Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application
-
* Corresponding authors.
E-mail addresses: zhit@njupt.edu.cn (T. Zhi), wanglonglu@njupt.edu.cn (L. Wang).
Citation:
Ziyang Yin, Lingbin Xie, Weinan Yin, Ting Zhi, Kang Chen, Junan Pan, Yingbo Zhang, Jingwen Li, Longlu Wang. Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application[J]. Chinese Chemical Letters,
;2024, 35(5): 108628.
doi:
10.1016/j.cclet.2023.108628
S. Najmaei, Z. Liu, W. Zhou, et al., Nat. Mater. 12 (2013) 754–759.
doi: 10.1038/nmat3673
T. Taniguchi, L. Nurdiwijayanto, S. Li, et al., ACS Nano 14 (2020) 6663–6672.
doi: 10.1021/acsnano.9b09253
X. Yin, Z. Ye, D.A. Chenet, et al., Science 344 (2014) 488–490.
doi: 10.1126/science.1250564
Y. Wu, L. Wang, H. Li, et al., Chin. Chem. Lett. 33 (2022) 153–162.
doi: 10.1016/j.cclet.2021.07.001
B. Mortazavi, R. Quey, A. Ostadhossein, et al., Appl. Mater. Today 7 (2017) 67–76.
doi: 10.1016/j.apmt.2017.02.005
R. Yang, Y. Fan, Y. Zhang, et al., Angew. Chem. Int. Ed. 62 (2023) e202218016.
doi: 10.1002/anie.202218016
J.H. Kim, J.H. Jeong, N. Kim, et al., J. Phys. D Appl. Phys. 52 (2019) 083001.
doi: 10.1088/1361-6463/aaf465
Z. Zhang, X. Zou, V.H. Crespi, et al., ACS Nano 7 (2013) 10475–10481.
doi: 10.1021/nn4052887
D.J. Late, B. Liu, H.S.S.R. Matte, et al., ACS Nano 6 (2012) 5635–5641.
doi: 10.1021/nn301572c
F. Zhuo, J. Wu, B. Li, et al., Research 6 (2023) 0057.
doi: 10.34133/research.0057
Y.J. Park, B.K. Sharma, S.M. Shinde, et al., ACS Nano 13 (2019) 3023–3030.
doi: 10.1021/acsnano.8b07995
K. Kalantar-zadeh, J.Z. Ou, ACS Sens. 1 (2016) 5–16.
doi: 10.1021/acssensors.5b00142
W. Yang, L. Gan, H. Li, et al., Inorg. Chem. Front. 3 (2016) 433–451.
doi: 10.1039/C5QI00251F
F. Yu, Q. Liu, X. Gan, et al., Adv. Mater. 29 (2017) 1603266.
doi: 10.1002/adma.201603266
O. Lopez-Sanchez, D. Lembke, M. Kayci, et al., Nat. Nanotechnol. 8 (2013) 497–501.
doi: 10.1038/nnano.2013.100
E. Singh, P. Singh, K.S. Kim, et al., ACS Appl. Mater. Interfaces 11 (2019) 11061–11105.
doi: 10.1021/acsami.8b19859
Z. Li, X. Meng, Z. Zhang, J. Photochem. Photobiol. C 35 (2018) 39–55.
doi: 10.1016/j.jphotochemrev.2017.12.002
A. Splendiani, L. Sun, Y. Zhang, et al., Nano Lett. 10 (2010) 1271–1275.
doi: 10.1021/nl903868w
Z. Sun, A. Martinez, F. Wang, Nat. Photonics 10 (2016) 227–238.
doi: 10.1038/nphoton.2016.15
X. Liu, Y. Hou, M. Tang, et al., Chin. Chem. Lett. 34 (2023) 107489.
doi: 10.1016/j.cclet.2022.05.003
Z. Luo, X. Song, X. Liu, et al., Sci. Adv. 9 (2023) eade9126.
doi: 10.1126/sciadv.ade9126
H. Zhou, F. Yu, Y. Huang, et al., Nat. Commun. 7 (2016) 12765.
doi: 10.1038/ncomms12765
H. Zhou, F. Yu, Y. Liu, et al., Energy Environ. Sci. 10 (2017) 1487–1492.
doi: 10.1039/C7EE00802C
Z. Li, Y. Yue, J. Peng, et al., Chin. Chem. Lett. 34 (2023) 107119.
doi: 10.1016/j.cclet.2022.01.012
A. Behranginia, M. Asadi, C. Liu, et al., Chem. Mater. 28 (2016) 549–555.
doi: 10.1021/acs.chemmater.5b03997
H. Zhou, F. Yu, J. Sun, et al., J. Mater. Chem. A 4 (2016) 9472–9476.
doi: 10.1039/C6TA02876D
R. Wang, C. He, W. Chen, et al., Nanoscale 13 (2021) 19247–19254.
doi: 10.1039/d1nr06366a
X. Zhao, Z.H. Levell, S. Yu, et al., Chem. Rev. 122 (2022) 10675–10709.
doi: 10.1021/acs.chemrev.1c00981
J. Bonde, P.G. Moses, T.F. Jaramillo, et al., Faraday Discuss. 140 (2008) 219–231; discussion 297-317.
T.F. Jaramillo, K.P. Jørgensen, J. Bonde, et al., Science 317 (2007) 100–102.
doi: 10.1126/science.1141483
W. Yin, Y. Cai, L. Xie, et al., Nano Res. 16 (2023) 4381–4398.
doi: 10.1007/s12274-022-5133-5
W. Yin, L. Yuan, H. Huang, et al., Chin. Chem. Lett. (2023) 108351.
doi: 10.1016/j.cclet.2023.108351
D. Ma, W. Ju, T. Li, et al., Appl. Surf. Sci., 364 (2016) 181–189.
doi: 10.1016/j.apsusc.2015.12.142
D. Rhodes, S.H. Chae, R. Ribeiro-Palau, et al., Nat. Mater. 18 (2019) 541–549.
doi: 10.1038/s41563-019-0366-8
D.J. Clark, V. Senthilkumar, C.T. Le, et al., Phys. Rev. B 90 (2014) 121409.
doi: 10.1103/PhysRevB.90.121409
I.S. Kim, V.K. Sangwan, D. Jariwala, et al., ACS Nano 8 (2014) 10551–10558.
doi: 10.1021/nn503988x
Y. Xia, J. Berry, M.P. Haataja, Nano Lett. 21 (2021) 4676–4683.
doi: 10.1021/acs.nanolett.1c00742
V.K. Sangwan, D. Jariwala, I.S. Kim, et al., Nat. Nanotechnol. 10 (2015) 403–406.
doi: 10.1038/nnano.2015.56
Y. Zhou, S.G. Sarwat, G.S. Jung, et al., ACS Appl. Mater. Interfaces 11 (2019) 10189–10197.
doi: 10.1021/acsami.8b21391
Y. Shi, J.K. Huang, L. Jin, et al., Sci. Rep. 3 (2013) 1839.
doi: 10.1038/srep01839
H. Su, X. Pan, S. Li, et al., Carbon Energy (2023) e296.
doi: 10.1002/cey2.296
C. Chang, L. Wang, L. Xie, et al., Nano Res. 15 (2022) 8613–8635.
doi: 10.1007/s12274-022-4507-z
J. Chen, Y. Tang, S. Wang, et al., Chin. Chem. Lett. 33 (2022) 1468–1474.
doi: 10.1016/j.cclet.2021.08.103
K. Chen, J. Pan, W. Yin, et al., Chin. Chem. Lett. (2023) 108226.
doi: 10.1016/j.cclet.2023.108226
J. Li, J. Pan, W. Yin, et al., Chin. Chem. Lett. (2023) 108049.
doi: 10.1016/j.cclet.2022.108049
Y. Feng, P. Dong, L. Cao, et al., J. Mater. Chem. A 9 (2021) 2135–2144.
doi: 10.1039/d0ta09892b
D. Ma, Q. Wang, T. Li, et al., J. Mater. Chem. C 4 (2016) 7093–7101.
doi: 10.1039/C6TC01746K
C. Wang, J. Huang, L. Cao, et al., Carbon 183 (2021) 899–911.
doi: 10.1016/j.carbon.2021.07.071
J. Luo, Interdiscip. Mater. 2 (2023) 137–160.
doi: 10.1002/idm2.12067
P. Man, D. Srolovitz, J. Zhao, et al., Acc. Chem. Res. 54 (2021) 4191–4202.
doi: 10.1021/acs.accounts.1c00519
N. Gao, Y. Guo, S. Zhou, et al., J. Phys. Chem. C 121 (2017) 12261–12269.
doi: 10.1021/acs.jpcc.7b03106
J. Wu, P. Cao, Z. Zhang, et al., Nano Lett. 18 (2018) 1543–1552.
doi: 10.1021/acs.nanolett.7b05433
X. Liu, Z.G. Yu, G. Zhang, et al., Nanoscale 12 (2020) 17746–17753.
doi: 10.1039/d0nr03871g
X. Zou, M. Liu, B.I. Yakobson, Small 15 (2019) 1805145.
doi: 10.1002/smll.201805145
J. Liu, P. Šesták, Z. Zhang, et al., Mater. Today Nano 20 (2022) 100245.
doi: 10.1016/j.mtnano.2022.100245
J. Cheng, T. Jiang, Q. Ji, et al., Adv. Mater. 27 (2015) 4069–4074.
doi: 10.1002/adma.201501354
L. Tao, K. Chen, Z. Chen, et al., ACS Appl. Mater. Interfaces 9 (2017) 12073–12081.
doi: 10.1021/acsami.7b00420
X. Fan, R. Siris, O. Hartwig, et al., ACS Appl. Mater. Interfaces 12 (2020) 34049–34057.
doi: 10.1021/acsami.0c06910
L. Sun, J. Zheng, Sci. China Mater. 61 (2018) 1154–1158.
doi: 10.1007/s40843-018-9233-9
T. Nakanishi, S. Yoshida, K. Murase, et al., Front. Phys. 7 (2019) 59.
doi: 10.3389/fphy.2019.00059
S. Chu, P. Liu, Y. Zhang, et al., Nat. Commun. 13 (2022) 4151.
doi: 10.1038/s41467-022-31800-8
R.G. Mendes, J. Pang, A. Bachmatiuk, et al., ACS Nano 13 (2019) 978–995.
L. Karvonen, A. Säynätjoki, M.J. Huttunen, et al., Nat. Commun. 8 (2017) 15714.
doi: 10.1038/ncomms15714
Y. Rong, K. He, M. Pacios, et al., ACS Nano 9 (2015) 3695–3703.
doi: 10.1021/acsnano.5b00852
H.Y. Jeong, S.Y. Lee, T.H. Ly, et al., ACS Nano 10 (2016) 770–777.
doi: 10.1021/acsnano.5b05854
T.H. Ly, M.H. Chiu, M.Y. Li, et al., ACS Nano 8 (2014) 11401–11408.
doi: 10.1021/nn504470q
Y.L. Huang, Z. Ding, W. Zhang, et al., Nano Lett. 16 (2016) 3682–3688.
doi: 10.1021/acs.nanolett.6b00888
A.M. van der Zande, P.Y. Huang, D.A. Chenet, et al., Nat. Mater. 12 (2013) 554–561.
doi: 10.1038/nmat3633
J. Wang, X. Xu, R. Qiao, et al., Nano Res. 11 (2018) 4082–4089.
doi: 10.1007/s12274-018-1991-2
Z. Liu, M. Amani, S. Najmaei, et al., Nat. Commun. 5 (2014) 5246.
doi: 10.1038/ncomms6246
H. Li, J. Wu, Z. Yin, et al., Acc. Chem. Res. 47 (2014) 1067–1075.
doi: 10.1021/ar4002312
L. Ottaviano, S. Palleschi, F. Perrozzi, et al., 2D Mater. 4 (2017) 045013.
doi: 10.1088/2053-1583/aa8764
W. Choi, N. Choudhary, G.H. Han, et al., Mater. Today 20 (2017) 116–130.
doi: 10.1016/j.mattod.2016.10.002
A. Jawaid, D. Nepal, K. Park, et al., Chem. Mater. 28 (2016) 337–348.
doi: 10.1021/acs.chemmater.5b04224
J. Wang, X. Cai, R. Shi, et al., ACS Nano 12 (2018) 635–643.
doi: 10.1021/acsnano.7b07693
V. Kranthi Kumar, S. Dhar, T.H. Choudhury, et al., Nanoscale 7 (2015) 7802–7810.
doi: 10.1039/C4NR07080A
Y. Zhang, Y. Yao, M.G. Sendeku, et al., Adv. Mater. 31 (2019) 1901694.
doi: 10.1002/adma.201901694
W.J. Li, E.W. Shi, J.M. Ko, et al., J. Cryst. Growth 250 (2003) 418–422.
doi: 10.1016/S0022-0248(02)02412-0
H. Lin, X. Chen, H. Li, et al., Mater. Lett. 64 (2010) 1748–1750.
doi: 10.1016/j.matlet.2010.04.032
Y. Peng, Z. Meng, C. Zhong, et al., Chem. Lett. 30 (2001) 772–773.
doi: 10.1246/cl.2001.772
A. Ambrosi, M. Pumera, Chem. Eur. J. 24 (2018) 18551–18555.
doi: 10.1002/chem.201804821
N. Liu, P. Kim, J.H. Kim, et al., ACS Nano 8 (2014) 6902–6910.
doi: 10.1021/nn5016242
P. Zhang, S. Yang, R. Pineda-Gómez, et al., Small 15 (2019) 1901265.
doi: 10.1002/smll.201901265
J.D. Yao, Z.Q. Zheng, G.W. Yang, Prog. Mater Sci. 106 (2019) 100573.
doi: 10.1016/j.pmatsci.2019.100573
Y.T. Ho, C.H. Ma, T.T. Luong, et al., Phys. Status Solidi Rapid Res. Lett. 9 (2015) 187–191.
doi: 10.1002/pssr.201409561
K. Chen, A. Roy, A. Rai, et al., APL Mater. 6 (2018) 056103.
doi: 10.1063/1.5022339
H.C. Diaz, R. Chaghi, Y. Ma, et al., 2D Mater. 2 (2015) 044010.
doi: 10.1088/2053-1583/2/4/044010
L. Zhan, W. Wan, Z. Zhu, et al., J. Phys. Conf. Ser. 864 (2017) 012037.
doi: 10.1088/1742-6596/864/1/012037
W. Yao, B. Wu, Y. Liu, ACS Nano 14 (2020) 9320–9346.
doi: 10.1021/acsnano.0c03558
H. Zhou, Y. Wang, R. He, et al., Nano Energy 20 (2016) 29–36.
doi: 10.1016/j.nanoen.2015.12.008
H.F. Liu, S.L. Wong, D.Z. Chi, Chem. Vap. Depos. 21 (2015) 241–259.
doi: 10.1002/cvde.201500060
G. Plechinger, J. Mann, E. Preciado, et al., Semicond. Sci. Technol. 29 (2014) 064008.
doi: 10.1088/0268-1242/29/6/064008
Y. He, P. Tang, Z. Hu, et al., Nat. Commun. 11 (2020) 57.
doi: 10.1038/s41467-019-13631-2
S. Wang, L. Wang, L. Xie, et al., Nano Res. 15 (2022) 4996–5003.
doi: 10.1007/s12274-022-4158-0
M.I. Serna, S.H. Yoo, S. Moreno, et al., ACS Nano 10 (2016) 6054–6061.
doi: 10.1021/acsnano.6b01636
M.M. Juvaid, M.S. Ramachandra Rao, Mater. Today Proc. 35 (2021) 494–496.
doi: 10.1016/j.matpr.2020.03.083
F. Bertoldo, R.R. Unocic, Y.C. Lin, et al., ACS Nano, 15 (2021) 2858–2868.
doi: 10.1021/acsnano.0c08835
Z. Xiao, C. Xie, Y. Wang, et al., J. Energy Chem. 53 (2021) 208–225.
doi: 10.1016/j.jechem.2020.04.063
D. Gupta, V. Chauhan, S. Upadhyay, et al., Mater. Chem. Phys. 276 (2022) 125422.
doi: 10.1016/j.matchemphys.2021.125422
G. Wang, Y.P. Wang, S. Li, et al., Adv. Sci. 9 (2022) 2200700.
doi: 10.1002/advs.202200700
C. Sun, P. Wang, H. Wang, et al., Nano Res. 12 (2019) 1613–1618.
doi: 10.1007/s12274-019-2400-1
A.D. Nguyen, T.K. Nguyen, C.T. Le, et al., ACS Omega 4 (2019) 21509–21515.
doi: 10.1021/acsomega.9b03205
H.J. Kim, H. Kim, S. Yang, et al., Small 13 (2017) 1702256.
doi: 10.1002/smll.201702256
J. Meng, G. Wang, X. Li, et al., Small 12 (2016) 3770–3774.
doi: 10.1002/smll.201601413
X. Wang, B. Wang, Q. Zhang, et al., Adv. Mater. 33 (2021) 2102435.
doi: 10.1002/adma.202102435
D. Wang, H. Yu, L. Tao, et al., Nano Res. 11 (2018) 6102–6109.
doi: 10.1007/s12274-018-2128-3
Y.L. Huang, Y. Chen, W. Zhang, et al., Nat. Commun. 6 (2015) 6298.
doi: 10.1038/ncomms7298
T.H. Ly, D.J. Perello, J. Zhao, et al., Nat. Commun. 7 (2016) 10426.
doi: 10.1038/ncomms10426
M. Pu, D. Wang, Z. Zhang, et al., Nano Res. 15 (2022) 978–984.
doi: 10.1007/s12274-021-3584-8
M. Sledzinska, R. Quey, B. Mortazavi, et al., ACS Appl. Mater. Interfaces 9 (2017) 37905–37911.
doi: 10.1021/acsami.7b08811
K. Xu, T. Liang, Z. Zhang, et al., Nanoscale 14 (2022) 1241–1249.
doi: 10.1039/d1nr05113j
S. Cai, W. Zhao, A. Zafar, et al., Mater. Res. Express 4 (2017) 106202.
doi: 10.1088/2053-1591/aa8f82
K.F. Mak, K. He, C. Lee, et al., Nat. Mater. 12 (2013) 207–211.
doi: 10.1038/nmat3505
K.F. Mak, C. Lee, J. Hone, et al., Phys. Rev. Lett. 105 (2010) 136805.
doi: 10.1103/PhysRevLett.105.136805
E. Scalise, M. Houssa, G. Pourtois, et al., Nano Res. 5 (2012) 43–48.
doi: 10.1007/s12274-011-0183-0
H. Zhou, F. Yu, J. Sun, et al., Nano Lett. 16 (2016) 7604–7609.
doi: 10.1021/acs.nanolett.6b03467
J. Li, W. Yin, J. Pan, et al., Nano Res. 16 (2023) 8638–8654.
doi: 10.1007/s12274-023-5610-5
Y. Li, B. Yu, H. Li, et al., Chin. Chem. Lett. 34 (2023) 107874.
doi: 10.1016/j.cclet.2022.107874
D. Voiry, M. Salehi, R. Silva, et al., Nano Lett. 13 (2013) 6222–6227.
doi: 10.1021/nl403661s
Y. Yin, J. Han, Y. Zhang, et al., J. Am. Chem. Soc. 138 (2016) 7965–7972.
doi: 10.1021/jacs.6b03714
Y. Yu, G.H. Nam, Q. He, et al., Nat. Chem. 10 (2018) 638–643.
doi: 10.1038/s41557-018-0035-6
S. Wang, J. Li, S. Hu, et al., ACS Appl. Nano Mater. 5 (2022) 2273–2279.
doi: 10.1021/acsanm.1c03977
Y. Ouyang, C. Ling, Q. Chen, et al., Chem. Mater. 28 (2016) 4390–4396.
doi: 10.1021/acs.chemmater.6b01395
M. Liu, H. Li, S. Liu, et al., Nano Res. 15 (2022) 5946–5952.
doi: 10.1007/s12274-022-4267-9
W. Zhao, B. Jin, L. Wang, et al., Chin. Chem. Lett. 33 (2022) 557–561.
doi: 10.1016/j.cclet.2021.07.035
J. Zhu, Z.C. Wang, H. Dai, et al., Nat. Commun. 10 (2019) 1348.
doi: 10.1038/s41467-019-09269-9
Y. Takahashi, Y. Kobayashi, Z. Wang, et al., Angew. Chem. Int. Ed. 59 (2020) 3601–3608.
doi: 10.1002/anie.201912863
M. Lunardon, T. Kosmala, M. Ghorbani-Asl, et al., ACS Energy Lett. 8 (2023) 972–980.
doi: 10.1021/acsenergylett.2c02599
Ping Wang , Ting Wang , Ming Xu , Ze Gao , Hongyu Li , Bowen Li , Yuqi Wang , Chaoqun Qu , Ming Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930
Gu Gong , Mengzhu Li , Ning Sun , Ting Zhi , Yuhao He , Junan Pan , Yuntao Cai , Longlu Wang . Versatile oxidized variants derived from TMDs by various oxidation strategies and their applications. Chinese Chemical Letters, 2024, 35(6): 108705-. doi: 10.1016/j.cclet.2023.108705
Guoliang Gao , Guangzhen Zhao , Guang Zhu , Bowen Sun , Zixu Sun , Shunli Li , Ya-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557
Xiao Li , Wanqiang Yu , Yujie Wang , Ruiying Liu , Qingquan Yu , Riming Hu , Xuchuan Jiang , Qingsheng Gao , Hong Liu , Jiayuan Yu , Weijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166
Xiangyuan Zhao , Jinjin Wang , Jinzhao Kang , Xiaomei Wang , Hong Yu , Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159
Haibin Yang , Duowen Ma , Yang Li , Qinghe Zhao , Feng Pan , Shisheng Zheng , Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031
Zhuo Li , Peng Yu , Di Shen , Xinxin Zhang , Zhijian Liang , Baoluo Wang , Lei Wang . Low-loading Pt anchored on molybdenum carbide-based polyhedral carbon skeleton for enhancing pH-universal hydrogen production. Chinese Chemical Letters, 2025, 36(4): 109713-. doi: 10.1016/j.cclet.2024.109713
Junan Pan , Xinyi Liu , Huachao Ji , Yanwei Zhu , Yanling Zhuang , Kang Chen , Ning Sun , Yongqi Liu , Yunchao Lei , Kun Wang , Bao Zang , Longlu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515
Xiaoli Deng , Xiangchao Lu , Yang Cao , Qianjin Chen . Electrochemical imaging uncovers the heterogeneity of HER activity by sulfur vacancies in molybdenum disulfide monolayer. Chinese Chemical Letters, 2025, 36(3): 110379-. doi: 10.1016/j.cclet.2024.110379
Rui Deng , Wenjie Jiang , Tianqi Yu , Jiali Lu , Boyao Feng , Panagiotis Tsiakaras , Shibin Yin . Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(7): 100290-100290. doi: 10.1016/j.cjsc.2024.100290
Wenjie Jiang , Zhixiang Zhai , Xiaoyan Zhuo , Jia Wu , Boyao Feng , Tianqi Yu , Huan Wen , Shibin Yin . Revealing the reactant adsorption role of high-valence WO3 for boosting urea-assisted water splitting. Chinese Journal of Structural Chemistry, 2025, 44(3): 100519-100519. doi: 10.1016/j.cjsc.2025.100519
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Weiping Xiao , Yuhang Chen , Qin Zhao , Danil Bukhvalov , Caiqin Wang , Xiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176
Bin Dong , Ning Yu , Qiu-Yue Wang , Jing-Ke Ren , Xin-Yu Zhang , Zhi-Jie Zhang , Ruo-Yao Fan , Da-Peng Liu , Yong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221
Yanan Zhou , Li Sheng , Lanlan Chen , Wenhua Zhang , Jinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588
Xinyu Hou , Xuelian Yu , Meng Liu , Hengxing Peng , Lijuan Wu , Libing Liao , Guocheng Lv . Ultrafast synthesis of Mo2N with highly dispersed Ru for efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2025, 36(4): 109845-. doi: 10.1016/j.cclet.2024.109845
Lanfang Wang , Jiangnan Lv , Yujia Li , Yanqing Hao , Wenjiao Liu , Hui Zhang , Xiaohong Xu . One-step synthesis of nanowoven ball-like NiS-WS2 for high-efficiency hydrogen evolution. Chinese Chemical Letters, 2025, 36(1): 109597-. doi: 10.1016/j.cclet.2024.109597
Ce Liang , Qiuhui Sun , Adel Al-Salihy , Mengxin Chen , Ping Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306
Ji Chen , Yifan Zhao , Shuwen Zhao , Hua Zhang , Youyu Long , Lingfeng Yang , Min Xi , Zitao Ni , Yao Zhou , Anran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268
Tian Yang , Yi Liu , Lina Hua , Yaoyao Chen , Wuqian Guo , Haojie Xu , Xi Zeng , Changhao Gao , Wenjing Li , Junhua Luo , Zhihua Sun . Lead-free hybrid two-dimensional double perovskite with switchable dielectric phase transition. Chinese Chemical Letters, 2024, 35(6): 108707-. doi: 10.1016/j.cclet.2023.108707