Electrolyte and interphase engineering through solvation structure regulation for stable lithium metal batteries
-
* Corresponding author.
E-mail address: yunhua.xu@tju.edu.cn (Y. Xu).
Citation:
Hai Su, Haikuo Zhang, Zifeng Chen, Mengjie Li, Jiwei Zhao, Haiyan Xun, Jie Sun, Yunhua Xu. Electrolyte and interphase engineering through solvation structure regulation for stable lithium metal batteries[J]. Chinese Chemical Letters,
;2023, 34(12): 108640.
doi:
10.1016/j.cclet.2023.108640
M. Armand, J.M. Tarascon, Nature 451 (2008) 652–657.
doi: 10.1038/451652a
J.W. Choi, D. Aurbach, Nat. Rev. Mater. 1 (2016) 16013.
doi: 10.1038/natrevmats.2016.13
J. Janek, W.G. Zeier, Nat. Energy 1 (2016) 16141.
doi: 10.1038/nenergy.2016.141
D. Lin, Y. Liu, Y. Cui, Nat. Nanotech. 12 (2017) 194–206.
doi: 10.1038/nnano.2017.16
X.B. Cheng, R. Zhang, C.Z. Zhao, et al., Chem. Rev. 117 (2017) 10403–10473.
doi: 10.1021/acs.chemrev.7b00115
X. Gao, Y.N. Zhou, D. Han, et al., Joule 4 (2020) 1864–1879.
doi: 10.1016/j.joule.2020.06.016
Y. Zhang, T.T. Zuo, J. Popovic, et al., Mater. Today 33 (2020) 56–74.
doi: 10.1016/j.mattod.2019.09.018
Q. Zhao, S. Stalin, L.A. Archer, Joule 5 (2021) 1119–1142.
doi: 10.1016/j.joule.2021.03.024
G.M. Hobold, J. Lopez, R. Guo, et al., Nat. Energy 6 (2021) 951–960.
doi: 10.1038/s41560-021-00910-w
Z. Wang, Z. Sun, J. Li, et al., Chem. Soc. Rev. 50 (2021) 3178–3210.
doi: 10.1039/D0CS01017K
X. Fan, L. Chen, X. Ji, et al., Chem 4 (2018) 174–185.
doi: 10.1016/j.chempr.2017.10.017
W. Xue, Z. Shi, M. Huang, et al., Energy Environ. Sci. 13 (2020) 212–220.
doi: 10.1039/C9EE02538C
Q. Wang, Z. Yao, C. Zhao, et al., Nat. Commun. 11 (2020) 4188.
doi: 10.1038/s41467-020-17976-x
Y. Chen, Z. Yu, P. Rudnicki, et al., J. Am. Chem. Soc. 143 (2021) 18703–18713.
doi: 10.1021/jacs.1c09006
L. Suo, Y.S. Hu, H. Li, et al., Nat. Commun. 4 (2013) 1481.
doi: 10.1038/ncomms2513
J. Qian, W.A. Henderson, W. Xu, et al., Nat. Commun. 6 (2015) 6362.
doi: 10.1038/ncomms7362
L. Suo, W. Xue, M. Gobet, et al., Proc. Natl. Acad. Sci. U. S. A. 115 (2018) 1156–1161.
doi: 10.1073/pnas.1712895115
Y. Yamada, J. Wang, S. Ko, et al., Nat. Energy 4 (2019) 269–280.
doi: 10.1038/s41560-019-0336-z
S. Chen, J. Zheng, D. Mei, et al., Adv. Mater. 30 (2018) 1706102.
doi: 10.1002/adma.201706102
X. Cao, X. Ren, L. Zou, et al., Nat. Energy 4 (2019) 796–805.
doi: 10.1038/s41560-019-0464-5
S. Zhang, R. Li, N. Hu, et al., Nat. Commun. 13 (2022) 5431.
doi: 10.1038/s41467-022-33151-w
Z. Jiang, Z. Zeng, X. Liang, et al., Adv. Funct. Mater. 31 (2020) 2005991.
X. Fan, L. Chen, O. Borodin, et al., Nat. Nanotech. 13 (2018) 715–722.
doi: 10.1038/s41565-018-0183-2
Z. Yu, P.E. Rudnicki, Z. Zhang, et al., Nat. Energy 7 (2022) 94–106.
doi: 10.1038/s41560-021-00962-y
P. Xiao, Y. Zhao, Z. Piao, et al., Energy Environ. Sci. 15 (2022) 2435–2444.
doi: 10.1039/D1EE02959B
W. Zhang, Y. Guo, T. Yang, et al., Energy Storage Mater. 51 (2022) 317–326.
doi: 10.1016/j.ensm.2022.07.003
C.C. Su, M. He, M. Cai, et al., Nano Energy 92 (2022) 106720.
doi: 10.1016/j.nanoen.2021.106720
Y. Zhao, T. Zhou, T. Ashirov, et al., Nat. Commun. 13 (2022) 2575.
doi: 10.1038/s41467-022-29199-3
X.Q. Zhang, X. Chen, L.P. Hou, et al., ACS Energy Lett. 4 (2019) 411–416.
doi: 10.1021/acsenergylett.8b02376
S. Kim, T.K. Lee, S.K. Kwak, et al., ACS Energy Lett. 7 (2022) 67–69.
doi: 10.1021/acsenergylett.1c02461
Y. Zhang, Y. Wu, H. Li, et al., Nat. Commun. 13 (2022) 1297.
doi: 10.1038/s41467-022-28959-5
F. Li, J. He, J. Liu, et al., Angew. Chem. Int. Ed. 60 (2021) 6600.
doi: 10.1002/anie.202013993
Z. Lu, Y. Guo, S. Zhang, et al., Adv. Mater. 33 (2021) 2101745.
doi: 10.1002/adma.202101745
Q. Ma, X. Zhang, A. Wang, et al., Adv. Funct. Mater. 30 (2020) 2002824.
doi: 10.1002/adfm.202002824
X.Q. Zhang, X.B. Cheng, X. Chen, et al., Adv. Funct. Mater. 27 (2017) 1605989.
doi: 10.1002/adfm.201605989
G.X. Li, H. Jiang, R. Kou, et al., ACS Energy Lett. 7 (2022) 2282–2288.
doi: 10.1021/acsenergylett.2c01090
X.Q. Zhang, X. Chen, X.B. Cheng, et al., Angew. Chem. Int. Ed. 57 (2018) 5301–5305.
doi: 10.1002/anie.201801513
S.J. Zhang, Z.W. Yin, Z.Y. Wu, et al., Energy Storage Mater. 40 (2021) 337–346.
doi: 10.1016/j.ensm.2021.05.029
H. Yang, X. Chen, N. Yao, et al., ACS Energy Lett. 6 (2021) 1413–1421.
X. Wang, S. Wang, H. Wang, et al., Adv. Mater. 33 (2021) 2007945.
doi: 10.1002/adma.202007945
W. Zhang, Y. Lu, L. Wan, et al., Nat. Commun. 13 (2022) 2029.
doi: 10.1038/s41467-022-29761-z
Y. Liu, D. Lin, Y. Li, et al., Nat. Commun. 9 (2018) 3656.
doi: 10.1038/s41467-018-06077-5
Q. Shi, Y. Zhong, M. Wu, et al., Proc. Natl. Acad. Sci. U. S. A. 115 (2018) 5676–5680.
doi: 10.1073/pnas.1803634115
C. Yan, Y. -X. Yao, X. Chen, et al., Angew. Chem. Int. Ed. 57 (2018) 14055–14059.
doi: 10.1002/anie.201807034
W. Zhang, Q. Wu, J. Huang, et al., Adv. Mater. 32 (2020) 2001740.
doi: 10.1002/adma.202001740
S. Liu, J. Xia, W. Zhang, et al., Angew. Chem. Int. Ed. 61 (2022) e202210522.
doi: 10.1002/anie.202210522
D. Lee, S. Sun, C. Kim, et al., Appl. Surf. Sci. 572 (2022) 151439.
doi: 10.1016/j.apsusc.2021.151439
Y. Jie, X. Liu, Z. Lei, et al., Angew. Chem. Int. Ed. 59 (2020) 3505–3510.
doi: 10.1002/anie.201914250
S. Liu, X. Ji, N. Piao, et al., Angew. Chem. Int. Ed. 60 (2021) 3661–3671.
doi: 10.1002/anie.202012005
N. Piao, S. Liu, B. Zhang, et al., ACS Energy Lett. 6 (2021) 1839–1848.
doi: 10.1021/acsenergylett.1c00365
P. Xiao, R. Luo, Z. Piao, et al., ACS Energy Lett. 6 (2021) 3170–3179.
doi: 10.1021/acsenergylett.1c01528
Z. Piao, P. Xiao, R. Luo, et al., Adv. Mater. 34 (2022) 2108400.
doi: 10.1002/adma.202108400
Z. Zhu, Z. Liu, R. Zhao, et al., Adv. Funct. Mater. 32 (2022) 2209384.
doi: 10.1002/adfm.202209384
Z. Wang, Y. Wang, B. Li, et al., Angew. Chem. Int. Ed. 61 (2022) e202206682.
doi: 10.1002/anie.202206682
R. Xu, X. Shen, X.X. Ma, et al., Angew. Chem. Int. Ed. 60 (2021) 4215–4220.
doi: 10.1002/anie.202013271
G. Zhou, J. Yu, J. Liu, et al., Cell Rep. Phys. Sci. 3 (2022) 100722.
doi: 10.1016/j.xcrp.2021.100722
G. Yang, I.N. Ivanov, R.E. Ruther, et al., ACS Nano 12 (2018) 10159–10170.
doi: 10.1021/acsnano.8b05038
H. Nakagawa, M. Ochida, Y. Domi, et al., J. Power Sources 212 (2012) 148–153.
doi: 10.1016/j.jpowsour.2012.04.013
W. Fang, Z. Wen, L. Chen, et al., Nano Energy 104 (2022) 107881.
doi: 10.1016/j.nanoen.2022.107881
C.C. Su, M. He, J. Shi, et al., Angew. Chem. Int. Ed. 59 (2020) 18229–18233.
doi: 10.1002/anie.202008081
L.P. Hou, X.Q. Zhang, B.Q. Li, et al., Angew. Chem. Int. Ed. 59 (2020) 15109–15113.
doi: 10.1002/anie.202002711
Z. Guo, X. Song, Q. Zhang, et al., ACS Energy Lett. 7 (2022) 569–576.
doi: 10.1021/acsenergylett.1c02495
S. Zhang, G. Yang, Z. Liu, et al., Nano Lett. 21 (2021) 3310–3317.
doi: 10.1021/acs.nanolett.1c00848
J. Zhang, H. Zhang, L. Deng, et al., Energy Storage Mater. 54 (2023) 450–460.
doi: 10.1016/j.ensm.2022.10.052
A.L. Michan, B.S. Parimalam, M. Leskes, et al., Chem. Mater. 28 (2016) 8149–8159.
doi: 10.1021/acs.chemmater.6b02282
Mengwen Wang , Qintao Sun , Yue Liu , Zhengan Yan , Qiyu Xu , Yuchen Wu , Tao Cheng . Impact of lithium nitrate additives on the solid electrolyte interphase in lithium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(2): 100203-100203. doi: 10.1016/j.cjsc.2023.100203
Haining Peng , Huijun Liu , Chengzong Li , Yingfu Li , Qizhi Chen , Tao Li . Diluent modified weakly solvating electrolyte for fast-charging high-voltage lithium metal batteries. Chinese Chemical Letters, 2025, 36(1): 109556-. doi: 10.1016/j.cclet.2024.109556
Xi Tang , Chunlei Zhu , Yulu Yang , Shihan Qi , Mengqiu Cai , Abdullah N. Alodhayb , Jianmin Ma . Additive regulating Li+ solvation structure to construct dual LiF−rich electrode electrolyte interphases for sustaining 4.6 V Li||LiCoO2 batteries. Chinese Chemical Letters, 2024, 35(12): 110014-. doi: 10.1016/j.cclet.2024.110014
Kunyao Peng , Xianbin Wang , Xingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274
Ying Li , Yanjun Xu , Xingqi Han , Di Han , Xuesong Wu , Xinlong Wang , Zhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189
Guihuang Fang , Ying Liu , Yangyang Feng , Ying Pan , Hongwei Yang , Yongchuan Liu , Maoxiang Wu . Tuning the ion-dipole interactions between fluoro and carbonyl (EC) by electrolyte design for stable lithium metal batteries. Chinese Chemical Letters, 2025, 36(1): 110385-. doi: 10.1016/j.cclet.2024.110385
Haiying Lu , Weijie Li . The electrolyte solvation and interfacial chemistry for anode-free sodium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(11): 100334-100334. doi: 10.1016/j.cjsc.2024.100334
Qianqian Song , Yunting Zhang , Jianli Liang , Si Liu , Jian Zhu , Xingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797
Yang Deng , Yitao Ouyang , Chao Han . Constriction-susceptible makes fast cycling of lithium metal in solid-state batteries: Silicon as an example. Chinese Journal of Structural Chemistry, 2024, 43(7): 100276-100276. doi: 10.1016/j.cjsc.2024.100276
Jiale Zheng , Mei Chen , Huadong Yuan , Jianmin Luo , Yao Wang , Jianwei Nai , Xinyong Tao , Yujing Liu . Electron-microscopical visualization on the interfacial and crystallographic structures of lithium metal anode. Chinese Chemical Letters, 2024, 35(6): 108812-. doi: 10.1016/j.cclet.2023.108812
Zhihong LUO , Yan SHI , Jinyu AN , Deyi ZHENG , Long LI , Quansheng OUYANG , Bin SHI , Jiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444
Benjian Xin , Rui Wang , Lili Liu , Zhiqiang Niu . Metal-organic framework derived MnO@C/CNTs composite for high-rate lithium-based semi-solid flow batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100116-100116. doi: 10.1016/j.cjsc.2023.100116
Shu Lin , Kezhen Qi . Phase-dependent lithium-alloying reactions for lithium-metal batteries. Chinese Chemical Letters, 2024, 35(4): 109431-. doi: 10.1016/j.cclet.2023.109431
Dong Sui , Jiayi Liu . Constriction-susceptible lithium support for fast cycling of solid-state lithium metal battery. Chinese Chemical Letters, 2025, 36(2): 110417-. doi: 10.1016/j.cclet.2024.110417
Ya Song , Mingxia Zhou , Zhu Chen , Huali Nie , Jiao-Jing Shao , Guangmin Zhou . Integrated interconnected porous and lamellar structures realized fast ion/electron conductivity in high-performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(6): 109200-. doi: 10.1016/j.cclet.2023.109200
Zhe Wang , Li-Peng Hou , Qian-Kui Zhang , Nan Yao , Aibing Chen , Jia-Qi Huang , Xue-Qiang Zhang . High-performance localized high-concentration electrolytes by diluent design for long-cycling lithium metal batteries. Chinese Chemical Letters, 2024, 35(4): 108570-. doi: 10.1016/j.cclet.2023.108570
Zhen-Zhen Dong , Jin-Hao Zhang , Lin Zhu , Xiao-Zhong Fan , Zhen-Guo Liu , Yi-Bo Yan , Long Kong . Attenuating reductive decomposition of fluorinated electrolytes for high-voltage lithium metal batteries. Chinese Chemical Letters, 2025, 36(4): 109773-. doi: 10.1016/j.cclet.2024.109773
Mei-Chen Liu , Qing-Song Liu , Yi-Zhou Quan , Jia-Ling Yu , Gang Wu , Xiu-Li Wang , Yu-Zhong Wang . Phosphorus-silicon-integrated electrolyte additive boosts cycling performance and safety of high-voltage lithium-ion batteries. Chinese Chemical Letters, 2024, 35(8): 109123-. doi: 10.1016/j.cclet.2023.109123
Liang Ming , Dan Liu , Qiyue Luo , Chaochao Wei , Chen Liu , Ziling Jiang , Zhongkai Wu , Lin Li , Long Zhang , Shijie Cheng , Chuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387
Xuejie Gao , Xinyang Chen , Ming Jiang , Hanyan Wu , Wenfeng Ren , Xiaofei Yang , Runcang Sun . Long-lifespan thin Li anode achieved by dead Li rejuvenation and Li dendrite suppression for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109448-. doi: 10.1016/j.cclet.2023.109448