 22 (2020) 737–741.
doi: 10.1039/c9gc03564h
M. Nasrollahzadeh, N. Motahharifar, M. Sajjadi, et al., Green Chem. 21 (2019) 5144–5167.
doi: 10.1039/c9gc01822k
J. Maity, A.H. Chowdhury, S.M. Islam, et al., Nanotechnology 31 (2020) 395605.
doi: 10.1088/1361-6528/ab9574
N. Ortega, C. Richter, F. Glorius, Org. Lett. 15 (2013) 1776–1779.
doi: 10.1021/ol400639m
Y. Nishikawa, H. Nakamura, N. Ukai, et al., Tetrahedron Lett. 58 (2017) 860–863.
doi: 10.1016/j.tetlet.2017.01.056
S. Kobayashi, M. Yasuda, I. Hachiya, Chem. Lett. 5 (1996) 407–408.
doi: 10.1246/cl.1996.407
K. Iseki, S. Mizuno, Y. Kuroki, et al., Tetrahedron 55 (1999) 977–988.
doi: 10.1016/S0040-4020(98)01097-7
I.M. Downie, M.J. Earle, H. Heaney, et al., Tetrahedron 49 (1993) 4015–4034.
doi: 10.1016/S0040-4020(01)89915-4
P. Daw, S. Chakraborty, G. Leitus, et al., ACS Catal. 7 (2017) 2500–2504.
doi: 10.1021/acscatal.7b00116
S. Chakraborty, U. Gellrich, Y. Diskin-Posner, et al., Angew. Chem. Int. Ed. 56 (2017) 4229–4233.
doi: 10.1002/anie.201700681
T.X. Zhao, G.W. Zhai, J. Liang, et al., Chem. Commun. 53 (2017) 8046–8049.
doi: 10.1039/C7CC03860G
W.F. Li, X.F. Wu, Chem. Eur. J. 21 (2015) 14943–14948.
doi: 10.1002/chem.201502107
J.J. Zhang, W.T. Zhang, M.H. Xu, et al., J. Am. Chem. Soc. 140 (2018) 6656–6660.
doi: 10.1021/jacs.8b03029
X. Wei, W. Boon, V. Hessel, et al., ACS Catal. 7 (2017) 7136–7140.
doi: 10.1021/acscatal.7b03019
C. Bottecchia, M. Rubens, S.B. Gunnoo, et al., Angew. Chem. Int. Ed. 56 (2017) 12702–12707.
doi: 10.1002/anie.201706700
M.A. Cismesia, T.P. Yoon, Chem. Sci. 6 (2015) 5426–5434.
doi: 10.1039/C5SC02185E
A.A. Bartolomeu, R.C. Silva, T.J. Brocksom, et al., J. Org. Chem. 84 (2019) 10459–10471.
doi: 10.1021/acs.joc.9b01879
A.V. Nyuchev, T. Wan, B. Cendon, et al., Beilstein J. Org. Chem. 16 (2020) 1305–1312.
doi: 10.3762/bjoc.16.111
Y. Cheng, Y. Lin, J. Xu, et al., Appl. Surf. Sci. 366 (2016) 120–128.
doi: 10.1016/j.apsusc.2015.12.238
T. Ghosh, A. Das, B. Koenig, Org. Biomol. Chem. 15 (2017) 2536–2540.
doi: 10.1039/C7OB00250E
K. Wang, Y.C. Lu, J.H. Xu, et al., AIChE J. 52 (2006) 4207–4213.
doi: 10.1002/aic.11027
M. Al-Rawashdeh, F. Yue, N.G. Patil, et al., AIChE J. 60 (2014) 1941–1952.
doi: 10.1002/aic.14443
Y. Su, G. Chen, E.Y. Kenig, Lab Chip 15 (2014) 179–187.
D.T. McQuade, P.H. Seeberger, J. Org. Chem. 78 (2013) 6384–6389.
doi: 10.1021/jo400583m
M. Oelgemoeller, Chem. Eng. Technol. 35 (2012) 1144–1152.
doi: 10.1002/ceat.201200009
Y. Su, N.J.W. Straathof, V. Hessel, et al., Chem. Eur. J. 20 (2014) 10562–10589.
doi: 10.1002/chem.201400283
V. Hessel, D. Kralisch, N. Kockmann, et al., ChemSusChem 6 (2013) 746–789.
doi: 10.1002/cssc.201200766
J.P. Knowles, L.D. Elliott, K.I. Booker-Milburn, Beilstein J. Org. Chem. 8 (2012) 2025–2052.
doi: 10.3762/bjoc.8.229
M.N. Kashid, A. Renken, L. Kiwi-Minsker, Chem. Eng. Sci. 66 (2011) 3876–3897.
doi: 10.1016/j.ces.2011.05.015
Y. Su, V. Hessel, T. Noël, AIChE J. 61 (2015) 2215–2227.
doi: 10.1002/aic.14813
M. Pasha, S. Liu, M. Shang, et al., Chem. Eng. J. 445 (2022) 136663.
doi: 10.1016/j.cej.2022.136663
C. Shen, M. Shang, H. Zhang, et al., AIChE J. 66 (2020) 16841.
doi: 10.1002/aic.16841
W. Fan, F. Zhao, M. Chen, et al., Chin. J. Chem. Eng. 59 (2023) 85–91.
doi: 10.1016/j.cjche.2022.12.008)
J.S. DeHovitz, Y.Y. Loh, J.A. Kautzky, et al., Science 369 (2020) 1113–1118.
doi: 10.1126/science.abc9909
G. Wu, Y. Li, X. Yu, et al., Adv. Synth. Catal. 359 (2016) 687–692.
T.K.M. Akita, Chem. Lett. 2 (2009) 166–167.
Z. Liang, J. Guo, P. Wang, et al., Chin. Chem. Lett. 34 (2023) 108001.
doi: 10.1016/j.cclet.2022.108001
G. Stork, A. Brizzolara, H. Landesman, et al., J. Am. Chem. Soc. 85 (1963) 207–222.
doi: 10.1021/ja00885a021
Wei Sun , Anjing Liao , Li Lei , Xu Tang , Ya Wang , Jian Wu . Research progress on piperidine-containing compounds as agrochemicals. Chinese Chemical Letters, 2025, 36(1): 109855-. doi: 10.1016/j.cclet.2024.109855
Fangzhou Wang , Wentong Gao , Chenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305
Dan-Ying Xing , Xiao-Dan Zhao , Chuan-Shu He , Bo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436
Yufei Liu , Liang Xiong , Bingyang Gao , Qingyun Shi , Ying Wang , Zhiya Han , Zhenhua Zhang , Zhaowei Ma , Limin Wang , Yong Cheng . MOF-derived Cu based materials as highly active catalysts for improving hydrogen storage performance of Mg-Ni-La-Y alloys. Chinese Chemical Letters, 2024, 35(12): 109932-. doi: 10.1016/j.cclet.2024.109932
Jing Wang , Zenghui Li , Xiaoyang Liu , Bochao Su , Honghong Gong , Chao Feng , Guoping Li , Gang He , Bin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473
Yurong Tang , Yunren Shi , Yi Xu , Bo Qin , Yanqin Xu , Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087
Jijoe Samuel Prabagar , Kumbam Lingeshwar Reddy , Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
Tian-Yu Gao , Xiao-Yan Mo , Shu-Rong Zhang , Yuan-Xu Jiang , Shu-Ping Luo , Jian-Heng Ye , Da-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364
Sixiao Liu , Tianyi Wang , Lei Zhang , Chengyin Wang , Huan Pang . Cerium-based metal-organic framework-modified natural mineral vermiculite for photocatalytic nitrogen fixation under visible-light irradiation. Chinese Chemical Letters, 2025, 36(3): 110058-. doi: 10.1016/j.cclet.2024.110058
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
Ping Lu , Baoyin Du , Ke Liu , Ze Luo , Abiduweili Sikandaier , Lipeng Diao , Jin Sun , Luhua Jiang , Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361
Tengfei Yang , Jingshuai Xiao , Xiao Sun , Yan Song , Chaozheng He . Facilitating the polysulfides conversion kinetics by porous LaOCl nanofibers towards long-cycling lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 109691-. doi: 10.1016/j.cclet.2024.109691
Yi Herng Chan , Zhe Phak Chan , Serene Sow Mun Lock , Chung Loong Yiin , Shin Ying Foong , Mee Kee Wong , Muhammad Anwar Ishak , Ven Chian Quek , Shengbo Ge , Su Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329
Hualin Jiang , Wenxi Ye , Huitao Zhen , Xubiao Luo , Vyacheslav Fominski , Long Ye , Pinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984
Chaoqun Ma , Yuebo Wang , Ning Han , Rongzhen Zhang , Hui Liu , Xiaofeng Sun , Lingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632
Ruonan Yang , Jiajia Li , Dongmei Zhang , Xiuqi Zhang , Xia Li , Han Yu , Zhanhu Guo , Chuanxin Hou , Gang Lian , Feng Dang . Grain-refining Co0.85Se@CNT cathode catalyst with promoted Li2O2 growth kinetics for lithium-oxygen batteries. Chinese Chemical Letters, 2024, 35(12): 109595-. doi: 10.1016/j.cclet.2024.109595
Xuhui Fan , Fan Wang , Mengjiao Li , Faiza Meharban , Yaying Li , Yuanyuan Cui , Xiaopeng Li , Jingsan Xu , Qi Xiao , Wei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299
Tingting Liu , Pengfei Sun , Wei Zhao , Yingshuang Li , Lujun Cheng , Jiahai Fan , Xiaohui Bi , Xiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245