Partial oxidation of methane by photocatalysis
-
* Corresponding author.
E-mail address: Lequan.Liu@tju.edu.cn (L. Liu).
Citation:
Zhongshan Yang, Qiqi Zhang, Hui Song, Xin Chen, Jiwei Cui, Yanhui Sun, Lequan Liu, Jinhua Ye. Partial oxidation of methane by photocatalysis[J]. Chinese Chemical Letters,
;2024, 35(1): 108418.
doi:
10.1016/j.cclet.2023.108418
L. Yuliati, H. Yoshida, Chem. Soc. Rev. 37 (2008) 1592–1602.
doi: 10.1039/b710575b
P. Schwach, X. Pan, X. Bao, Chem. Rev. 117 (2017) 8497–8520.
doi: 10.1021/acs.chemrev.6b00715
G. Chen, G. Waterhouse, R. Shi, et al., Angew. Chem. Int. Ed. 58 (2019) 17528–17551.
doi: 10.1002/anie.201814313
X. Meng, X. Cui, N.P. Rajan, et al., Chem 5 (2019) 2296–2325.
doi: 10.1016/j.chempr.2019.05.008
H. Song, X. Meng, Z. -J. Wang, H. Liu, J. Ye, Joule 3 (2019) 1606–1636.
doi: 10.1016/j.joule.2019.06.023
S.D. Angeli, G. Monteleone, A. Giaconia, A.A. Lemonidou, Int. J. Hydrog. Energy 39 (2014) 1979–1997.
doi: 10.1016/j.ijhydene.2013.12.001
A.Y. Khodakov, W. Chu, P. Fongarland, Chem. Rev. 107 (2007) 1692–1744.
doi: 10.1021/cr050972v
M. Behrens, F. Studt, I. Kasatkin, et al., Science 336 (2012) 893–897.
doi: 10.1126/science.1219831
M.H. Ab Rahim, R.D. Armstrong, C. Hammond, et al., Catal. Sci. Technol. 6 (2016) 3410–3418.
doi: 10.1039/C5CY01586C
N. Agarwal, S.J. Freakley, R.U. McVicker, et al., Science 358 (2017) 223–227.
doi: 10.1126/science.aan6515
X. Cui, H. Li, Y. Wang, et al., Chem 4 (2018) 1902–1910.
doi: 10.1016/j.chempr.2018.05.006
A.Y. Khodakov, W. Chu, P. Fongarland, Chem. Rev. 97 (1997) 2879–2932.
doi: 10.1021/cr9411886
M. Ab Rahim, M. Forde, R. Jenkins, et al., Angew. Chem. Int. Ed. 52 (2013) 1280–1284.
doi: 10.1002/anie.201207717
M. Marcinkowski, M. Darby, J. Liu, et al., Nat. Chem. 10 (2018) 325–332.
doi: 10.1038/nchem.2915
V. Sushkevich, D. Palagin, J. Bokhoven, Angew. Chem. Int. Ed. 57 (2018) 8906–8910.
doi: 10.1002/anie.201802922
L. Yang, J. Huang, R. Ma, et al., ACS Energy Lett. 4 (2019) 2945–2951.
doi: 10.1021/acsenergylett.9b01992
H. Zhou, T. Liu, X. Zhao, et al., Angew. Chem. Int. Ed. 58 (2019) 18388–18393.
doi: 10.1002/anie.201912785
Z. Jin, L. Wang, E. Zuidema, et al., Science 367 (2019) 193–197.
S. Bai, Q. Yao, Y. Xu, K. Cao, X.Q. Huang, Nano Energy 71 (2020) 104566.
doi: 10.1016/j.nanoen.2020.104566
S. Bai, F. Liu, B. Huang, et al., Nat. Commun. 11 (2020) 954.
doi: 10.1038/s41467-020-14742-x
H. Tong, S. Ouyang, Y. Bi, et al., Adv. Mater. 24 (2012) 229–251.
doi: 10.1002/adma.201102752
X. Lang, X. Chen, J. Zhao, Chem. Soc. Rev. 43 (2014) 473–486.
doi: 10.1039/C3CS60188A
L. Wang, W. Chen, D. Zhang, et al., Chem. Soc. Rev. 48 (2019) 5310–5349.
doi: 10.1039/C9CS00163H
Z. Wang, T. Hisatomi, R. Li, et al., Joule 5 (2021) 344–359.
doi: 10.1016/j.joule.2021.01.001
G. Ge, M. Liu, C. Liu, et al., J. Mater. Chem. A 7 (2019) 9222–9229.
doi: 10.1039/C9TA01740B
L. Liu, X. Zhang, L. Yang, et al., Natl. Sci. Rev. 4 (2017) 761–780.
doi: 10.1093/nsr/nwx019
B. Dong, T. Liu, C. Li, Z. Fuxiang, Chin. Chem. Lett. 29 (2018) 671–680.
doi: 10.1016/j.cclet.2017.12.002
Y. Xing, X. Wang, S. Hao, et al., Chin. Chem. Lett. 32 (2021) 13–20.
doi: 10.1016/j.cclet.2020.11.011
Y. Chen, D. Yang, Y. Gao, et al., Research 2021 (2021) 9798564.
B. Tan, Y. Ye, Z. Huang, et al., Chin. Chem. Lett. 31 (2020) 1530–1534.
doi: 10.1016/j.cclet.2019.11.007
C. Qin, J. Tang, R. Qiao, S. Lin, Chin. Chem. Lett. 33 (2022) 5218–5222.
doi: 10.1016/j.cclet.2022.01.067
X. Shi, L.N.Y. Cao, M. Chen, Y. Huang, Chin. Chem. Lett. 33 (2022) 5023–5029.
doi: 10.1016/j.cclet.2022.01.066
P. Xiang, K. Sun, S. Wang, et al., Chin. Chem. Lett. 33 (2022) 5074–5079.
doi: 10.1016/j.cclet.2022.03.096
A. Fu, X. Chen, L. Tong, et al., ACS Appl. Mater. Interfaces 11 (2019) 24154–24163.
doi: 10.1021/acsami.9b07110
Q. Zhang, X. Chen, Z. Yang, et al., ACS Appl. Mater. Interfaces 14 (2022) 3970–3979.
doi: 10.1021/acsami.1c19638
Q. Zhang, Z. Yang, X. Chen, et al., Adv. Mater. Interfaces 7 (2020) 2001657.
doi: 10.1002/admi.202001657
L. Ren, X. Yi, L. Tong, et al., Appl. Catal. B 279 (2020) 119352.
doi: 10.1016/j.apcatb.2020.119352
J. Cui, X. Yang, Z. Yang, et al., Chem. Commun. 57 (2021) 10640–10643.
doi: 10.1039/D1CC04514H
L. Tong, L. Ren, A. Fu, et al., Chem. Commun. 55 (2019) 12900–12903.
doi: 10.1039/C9CC05228C
L. Ren, L. Tong, X. Yi, et al., Chem. Eng. J. 390 (2020) 124558.
doi: 10.1016/j.cej.2020.124558
Q. Zhang, M. Liu, W. Zhou, et al., Nano Energy 81 (2021) 105651.
doi: 10.1016/j.nanoen.2020.105651
L. Ren, X. Yi, Z. Yang, et al., Nano Lett. 21 (2021) 1709–1715.
doi: 10.1021/acs.nanolett.0c04511
X. Du, L. Liu, J. Ye, Sol. RRL 5 (2021) 2100611.
doi: 10.1002/solr.202100611
J.J. Guo, A. Hu, H. Pan, Z. Zuo, Science 361 (2018) 668–672.
doi: 10.1126/science.aat9750
G. Laudadio, Y. Deng, K. Wal, et al., Science 369 (2020) 92–96.
doi: 10.1126/science.abb4688
T. Hou, Z. Gao, J. Zhang, N. Luo, F. Wang, Trans. Tianjin Univ. 27 (2021) 331–337.
doi: 10.1007/s12209-021-00292-w
X. Sun, L. Sun, G. Li, et al., Angew. Chem. Int. Ed. 61 (2022) e202207677.
doi: 10.1002/anie.202207677
X.M. Cao, H. Zhou, L. Zhao, X. Chen, P. Hu, Chin. Chem. Lett. 32 (2021) 1972–1976.
doi: 10.1016/j.cclet.2020.09.015
W.B. He, L.Q. Gao, X.J. Chen, et al., Chin. Chem. Lett. 31 (2020) 1895–1898.
doi: 10.1016/j.cclet.2020.02.011
X. Shen, D. Wu, X.Z. Fu, J.L. Luo, Chin. Chem. Lett. 33 (2022) 390–393.
doi: 10.1016/j.cclet.2021.07.019
Z. Wang, Q. Liu, R. Liu, et al., Chin. Chem. Lett. 33 (2022) 1479–1482.
doi: 10.1016/j.cclet.2021.08.036
H. Jiang, L. Zhang, Z. Han, et al., Green Energy Environ. 7 (2022) 1132–1142.
doi: 10.1016/j.gee.2021.11.007
Y. Wang, Q. Wang, J. Wu, et al., Nano Energy 103 (2022) 107815.
doi: 10.1016/j.nanoen.2022.107815
Y. Wang, L. Xu, L. Zhan, et al., Nano Energy 92 (2022) 106780.
doi: 10.1016/j.nanoen.2021.106780
X. Yu, V.L. Zholobenko, S. Moldovan, et al., Nat. Energy 5 (2020) 511–519.
doi: 10.1038/s41560-020-0616-7
Z. Gan, G. Li, X. Yang, et al., Sci. China Chem. 63 (2020) 1652–1658.
doi: 10.1007/s11426-020-9811-6
R. Xu, H. Xu, S. Ning, et al., Trans. Tianjin Univ. 26 (2020) 470–478.
doi: 10.1007/s12209-020-00264-6
Y. Chen, D. Yang, X. Xin, et al., J. Mater. Chem. A 10 (2022) 9717–9725.
doi: 10.1039/D1TA10270B
S.L. Kaliaguine, B.N. Shelimov, V.B. Kazansky, J. Catal. 55 (1978) 384–393.
doi: 10.1016/0021-9517(78)90225-7
M.D. Ward, J.F. Brazdil, S.P. Mehandru, A.B. Anderson, J. Phys. Chem. 91 (1987) 6515–6521.
doi: 10.1021/j100310a019
T. Suzuki, K. Wada, M. Shima, Y. Watanabe, J. Chem. Soc., Chem. Commun. (1990) 1059–1060.
K. Wada, K. Yoshida, Y. Watanabe, J. Chem. Soc., Faraday Trans. 91 (1995) 1647–1654.
doi: 10.1039/ft9959101647
K. Wada, K. Yoshida, Y. Watanabe, T. Suzuki, Chem. Commun. (1991) 726–727.
K. Wada, K. Yoshida, T. Takatani, Y. Watanabe, Appl. Catal. A 99 (1993) 21–36.
doi: 10.1016/0926-860X(93)85037-P
K. Wada, M. Nakashita, A. Yamamoto, T. Mitsudo, Chem. Commun. (1998) 133–134.
K. Wada, H. Yamada, Y. Watanabe, T. Mitsudo, J. Chem. Soc., Faraday Trans. 94 (1998) 1771–1778.
doi: 10.1039/a800938d
H. Lopez, A. Martinez, Catal. Lett. 83 (2002) 37–41.
doi: 10.1023/A:1020649313699
C.F. Lien, M.T. Chen, Y.F. Lin, J.L. Lin, J. Chin. Chem. Soc 51 (2004) 37–42.
doi: 10.1002/jccs.200400007
Z. Xu, Z. Bian, Acta Phys. Sin. 36 (2020) 1907013.
doi: 10.3866/PKU.WHXB201907013
S. Zhang, J. Bao, B. Wu, L. Zhong, Y. Sun, Acta Phys. Sin. 35 (2019) 923–939.
doi: 10.3866/PKU.WHXB201810002
M. Ravi, M. Ranocchiari, J.A. van Bokhoven, Angew. Chem. Int. Ed. 56 (2017) 16464–16483.
doi: 10.1002/anie.201702550
W. Taifan, J. Baltrusaitis, Appl. Catal. B 198 (2016) 525–547.
doi: 10.1016/j.apcatb.2016.05.081
X. Huang, X. Guo, F. Li, et al., Nat. Gas Chem. Ind. 45 (2020) 117–122 134.
M. Mohamedali, O. Ayodele, H. Ibrahim, Renew. Sustain. Energy Rev. 131 (2020).
Z. Zakaria, S.K. Kamarudin, Renew. Sustain. Energy Rev. 65 (2016) 250–261.
doi: 10.1016/j.rser.2016.05.082
Z. Zhu, W. Guo, Y. Zhang, et al., Carbon Energy 3 (2021) 519–540.
doi: 10.1002/cey2.127
Z. Li, Z. Yi, Z. Li, Z. Zou, Sol. RRL 5 (2021) 2000596.
doi: 10.1002/solr.202000596
M.S.A. Sher Shah, C. Oh, H. Park, et al., Adv. Sci. 7 (2020) 2001946.
doi: 10.1002/advs.202001946
Y. Tian, L. Piao, X. Chen, Green Chem. 23 (2021) 3526–3541.
doi: 10.1039/D1GC00658D
Y. Jiang, Y. Fan, S. Li, Z. Tang, CCS Chem. 5 (2023) 30–54.
doi: 10.31635/ccschem.022.202201991
D. Hu, V.V. Ordomsky, A.Y. Khodakov, Appl. Catal. B 286 (2021) 119913.
doi: 10.1016/j.apcatb.2021.119913
Q. Li, Y. Ouyang, H. Li, L. Wang, J. Zeng, Angew. Chem. Int. Ed. 61 (2021) e202108069.
K. Villa, J.R. Galan-Mascaros, ChemSusChem 14 (2021) 2023–2033.
doi: 10.1002/cssc.202100192
X. Li, C. Wang, J. Tang, Nat. Rev. Mater. 7 (2022) 617–632.
doi: 10.1038/s41578-022-00422-3
H. Song, J. Ye, Trends Chem. 4 (2022) 1094–1105.
doi: 10.1016/j.trechm.2022.09.003
L. Guohua, D. Kang, H. Sophia, W. Kaiying, ChemSusChem 9 (2016) 2878–2904.
doi: 10.1002/cssc.201600773
R.P. Noceti, C.E. Taylor, J.R. D'Este, Catal. Today 33 (1997) 199–204.
doi: 10.1016/S0920-5861(96)00155-1
C.E. Taylor, R.P. Noceti, Catal. Today 55 (2000) 259–267.
doi: 10.1016/S0920-5861(99)00244-8
K. Villa, S. Murcia-López, T. Andreu, J.R. Morante, Catal. Commun. 58 (2015) 200–203.
doi: 10.1016/j.catcom.2014.09.025
K. Villa, S. Murcia-López, J.R. Morante, T. Andreu, Appl. Catal. B 187 (2016) 30–36.
doi: 10.1016/j.apcatb.2016.01.032
A. Hameed, I.M.I. Ismail, M. Aslam, M.A. Gondal, Appl. Catal. A 470 (2014) 327–335.
doi: 10.1016/j.apcata.2013.10.045
K. Villa, S. Murcia-López, T. Andreu, J.R. Morante, Appl. Catal. B 163 (2015) 150–155.
doi: 10.1016/j.apcatb.2014.07.055
S. Murcia-López, K. Villa, T. Andreu, J.R. Morante, ACS Catal. 4 (2014) 3013–3019.
doi: 10.1021/cs500821r
S. Murcia-Lopez, K. Villa, T. Andreu, J.R. Morante, Chem. Commun. 51 (2015) 7249–7252.
doi: 10.1039/C5CC00978B
W. Zhu, M. Shen, G. Fan, et al., ACS Appl. Nano Mater. 1 (2018) 6683–6691.
doi: 10.1021/acsanm.8b01490
S. Murcia-López, M.C. Bacariza, K. Villa, et al., ACS Catal. 7 (2017) 2878–2885.
doi: 10.1021/acscatal.6b03535
Y. Zhou, L. Zhang, W. Wang, Nat. Commun. 10 (2019) 506.
doi: 10.1038/s41467-019-08454-0
Y. Wang, J. Zhang, W.X. Shi, et al., Adv. Mater. 34 (2022) e2204448.
doi: 10.1002/adma.202204448
Z. Zhang, J. Zhang, Y. Zhu, et al., Chem Catal. 2 (2022) 1440–1449.
doi: 10.1016/j.checat.2022.04.008
S. Sun, N.F. Dummer, T. Bere, et al., Catal. Sci. Technol. 12 (2022) 3727–3736.
doi: 10.1039/D2CY00240J
J. Du, W. Chen, G. Wu, et al., Catalysts 10 (2020) 196.
doi: 10.3390/catal10020196
D. Yu, Y. Jia, Z. Yang, et al., ACS Sustain. Chem. Eng. 10 (2021) 16–22.
Z. Xiao, J. Shen, J. Zhang, et al., J. Catal. 413 (2022) 20–30.
doi: 10.1016/j.jcat.2022.06.017
K. Zheng, Y. Wu, J. Zhu, J. Am. Chem. Soc. 144 (2022) 12357–12366.
doi: 10.1021/jacs.2c03866
J.A. de Oliveira, J.C. da Cruz, O.R. Nascimento, C. Ribeiro, Appl. Catal. B 318 (2022) 121827.
doi: 10.1016/j.apcatb.2022.121827
Á. López-Martín, A. Caballero, G. Colón, J. Photochem. Photobiol. A: Chem. 349 (2017) 216–223.
doi: 10.1016/j.jphotochem.2017.09.039
H. Kunkely, A. Vogler, Z. Naturforsch B 68 (2013) 891–894.
doi: 10.5560/znb.2013-3104
M.A.R. da Silva, J.C. Gil, N.V. Tarakina, et al., Chem. Commun. 58 (2022) 7419–7422.
doi: 10.1039/D2CC01757A
X. Sun, X. Chen, C. Fu, et al., Nat. Commun. 13 (2022) 6677.
doi: 10.1038/s41467-022-34563-4
J. Wang, R. Li, D. Zeng, et al., Chem. Eng. J. 452 (2023) 139505.
doi: 10.1016/j.cej.2022.139505
M.A. Gondal, A. Hameed, A. Suwaiyan, Appl. Catal. A 243 (2003) 165–174.
doi: 10.1016/S0926-860X(02)00562-8
S. Zhu, X. Li, Z. Pan, et al., Nano Lett. 21 (2021) 4122–4128.
doi: 10.1021/acs.nanolett.1c01204
S. Shi, Z. Sun, C. Bao, T. Gao, Y.H. Hu, Int. J. Hydrog. Energy 44 (2020) 2740–2753.
X. Wu, Y. Zeng, H. Liu, et al., Nano Res. 14 (2021) 4584–4590.
doi: 10.1007/s12274-021-3380-5
X. Wu, Q. Zhang, W. Li, et al., ACS Catal. 11 (2021) 14038–14046.
doi: 10.1021/acscatal.1c03985
Y. Zeng, H.C. Liu, J.S. Wang, X.Y. Wu, S.L. Wang, Catal. Sci. Technol. 10 (2020) 2329–2332.
doi: 10.1039/D0CY00028K
Z. Jiang, L. Wang, J. Lei, Y. Liu, J. Zhang, Appl. Catal. B 241 (2019) 367–374.
doi: 10.1016/j.apcatb.2018.09.049
Y. Zhou, L. Zhou, Y. Zhou, et al., Appl. Catal. B 279 (2020) 119365.
doi: 10.1016/j.apcatb.2020.119365
Z. Yi, Z. Tang, X. Wu, et al., Appl. Catal. B 306 (2022) 120919.
doi: 10.1016/j.apcatb.2021.120919
J. Xie, R. Jin, A. Li, et al., Nat. Catal. 1 (2018) 889–896.
doi: 10.1038/s41929-018-0170-x
Y. Zeng, X. Luo, F. Li, et al., Environ. Sci. Technol. 55 (2021) 7711–7720.
doi: 10.1021/acs.est.1c01152
J. Yang, J. Hao, J. Wei, J. Dai, Y. Li, Fuel 266 (2020) 117104.
doi: 10.1016/j.fuel.2020.117104
Y. Xing, Z. Yao, W. Li, et al., Angew. Chem. Int. Ed. 60 (2021) 8889–8895.
doi: 10.1002/anie.202016888
K. Zheng, Y. Wu, Z. Hu, et al., Nano Lett. 21 (2021) 10368–10376.
doi: 10.1021/acs.nanolett.1c03682
L. Luo, T. Zhang, M. Wang, R. Yun, X. Xiang, ChemSusChem 13 (2020) 5173–5184.
doi: 10.1002/cssc.202001398
X.H. Chen, S.B. Li, Chem. Lett. 29 (2000) 314–315.
doi: 10.1246/cl.2000.314
Y. Li, J. Li, G. Zhang, K. Wang, X. Wu, ACS Sustain, Chem. Eng. 7 (2019) 4382–4389.
F. Sastre, V. Fornes, A. Corma, H. Garcia, J. Am. Chem. Soc. 133 (2011) 17257–17261.
doi: 10.1021/ja204559z
F. Sastre, V. Fornes, A. Corma, H. Garcia, Chem. Eur. J. 18 (2012) 1820–1825.
doi: 10.1002/chem.201102273
H. Song, X. Meng, S. Wang, et al., J. Am. Chem. Soc. 141 (2019) 20507–20515.
doi: 10.1021/jacs.9b11440
H. Song, X. Meng, S. Wang, et al., ACS Catal. 10 (2020) 14318–14326.
doi: 10.1021/acscatal.0c04329
L. Luo, Z. Gong, Y. Xu, et al., J. Am. Chem. Soc. 144 (2022) 740–750.
doi: 10.1021/jacs.1c09141
L. Luo, L. Fu, H. Liu, et al., Nat. Commun. 13 (2022) 2930.
doi: 10.1038/s41467-022-30434-0
Z. Gong, L. Luo, C. Wang, J. Tang, Sol. RRL 6 (2022) 2200335.
doi: 10.1002/solr.202200335
P. Xie, J. Ding, Z. Yao, et al., Nat. Commun. 13 (2022) 1375.
doi: 10.1038/s41467-022-28987-1
H. Song, H. Huang, X. Meng, et al., Angew. Chem. Int. Ed. 61 (2022) e202215057.
W. Zhou, X. Qiu, Y. Jiang, et al., J. Mater. Chem. A 8 (2020) 13277–13284.
doi: 10.1039/D0TA02793F
Y. Fan, W. Zhou, X. Qiu, et al., Nat. Sustain. 4 (2021) 509–515.
doi: 10.1038/s41893-021-00682-x
L. Luo, J. Luo, H. Li, et al., Nat. Commun. 12 (2021) 1218.
doi: 10.1038/s41467-021-21482-z
Z. Yang, Q. Zhang, L. Ren, et al., Chem. Commun. 57 (2021) 871–874.
doi: 10.1039/D0CC07397K
X. Du, Z. Yang, X. Yang, et al., Energy Fuels 36 (2022) 3929–3937.
doi: 10.1021/acs.energyfuels.2c00138
B. An, Q.H. Zhang, B.S. Zheng, et al., Angew. Chem. Int. Ed. 61 (2022) e202204661.
doi: 10.1002/anie.202204661
B. An, Z. Li, Z. Wang, et al., Nat. Mater. 21 (2022) 932–938.
doi: 10.1038/s41563-022-01279-1
N. Feng, H. Lin, H. Song, et al., Nat. Commun. 12 (2021) 4652.
doi: 10.1038/s41467-021-24912-0
S. Wei, X. Zhu, P. Zhang, et al., Appl. Catal. B 283 (2021) 119661.
doi: 10.1016/j.apcatb.2020.119661
Y. Fan, P. Zhang, R. Lu, et al., Catal. Commun. 161 (2021) 106365.
doi: 10.1016/j.catcom.2021.106365
Y. Jiang, W. Zhao, S. Li, et al., J. Am. Chem. Soc. 144 (2022) 15977–15987.
doi: 10.1021/jacs.2c04884
X. Cai, S. Fang, Y.H. Hu, J. Mater. Chem. A 9 (2021) 10796–10802.
doi: 10.1039/D1TA00420D
Z. Sun, C. Wang, Y.H. Hu, J. Mater. Chem. A 9 (2021) 1713–1719.
doi: 10.1039/D0TA09226F
L. Ming, C. Wang, Y.H. Hu, Int. J. Hydrog. Energy 45 (2021) 12996–13006.
M. Huang, S. Zhang, B. Wu, et al., ChemSusChem 15 (2022) e202200548.
doi: 10.1002/cssc.202200548
P.P. Luo, X.K. Zhou, Y. Li, T.B. Lu, ACS Appl. Mater. Interfaces 14 (2022) 21069–21078.
doi: 10.1021/acsami.2c03671
M. Huang, S. Zhang, B. Wu, et al., ACS Catal. 12 (2022) 9515–9525.
doi: 10.1021/acscatal.2c02424
Y. Zhu, S. Chen, S. Fang, et al., J. Phys. Chem. Lett. 12 (2021) 7459–7465.
doi: 10.1021/acs.jpclett.1c02053
Y. Chen, F. Wang, Z. Huang, et al., ACS Appl. Mater. Interfaces 13 (2021) 46694–46702.
doi: 10.1021/acsami.1c13661
Y. Hu, S. Higashimoto, S. Takahashi, Y. Nagai, M. Anpo, Catal. Lett. 100 (2005) 35–37.
doi: 10.1007/s10562-004-3082-0
Y. Hu, Y. Nagai, D. Rahmawaty, C. Wei, M. Anpo, Catal. Lett. 124 (2008) 80–84.
doi: 10.1007/s10562-008-9491-8
Y. Hu, M. Anpo, C. Wei, J. Photochem. Photobiol. A Chem. 264 (2013) 48–55.
doi: 10.1016/j.jphotochem.2013.05.005
K. Ohkubo, K. Hirose, Angew. Chem. Int. Ed. 57 (2018) 2126–2129.
doi: 10.1002/anie.201710945
R. Kazimerczuk, T. Woźniewski, M. Borowiak, et al., Tetrahedron Lett. 48 (2007) 7046–7048.
doi: 10.1016/j.tetlet.2007.07.131
Weixu Li , Yuexin Wang , Lin Li , Xinyi Huang , Mengdi Liu , Bo Gui , Xianjun Lang , Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299
Yanghanbin Zhang , Dongxiao Wen , Wei Sun , Jiahe Peng , Dezhong Yu , Xin Li , Yang Qu , Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469
Guixu Pan , Zhiling Xia , Ning Wang , Hejia Sun , Zhaoqi Guo , Yunfeng Li , Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463
Chao Chen , Wenwen Yu , Guangen Huang , Xuelian Ren , Xiangli Chen , Yixin Li , Shenggui Liang , Mengmeng Xu , Mingyue Zheng , Yaxi Yang , He Huang , Wei Tang , Bing Zhou . Asymmetric macrocyclization enabled by Rh(Ⅲ)-catalyzed CH activation: Enantioenriched macrocyclic inhibitor of Zika virus infection. Chinese Chemical Letters, 2024, 35(11): 109574-. doi: 10.1016/j.cclet.2024.109574
Zhen Shi , Wei Jin , Yuhang Sun , Xu Li , Liang Mao , Xiaoyan Cai , Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201
Qiang Zhang , Weiran Gong , Huinan Che , Bin Liu , Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Mengjun Zhao , Yuhao Guo , Na Li , Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348
Jiangqi Ning , Junhan Huang , Yuhang Liu , Yanlei Chen , Qing Niu , Qingqing Lin , Yajun He , Zheyuan Liu , Yan Yu , Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453
Jiaqi Ma , Lan Li , Yiming Zhang , Jinjie Qian , Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466
Tianhao Li , Wenguang Tu , Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195
Yue Pan , Wenping Si , Yahao Li , Haotian Tan , Ji Liang , Feng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877
Jia-Cheng Hou , Wei Cai , Hong-Tao Ji , Li-Juan Ou , Wei-Min He . Recent advances in semi-heterogenous photocatalysis in organic synthesis. Chinese Chemical Letters, 2025, 36(2): 110469-. doi: 10.1016/j.cclet.2024.110469
Chaoqun Ma , Yuebo Wang , Ning Han , Rongzhen Zhang , Hui Liu , Xiaofeng Sun , Lingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632
Jing Wang , Zenghui Li , Xiaoyang Liu , Bochao Su , Honghong Gong , Chao Feng , Guoping Li , Gang He , Bin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473
Hualin Jiang , Wenxi Ye , Huitao Zhen , Xubiao Luo , Vyacheslav Fominski , Long Ye , Pinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984
Yan Fan , Jiao Tan , Cuijuan Zou , Xuliang Hu , Xing Feng , Xin-Long Ni . Unprecedented stepwise electron transfer and photocatalysis in supramolecular assembly derived hybrid single-layer two-dimensional nanosheets in water. Chinese Chemical Letters, 2025, 36(4): 110101-. doi: 10.1016/j.cclet.2024.110101
Qinwei Lu , Jinjie Lu , Juying Lei , Xubiao Luo , Yanbo Zhou . Cyclodextrin-boosted photocatalytic oxidation for efficient bisphenol A removal. Chinese Chemical Letters, 2025, 36(3): 110017-. doi: 10.1016/j.cclet.2024.110017
Ruru Li , Qian Liu , Hui Li , Fengbin Sun , Zhurui Shen . Rational design of dual sites induced local electron rearrangement for enhanced photocatalytic oxygen activation. Chinese Chemical Letters, 2024, 35(11): 109679-. doi: 10.1016/j.cclet.2024.109679
Jingtai Bi , Yupeng Cheng , Mengmeng Sun , Xiaofu Guo , Shizhao Wang , Yingying Zhao . Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation. Chinese Chemical Letters, 2024, 35(11): 109639-. doi: 10.1016/j.cclet.2024.109639