Recent advances in photothermal effects for hydrogen evolution
-
* Corresponding author.
E-mail address: wanglonglu@njupt.edu.cn (L. Wang).
Citation:
Pengcheng Fan, Yuhao He, Junan Pan, Ning Sun, Qiyu Zhang, Chen Gu, Kang Chen, Weinan Yin, Longlu Wang. Recent advances in photothermal effects for hydrogen evolution[J]. Chinese Chemical Letters,
;2024, 35(1): 108513.
doi:
10.1016/j.cclet.2023.108513
Y. Li, X. Bai, D. Yuan, et al., Nat. Commun. 13 (2022) 776.
doi: 10.1038/s41467-022-28364-y
H. Ahmad, S.K. Kamarudin, L.J. Minggu, et al., Renew. Sustain. Energy Rev. 43 (2015) 599–610.
doi: 10.1016/j.rser.2014.10.101
C.H. Liao, C.W. Huang, J.C.S. Wu, Catalysts 2 (2012) 490–516.
doi: 10.3390/catal2040490
M. Ni, M.K.H. Leung, D.Y.C. Leung, et al., Renew. Sustain. Energy Rev. 11 (2007) 401–425.
doi: 10.1016/j.rser.2005.01.009
M.R. Gholipour, C.T. Dinh, F. Beland, et al., Nanoscale 7 (2015) 8187–8208.
doi: 10.1039/C4NR07224C
X. Zou, Y. Zhang, Chem. Soc. Rev. 44 (2015) 5148–5180.
doi: 10.1039/C4CS00448E
B.A. Pinaud, J.D. Benck, L.C. Seitz, et al., Energy Environ. Sci. 6 (2013) 1983–2002.
doi: 10.1039/c3ee40831k
C.A. Rodriguez, M.A. Modestino, D. Psaltis, et al., Energy Environ. Sci. 7 (2014) 3828–3835.
doi: 10.1039/C4EE01453G
T. Hisatomi, K. Domen, Nat. Catal. 2 (2019) 387–399.
doi: 10.1038/s41929-019-0242-6
A. Fujishima, K. Honda, Nature 238 (1972) 37–38.
doi: 10.1038/238037a0
H. Irie, J. Ceram. Soc. Jpn. 130 (2022) 611–620.
doi: 10.2109/jcersj2.22050
F. Meyer, P.S. Halasyamani, G. Masson, ACS Org. Inorg. Au 3 (2022) 1–3.
A. Kobayashi, S. Takizawa, M. Hirahara, Coord. Chem. Rev. 467 (2022) 214624.
doi: 10.1016/j.ccr.2022.214624
H.S. Son, S.J. Lee, I.H. Cho, et al., Chemosphere 57 (2004) 309–317.
doi: 10.1016/j.chemosphere.2004.05.008
K. Wenderich, G. Mul, Chem. Rev. 116 (2016) 14587–14619.
doi: 10.1021/acs.chemrev.6b00327
A. Ajmal, I. Majeed, R.N. Malik, et al., RSC Adv. 4 (2014) 37003–37026.
doi: 10.1039/C4RA06658H
A.M. Al-Hamdi, U. Rinner, M. Sillanpää, Process Saf. Environ. Prot. 107 (2017) 190–205.
doi: 10.1016/j.psep.2017.01.022
S. Zhang, RSC Adv. 4 (2014) 15835–15840.
doi: 10.1039/C4RA00081A
J. Zhang, X. Jin, P.I. Morales-Guzman, et al., ACS Nano 10 (2016) 4496–4503.
doi: 10.1021/acsnano.6b00263
Z. Wang, Y. Liu, B. Huang, et al., Phys. Chem. Chem. Phys. 16 (2014) 2758–2774.
doi: 10.1039/c3cp53817f
D. Mateo, J.L. Cerrillo, S. Durini, et al., Chem. Soc. Rev. 50 (2021) 2173–2210.
doi: 10.1039/D0CS00357C
J.D. Xiao, H.L. Jiang, Acc. Chem. Res. 52 (2019) 356–366.
doi: 10.1021/acs.accounts.8b00521
S. Luo, X. Ren, H. Lin, et al., Chem. Sci. 12 (2021) 5701–5719.
doi: 10.1039/D1SC00064K
Q. Zeng, J. Bai, J. Li, et al., Nano Energy 41 (2017) 225–232.
doi: 10.1016/j.nanoen.2017.09.032
Q. Zeng, S. Chang, A. Beyhaqi, et al., J. Hazard. Mater. 394 (2020) 121425.
doi: 10.1016/j.jhazmat.2019.121425
Q. Zhang, Y. Xiao, L. Yang, et al., Chin. Chem. Lett. 34 (2023) 107628.
doi: 10.1016/j.cclet.2022.06.051
H. Liu, L. Shi, Q. Zhang, et al., Chem. Commun. 57 (2021) 1279–1294.
doi: 10.1039/D0CC07144G
Y. Zhou, D.E. Doronkin, Z. Zhao, et al., ACS Catal. 8 (2018) 11398–11406.
doi: 10.1021/acscatal.8b03724
N.L. Reddy, V.N. Rao, M. Vijayakumar, et al., Int. J. Hydrog. Energy 44 (2019) 10453–10472.
doi: 10.1016/j.ijhydene.2019.02.120
Q. Zhang, W. Xu, X. Wang, Sci. China Mater. 61 (2018) 905–914.
doi: 10.1007/s40843-018-9250-x
Y. Tang, W. Zhou, Q. Shang, et al., Appl. Catal. B: Environ. 310 (2022) 121295.
doi: 10.1016/j.apcatb.2022.121295
D. Zhang, H. Wu, C.R. Bowen, et al., Small 17 (2021) 2103960.
doi: 10.1002/smll.202103960
S. Zhang, Z. Zhang, Y. Si, et al., ACS Nano 15 (2021) 15238–15248.
doi: 10.1021/acsnano.1c05834
J. Zhu, W. Shao, X. Li, et al., J. Am. Chem. Soc. 143 (2021) 18233–18241.
doi: 10.1021/jacs.1c08033
S. Guo, X. Li, J. Li, et al., Nat. Commun. 12 (2021) 1343.
doi: 10.1038/s41467-021-21526-4
B. Tan, M. Sun, B. Liu, et al., Nano Energy 107 (2023) 108138.
doi: 10.1016/j.nanoen.2022.108138
J.T. Robinson, S.M. Tabakman, Y. Liang, et al., J. Am. Chem. Soc. 133 (2011) 6825–6831.
doi: 10.1021/ja2010175
B. Dai, J. Fang, Y. Yu, et al., Adv. Mater. 32 (2020) 1906361.
doi: 10.1002/adma.201906361
A. Mishra, P. Bauerle, Angew. Chem. Int. Ed. 51 (2012) 2020–2067.
doi: 10.1002/anie.201102326
N. Jiang, X. Zhuo, J. Wang, Chem. Rev. 118 (2018) 3054–3099.
doi: 10.1021/acs.chemrev.7b00252
H. Ren, M. Tang, B. Guan, et al., Adv. Mater. 29 (2017) 1702590.
doi: 10.1002/adma.201702590
P. Cheng, H. Wang, B. Muller, et al., ACS Appl. Mater. Interfaces 13 (2021) 1818–1826.
doi: 10.1021/acsami.0c17279
H. Jick, D.P. Chamberlin, K.W. Hagberg, Epidemiology 21 (2010) 270–271.
doi: 10.1097/EDE.0b013e3181cc95f8
C. Song, Z. Wang, Z. Yin, et al., Chem. Catal. 2 (2022) 52–83.
doi: 10.1016/j.checat.2021.10.005
M. Gao, C.K. Peh, L. Zhu, et al., Adv. Energy Mater. 10 (2020) 2000925.
doi: 10.1002/aenm.202000925
P. Cheng, D. Wang, P. Schaaf, Adv. Sustain. Syst. 6 (2022) 2200115.
doi: 10.1002/adsu.202200115
X. Wu, J. Wang, Z. Wang, et al., Angew. Chem. Int. Ed. 60 (2021) 9416–9420.
doi: 10.1002/anie.202016181
H. Yang, L.Q. He, Y.W. Hu, et al., Angew. Chem. Int. Ed. 54 (2015) 11462–11466.
doi: 10.1002/anie.201505985
N. Lu, Z. Zhang, Y. Wang, et al., Appl. Catal. B 233 (2018) 19–25.
doi: 10.1016/j.apcatb.2018.03.073
J. Peng, X. Yu, Y. Meng, et al., J. Chem. Phys. 152 (2020) 134704.
doi: 10.1063/1.5142204
X. Yu, Y. Zheng, Y. Wang, et al., Chem. Mater. 34 (2022) 1110–1120.
doi: 10.1021/acs.chemmater.1c03547
Y. Zheng, S. Chen, X. Yu, et al., Appl. Surf. Sci. 598 (2022) 153786.
doi: 10.1016/j.apsusc.2022.153786
M. Lv, C. Luo, J. Li, et al., ACS Mater. Lett. 5 (2023) 744–752.
doi: 10.1021/acsmaterialslett.2c01089
Y. Zheng, T. Gao, S. Chen, et al., Compos. Commun. 36 (2022) 101390.
doi: 10.1016/j.coco.2022.101390
M. Zhu, L. Zhang, S. Liu, et al., Chin. Chem. Lett. 31 (2020) 1961–1965.
doi: 10.1016/j.cclet.2020.01.017
D. Wang, A. Chen, S. Lai, et al., Chin. Chem. Lett. 34 (2023) 107861.
doi: 10.1016/j.cclet.2022.107861
P. Chen, Y. Mu, Y. Chen, et al., Chemosphere 291 (2022) 132817.
doi: 10.1016/j.chemosphere.2021.132817
L. Tian, L. Zhang, L. Zheng, et al., Angew. Chem. Int. Ed. 61 (2022) e202214145.
doi: 10.1002/anie.202214145
X. Cheng, L. Wang, L. Xie, et al., Chem. Eng. J. 439 (2022) 135757.
doi: 10.1016/j.cej.2022.135757
M. Moniruzzaman, J. Kim, Appl. Surf. Sci. 552 (2021) 149372.
doi: 10.1016/j.apsusc.2021.149372
F. Flory, L. Escoubas, G. Berginc, J. Nanophotonics 5 (2011) 052502.
doi: 10.1117/1.3609266
D. McKenzie, M. Large, J. Exp. Biol. 201 (1998) 1307–1313.
doi: 10.1242/jeb.201.9.1307
K. Mizuno, J. Ishii, H. Kishida, et al., Proc. Natl. Acad. Sci. U. S. A. 106 (2009) 6044–6047.
doi: 10.1073/pnas.0900155106
P. Zhang, J. Li, L. Lv, et al., ACS Nano 11 (2017) 5087–5093.
doi: 10.1021/acsnano.7b01965
Z. Liu, Z. Yang, X. Huang, et al., J. Mater. Chem. A 5 (2017) 20044–20052.
doi: 10.1039/C7TA06384A
X. Hu, W. Xu, L. Zhou, et al., Adv. Mater. 29 (2017) 1604031.
doi: 10.1002/adma.201604031
F. Zhao, X. Zhou, Y. Shi, et al., Nat. Nanotechnol. 13 (2018) 489–495.
doi: 10.1038/s41565-018-0097-z
Y. Li, J. Xue, Q. Shen, et al., Chem. Eng. J. 423 (2021) 130188.
doi: 10.1016/j.cej.2021.130188
J.W. Xu, K. Yao, Z.K. Xu, Nanoscale 11 (2019) 8680–8691.
doi: 10.1039/C9NR01833F
H.K. Bisoyi, A.M. Urbas, Q. Li, Adv. Opt. Mater. 6 (2018) 1–44.
L. Zhu, M. Gao, C.K.N. Peh, et al., Mater. Horiz. 5 (2018) 323–343.
doi: 10.1039/C7MH01064H
Y. Li, X. Tian, L. Chen, et al., Bioelectrochemistry 147 (2022) 108195.
doi: 10.1016/j.bioelechem.2022.108195
S.G. Porter, Ferroelectrics 33 (2011) 193–206.
A. Katti, Phys. Lett. A 458 (2023) 128590.
doi: 10.1016/j.physleta.2022.128590
B.P. Mishra, L. Biswal, S. Das, et al., Langmuir 39 (2023) 957–971.
doi: 10.1021/acs.langmuir.2c02315
K. Zhang, C. Liu, F. Huang, et al., Appl. Catal. B 68 (2006) 125–129.
doi: 10.1016/j.apcatb.2006.08.002
S. Wang, G. Xue, J. Liang, et al., Catal. Commun. 45 (2014) 39–43.
doi: 10.1016/j.catcom.2013.10.036
C. Dong, Z. Qu, Y. Qin, et al., ACS Catal. 9 (2019) 6698–6710.
doi: 10.1021/acscatal.9b01324
Z. Wei, C. Hsu, H. Almakrami, et al., Electrochim. Acta 316 (2019) 173–180.
doi: 10.1016/j.electacta.2019.04.090
Y. Wang, L. Zhu, Y. Feng, et al., Adv. Funct. Mater. 29 (2018) 18886–18893.
X.Q. Wang, C.F. Tan, K.H. Chan, et al., Nat. Commun. 9 (2018) 3438.
doi: 10.1038/s41467-018-06011-9
Z. Wang, R. Yu, C. Pan, et al., Nat. Commun. 6 (2015) 8401.
doi: 10.1038/ncomms9401
J. Liu, P. Chakraborty, H. Zhang, et al., ACS Catal. 9 (2019) 2610–2617.
doi: 10.1021/acscatal.8b04934
H. You, S. Li, Y. Fan, et al., Nat. Commun. 13 (2022) 6144.
doi: 10.1038/s41467-022-33818-4
Y. Liu, Y.H. Li, X. Li, et al., ACS Nano 14 (2020) 14181–14189.
doi: 10.1021/acsnano.0c07089
W. Yin, L. Bai, Y. Zhu, et al., ACS Appl. Mater. Interfaces 8 (2016) 23133–23142.
doi: 10.1021/acsami.6b07754
Z. Zhou, X. Niu, Y. Zhang, et al., J. Mater. 7 (2019) 21835–21842.
X.H. Jiang, L.S. Zhang, H.Y. Liu, et al., Angew. Chem. Int. Ed. 59 (2020) 23112–23116.
doi: 10.1002/anie.202011495
M. Guo, Y. Liu, S. Dong, et al., ChemSusChem 11 (2018) 4150–4155.
doi: 10.1002/cssc.201802055
H. Li, C. Tsai, A.L. Koh, et al., Nat. Mater. 15 (2016) 48–53.
doi: 10.1038/nmat4465
X. Zhang, F. Zhou, S. Zhang, et al., Adv. Sci. 6 (2019) 1900090.
doi: 10.1002/advs.201900090
T. Wu, S. Sun, J. Song, et al., Nat. Catal. 2 (2019) 763–772.
doi: 10.1038/s41929-019-0325-4
S. Zhang, Y. Si, B. Li, et al., Small 17 (2021) 2004980.
doi: 10.1002/smll.202004980
W. Wu, C. Niu, C. Wei, et al., Angew. Chem. Int. Ed. 58 (2019) 2029–2033.
doi: 10.1002/anie.201812475
H. Zhang, L. Yu, T. Chen, et al., Adv. Funct. Mater. 28 (2018) 1807086.
doi: 10.1002/adfm.201807086
H. Zhang, S. Zuo, M. Qiu, et al., Sci. Adv. 6 (2020) eabb9823.
doi: 10.1126/sciadv.abb9823
W. Karim, C. Spreafico, A. Kleibert, et al., Nature 541 (2017) 68–71.
doi: 10.1038/nature20782
W.C. Conner, J.L. Falconer, Chem. Rev. 95 (1995) 759–788.
doi: 10.1021/cr00035a014
K. Maeda, K. Teramura, D. Lu, et al., Angew. Chem. Int. Ed. 45 (2006) 7806–7809.
doi: 10.1002/anie.200602473
P.T.H.M. Verhallen, L.J.P. Oomen, A.J.J.M. v. d. Elsen, et al., Chem. Eng. Sci. 39 (1984) 1535–1541.
doi: 10.1016/0009-2509(84)80082-2
H.P. Nguyen, M. Djavid, K. Cui, et al., Nanotechnology 23 (2012) 194012.
doi: 10.1088/0957-4484/23/19/194012
M. Wang, W. Zhen, B. Tian, et al., Appl. Catal. B 236 (2018) 240–252.
doi: 10.1016/j.apcatb.2018.05.031
M. Wang, Z. Li, Y. Wu, et al., J. Catal. 353 (2017) 162–170.
doi: 10.1016/j.jcat.2017.07.010
P. Zhou, I.A. Navid, Y. Ma, et al., Nature 613 (2023) 66–70.
doi: 10.1038/s41586-022-05399-1
T. Van Gerven, G. Mul, J. Moulijn, et al., Chem. Eng. Process. 46 (2007) 781–789.
doi: 10.1016/j.cep.2007.05.012
C. Li, D. Zhu, S. Cheng, et al., Chin. Chem. Lett. 33 (2022) 1141–1153.
doi: 10.1016/j.cclet.2021.07.057
J. Cihlar, V. Kasparek, M. Kralova, et al., Int. J. Hydrog. Energy 40 (2015) 2950–2962.
doi: 10.1016/j.ijhydene.2015.01.008
E. Bu, Y. Chen, C. Wang, et al., Chem. Eng. J. 370 (2019) 646–657.
doi: 10.1016/j.cej.2019.03.259
Y. Liu, Z. Liu, L. Jia, et al., Appl. Surf. Sci. 606 (2022) 154897.
doi: 10.1016/j.apsusc.2022.154897
Y. Wang, W. Huang, S. Guo, et al., Adv. Energy Mater. 11 (2021) 2102452.
doi: 10.1002/aenm.202102452
H. Han, K. Huang, Y. Yao, et al., Chem. Eng. J. 450 (2022) 138419.
doi: 10.1016/j.cej.2022.138419
M.D. Scanlon, P. Peljo, L. Rivier, et al., Phys. Chem. Chem. Phys. 19 (2017) 22700–22710.
doi: 10.1039/C7CP04601D
G. Liu, X. Gao, K. Wang, et al., Int. J. Hydrog. Energy 41 (2016) 17976–17986.
doi: 10.1016/j.ijhydene.2016.07.268
Y. Zhang, P. Guo, S. Guo, et al., Angew. Chem. Int. Ed. 61 (2022) 202209703.
doi: 10.1002/anie.202209703
Y. Zhang, T. Gao, S. Chen, et al., Compos. Commun. 36 (2022) 101390.
doi: 10.1016/j.coco.2022.101390
Y. Zhang, S. Chen, X. Yu, et al., Appl. Surf. Sci. 598 (2022) 153786.
doi: 10.1016/j.apsusc.2022.153786
Y. Zhang, X. Ni, K. Li, et al., Compos. Commun. 32 (2022) 101116.
doi: 10.1016/j.coco.2022.101116
Gengchen Guo , Tianyu Zhao , Ruichang Sun , Mingzhe Song , Hongyu Liu , Sen Wang , Jingwen Li , Jingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198
Tingting Liu , Pengfei Sun , Wei Zhao , Yingshuang Li , Lujun Cheng , Jiahai Fan , Xiaohui Bi , Xiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813
Lin Zhang , Chaoran Li , Thongthai Witoon , Xingda An , Le He . Nano-thermometry in photothermal catalysis. Chinese Journal of Structural Chemistry, 2025, 44(4): 100456-100456. doi: 10.1016/j.cjsc.2024.100456
Mengli Xu , Zhenmin Xu , Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305
Gaofeng Zeng , Shuyu Liu , Manle Jiang , Yu Wang , Ping Xu , Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055
Hualin Jiang , Wenxi Ye , Huitao Zhen , Xubiao Luo , Vyacheslav Fominski , Long Ye , Pinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984
Tao LIU , Yuting TIAN , Ke GAO , Xuwei HAN , Ru'nan MIN , Wenjing ZHAO , Xueyi SUN , Caixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107
Yu Qin , Mingyang Huang , Chenlu Huang , Hannah L. Perry , Linhua Zhang , Dunwan Zhu . O2-generating multifunctional polymeric micelles for highly efficient and selective photodynamic-photothermal therapy in melanoma. Chinese Chemical Letters, 2024, 35(7): 109171-. doi: 10.1016/j.cclet.2023.109171
Xiao-Fang Lv , Xiao-Yun Ran , Yu Zhao , Rui-Rui Zhang , Li-Na Zhang , Jing Shi , Ji-Xuan Xu , Qing-Quan Kong , Xiao-Qi Yu , Kun Li . Combing NIR-Ⅱ molecular dye with magnetic nanoparticles for enhanced photothermal theranostics with a 95.6% photothermal conversion efficiency. Chinese Chemical Letters, 2025, 36(4): 110027-. doi: 10.1016/j.cclet.2024.110027
Ying Zhao , Yin-Hang Chai , Tian Chen , Jie Zheng , Ting-Ting Li , Francisco Aznarez , Li-Long Dang , Lu-Fang Ma . Size-controlled synthesis and near-infrared photothermal response of Cp* Rh-based metalla[2]catenanes and rectangular metallamacrocycles. Chinese Chemical Letters, 2024, 35(6): 109298-. doi: 10.1016/j.cclet.2023.109298
Zikang Hu , Hengjie Zhang , Zhengqiu Li , Tianbao Zhao , Zhipeng Gu , Qijuan Yuan , Baoshu Chen . Multifunctional photothermal hydrogels: Design principles, various functions, and promising biological applications. Chinese Chemical Letters, 2024, 35(10): 109527-. doi: 10.1016/j.cclet.2024.109527
Junchuan Sun , Lu Wang . Carbon exchange enabled supra-photothermal methane dry reforming. Chinese Journal of Structural Chemistry, 2024, 43(10): 100330-100330. doi: 10.1016/j.cjsc.2024.100330
Yiming Fang , Huimin Gao , Kaiting Cheng , Liang Bai , Zhengtong Li , Yadong Zhao , Xingtao Xu . An overview of photothermal materials for solar-driven interfacial evaporation. Chinese Chemical Letters, 2025, 36(3): 109925-. doi: 10.1016/j.cclet.2024.109925
Bicheng Zhu , Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327
Yuchen Guo , Xiangyu Zou , Xueling Wei , Weiwei Bao , Junjun Zhang , Jie Han , Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206
Yi Herng Chan , Zhe Phak Chan , Serene Sow Mun Lock , Chung Loong Yiin , Shin Ying Foong , Mee Kee Wong , Muhammad Anwar Ishak , Ven Chian Quek , Shengbo Ge , Su Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329
Xiangqian Cao , Chenkai Yang , Xiaodong Zhu , Mengxin Zhao , Yilin Yan , Zhengnan Huang , Jinming Cai , Jingming Zhuang , Shengzhou Li , Wei Li , Bing Shen . Synergistic enhancement of chemotherapy for bladder cancer by photothermal dual-sensitive nanosystem with gold nanoparticles and PNIPAM. Chinese Chemical Letters, 2024, 35(8): 109199-. doi: 10.1016/j.cclet.2023.109199
Yongkang Yue , Zhou Xu , Kaiqing Ma , Fangjun Huo , Xuemei Qin , Kuanshou Zhang , Caixia Yin . HSA shrinkage optimizes the photostability of embedded dyes fundamentally to amplify their efficiency as photothermal materials. Chinese Chemical Letters, 2024, 35(8): 109223-. doi: 10.1016/j.cclet.2023.109223
Yiqiao Chen , Ao Liu , Biwen Yang , Zhenzhen Li , Binggang Ye , Zhouyi Guo , Zhiming Liu , Haolin Chen . Photoluminescence and photothermal conversion in boric acid derived carbon dots for targeted microbial theranostics. Chinese Chemical Letters, 2024, 35(9): 109295-. doi: 10.1016/j.cclet.2023.109295
Haijun Shen , Yi Qiao , Chun Zhang , Yane Ma , Jialing Chen , Yingying Cao , Wenna Zheng . A matrix metalloproteinase-sensitive hydrogel combined with photothermal therapy for transdermal delivery of deferoxamine to accelerate diabetic pressure ulcer healing. Chinese Chemical Letters, 2024, 35(12): 110283-. doi: 10.1016/j.cclet.2024.110283