In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode
-
* Corresponding authors.
E-mail addresses: lujianguo@zju.edu.cn (J. Lu), lqzhang@ysu.edu.cn (L. Zhang).
Citation:
Peng Jia, Yunna Guo, Dongliang Chen, Xuedong Zhang, Jingming Yao, Jianguo Lu, Liqiang Zhang. In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode[J]. Chinese Chemical Letters,
;2024, 35(5): 108624.
doi:
10.1016/j.cclet.2023.108624
H.D. Lim, B. Lee, Y. Zheng, et al., Nat. Energy 1 (2016) 16066.
doi: 10.1038/nenergy.2016.66
C. Xia, C.Y. Kwok, L.F. Nazar, Science 361 (2018) 777.
doi: 10.1126/science.aas9343
W.B. Jung, H. Park, J.S. Jang, et al., ACS Nano 15 (2021) 4235.
doi: 10.1021/acsnano.0c06528
C.Y. Wang, T. Liu, X.G. Yang, et al., Nature 611 (2022) 485.
doi: 10.1038/s41586-022-05281-0
W. Zhang, L. Wang, G. Ding, et al., Chin. Chem. Lett. 34 (2023) 107328.
doi: 10.1016/j.cclet.2022.03.051
H. Wang, X. Wang, M. Li, et al., Adv. Mater. 32 (2020) 2002559.
doi: 10.1002/adma.202002559
Z. Chang, J. Xu, X. Zhang, Adv. Energy Mater. 7 (2017) 1700875.
doi: 10.1002/aenm.201700875
X. Wu, B. Niu, H. Zhang, et al., Adv. Energy Mater. 13 (2023) 2203089.
doi: 10.1002/aenm.202203089
X. Hu, G. Luo, Q. Zhao, et al., J. Am. Chem. Soc. 142 (2020) 16776.
doi: 10.1021/jacs.0c07317
Y. Zhou, K. Yin, Q. Gu, et al., Angew. Chem. Int. Ed. 60 (2021) 26592.
doi: 10.1002/anie.202114067
T. Zhang, B. Zou, X. Bi, et al., ACS Energy Lett. 4 (2019) 2782.
doi: 10.1021/acsenergylett.9b02202
Q. Huang, F. Dang, H. Zhu, et al., J. Power Sources 451 (2020) 227738.
doi: 10.1016/j.jpowsour.2020.227738
D. Cao, L. Zheng, Y. Wang, et al., Energy Storage Mater. 51 (2022) 806.
doi: 10.1016/j.ensm.2022.07.026
J. Zou, Y. Zou, H. Wang, et al., Chin. Chem. Lett. 34 (2023) 107378.
doi: 10.1016/j.cclet.2022.03.101
S.N. Hussain, Y. Men, Z. Li, et al., Chin. Chem. Lett. 34 (2023) 107364.
doi: 10.1016/j.cclet.2022.03.087
X. Li, C. Wen, H. Li, et al., J. Energy Chem. 47 (2020) 272.
doi: 10.1016/j.jechem.2020.02.016
S. Ma, H. Yao, Z. Li, et al., J. Energy Chem. 70 (2022) 614.
doi: 10.1016/j.jechem.2022.03.007
H. Lee, D.J. Lee, M. Kim, et al., ACS Appl. Mater. Interfaces 12 (2020) 17385.
doi: 10.1021/acsami.9b21962
J.L. Shui, N.K. Karan, M. Balasubramanian, et al., J. Am. Chem. Soc. 134 (2012) 16654.
doi: 10.1021/ja3042993
Y. Li, J. Qin, Y. Ding, et al., ACS Catal. 12 (2022) 12765.
doi: 10.1021/acscatal.2c02544
L. Ren, R. Zheng, D. Du, et al., Chem. Eng. J. 430 (2022) 132977.
doi: 10.1016/j.cej.2021.132977
Z. Ran, C. Shu, Z. Hou, et al., J. Power Sources 468 (2020) 228308.
doi: 10.1016/j.jpowsour.2020.228308
Y. Gong, W. Ding, Z. Li, et al., ACS Catal. 8 (2018) 4082.
doi: 10.1021/acscatal.7b04401
P. Wang, C. Li, S. Dong, et al., Adv. Energy Mater. 9 (2019) 1900788.
doi: 10.1002/aenm.201900788
H. Liang, Z. Gai, F. Chen, et al., Appl. Catal. B: Environ. 324 (2023) 122203.
doi: 10.1016/j.apcatb.2022.122203
S.W. Ke, W. Li, Y. Gu, et al., Sci. Adv. 9 (2023) eadf2398.
doi: 10.1126/sciadv.adf2398
L. Zhang, C. Zhao, X. Kong, et al., Electrochim. Acta 446 (2023) 142096.
doi: 10.1016/j.electacta.2023.142096
K. Teng, W. Tang, R. Qi, et al., Catal. Today 409 (2023) 23.
doi: 10.1016/j.cattod.2022.06.014
J. Long, Z. Hou, C. Shu, et al., ACS Appl. Mater. Interfaces 11 (2019) 3834.
doi: 10.1021/acsami.8b15699
D.S. Kim, G.H. Lee, S. Lee, et al., J. Alloy Compd. 707 (2017) 275.
doi: 10.1007/978-3-319-58530-7_21
P. Li, W. Sun, Q. Yu, et al., Solid State Ionics 289 (2016) 17.
doi: 10.1142/9789814651011_0003
T. Priamushko, E. Budiyanto, N. Eshraghi, et al., ChemSusChem 15 (2022) e202102404.
doi: 10.1002/cssc.202102404
Y. Chen, Q. Zhang, Z. Zhang, et al., J. Mater. Chem. A 3 (2015) 17874.
doi: 10.1039/C5TA02990B
F. Niu, N. Wang, J. Yue, et al., Electrochim. Acta 208 (2016) 148.
doi: 10.1016/j.electacta.2016.05.026
F. Li, M.L. Li, H.F. Wang, et al., Adv. Mater. 34 (2022) 2107826.
doi: 10.1002/adma.202107826
A.H. Chai, C.H. Ji, D. Yuan, et al., Rare Met. 41 (2022) 2223.
doi: 10.1007/s12598-021-01903-0
L. Dai, Q. Sun, Y. Yao, et al., Sci. China Mater. 65 (2022) 1431.
doi: 10.1007/s40843-021-1929-5
X.X. Wang, X.W. Chi, M.L. Li, et al., Adv. Funct. Mater. 32 (2022) 2113235.
doi: 10.1002/adfm.202113235
M. Li, X. Wang, F. Li, et al., Adv. Mater. 32 (2020) 1907098.
doi: 10.1002/adma.201907098
X.X. Wang, D.H. Guan, F. Li, et al., Adv. Mater. 34 (2022) 2104792.
doi: 10.1002/adma.202104792
R. Gao, X. Liang, P. Yin, et al., Nano Energy 41 (2017) 535.
doi: 10.1016/j.nanoen.2017.10.013
X. Zhang, P. Dong, J.I. Lee, et al., Energy Storage Mater. 17 (2019) 167.
doi: 10.1016/j.ensm.2018.11.014
S.Y. Kang, Y. Mo, S.P. Ong, et al., Chem. Mater. 25 (2013) 3328.
doi: 10.1021/cm401720n
T. Liu, M. Leskes, W. Yu, et al., Science 350 (2015) 530.
doi: 10.1126/science.aac7730
J. Lu, Y.J. Lee, X. Luo, et al., Nature 529 (2016) 377.
doi: 10.1038/nature16484
A. Kondori, M. Esmaeilirad, A.M. Harzandi, et al., Science 379 (2023) 499.
doi: 10.1126/science.abq1347
Y. Chen, Q. Pei, X. Liu, et al., ChemistrySelect 5 (2020) 12873.
doi: 10.1002/slct.202003227
J.H. Hong, G.D. Park, D.S. Jung, et al., J. Alloy Compd. 827 (2020) 154309.
doi: 10.1016/j.jallcom.2020.154309
C. Yan, G. Chen, Y. Zhang, et al., New J. Chem. 40 (2016) 6588.
doi: 10.1039/C6NJ00522E
R. Jin, M. Meng, S. Zhang, et al., Energy Technol. 6 (2018) 2179.
doi: 10.1002/ente.201800236
H. Ye, S. Gui, Z. Wang, et al., ACS Appl. Mater. Interfaces 13 (2021) 44479.
doi: 10.1021/acsami.1c13732
H. Zheng, Y. Liu, S.X. Mao, et al., Sci. Rep. 2 (2012) 542.
doi: 10.1038/srep00542
S. Basak, J. Jansen, Y. Kabiri, et al., Ultramicroscopy 188 (2018) 52.
doi: 10.1016/j.ultramic.2018.03.005
S. Ma, L. Sun, L. Cong, et al., J. Phys. Chem. C 117 (2013) 25890.
doi: 10.1021/jp407576q
W. Zhang, Y. Shen, D. Sun, et al., Nano Energy 30 (2016) 43.
doi: 10.1016/j.nanoen.2016.09.031
Y. Qiao, Y. Liu, K. Jiang, et al., Small Methods 2 (2018) 1700284.
doi: 10.1002/smtd.201700284
J.G. Kim, Y. Noh, Y. Kim, J. Energy Storage 66 (2023) 107329.
doi: 10.1016/j.est.2023.107329
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Tengjia Ni , Xianbiao Hou , Huanlei Wang , Lei Chu , Shuixing Dai , Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210
Jiayu Huang , Kuan Chang , Qi Liu , Yameng Xie , Zhijia Song , Zhiping Zheng , Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097
Shaojie Ding , Henan Wang , Xiaojing Dai , Yuru Lv , Xinxin Niu , Ruilian Yin , Fangfang Wu , Wenhui Shi , Wenxian Liu , Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302
Yanan Zhou , Li Sheng , Lanlan Chen , Wenhua Zhang , Jinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588
Quanyou Guo , Yue Yang , Tingting Hu , Hongqi Chu , Lijun Liao , Xuepeng Wang , Zhenzi Li , Liping Guo , Wei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235
Kunsong Hu , Yulong Zhang , Jiayi Zhu , Jinhua Mai , Gang Liu , Manoj Krishna Sugumar , Xinhua Liu , Feng Zhan , Rui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423
Jialin Cai , Yizhe Chen , Ruiwen Zhang , Cheng Yuan , Zeyu Jin , Yongting Chen , Shiming Zhang , Jiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
Jiayu Xu , Meng Li , Baoxia Dong , Ligang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798
Junan Pan , Xinyi Liu , Huachao Ji , Yanwei Zhu , Yanling Zhuang , Kang Chen , Ning Sun , Yongqi Liu , Yunchao Lei , Kun Wang , Bao Zang , Longlu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515
Genxiang Wang , Linfeng Fan , Peng Wang , Junfeng Wang , Fen Qiao , Zhenhai Wen . Efficient synthesis of nano high-entropy compounds for advanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 110498-. doi: 10.1016/j.cclet.2024.110498
Min Song , Qian Zhang , Tao Shen , Guanyu Luo , Deli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083
Chenhao Zhang , Qian Zhang , Yezhou Hu , Hanyu Hu , Junhao Yang , Chang Yang , Ye Zhu , Zhengkai Tu , Deli Wang . N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(3): 110429-. doi: 10.1016/j.cclet.2024.110429
Jin Long , Xingqun Zheng , Bin Wang , Chenzhong Wu , Qingmei Wang , Lishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354
Yan Wang , Jiaqi Zhang , Xiaofeng Wu , Sibo Wang , Masakazu Anpo , Yuanxing Fang . Elucidating oxygen evolution and reduction mechanisms in nitrogen-doped carbon-based photocatalysts. Chinese Chemical Letters, 2025, 36(2): 110439-. doi: 10.1016/j.cclet.2024.110439
Jinqiang Gao , Haifeng Yuan , Xinjuan Du , Feng Dong , Yu Zhou , Shengnan Na , Yanpeng Chen , Mingyu Hu , Mei Hong , Shihe Yang . Methanol steam mediated corrosion engineering towards high-entropy NiFe layered double hydroxide for ultra-stable oxygen evolution. Chinese Chemical Letters, 2025, 36(1): 110232-. doi: 10.1016/j.cclet.2024.110232
Yatian Deng , Dao Wang , Jinglan Cheng , Yunkun Zhao , Zongbao Li , Chunyan Zang , Jian Li , Lichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141
Jinli Chen , Shouquan Feng , Tianqi Yu , Yongjin Zou , Huan Wen , Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168