Recent advances in the synthesis and applications of furocoumarin derivatives
-
* Corresponding authors.
E-mail addresses: njuchaoyuechen@163.com (C. Chen), liu@westlake.edu.cn (Z. Liu).
Citation:
Chaoyue Chen, Zheng-Bin Tang, Zhichang Liu. Recent advances in the synthesis and applications of furocoumarin derivatives[J]. Chinese Chemical Letters,
;2023, 34(9): 108396.
doi:
10.1016/j.cclet.2023.108396
M. Lončarić, D. Gašo-Sokač, S. Jokić, et al., Biomolecules 10 (2020) 151.
doi: 10.3390/biom10010151
F. Annunziata, C. Pinna, S. Dallavalle, et al., Int. J. Mol. Sci. 21 (2020) 4618.
doi: 10.3390/ijms21134618
S. Ponra, K.C. Majumdar, RSC Adv. 6 (2016) 37784–37922.
doi: 10.1039/C5RA27069C
A. Deepthi, B.P. Babu, A.L. Balachandran, et al., Org. Prep. Proced. Int. 51 (2019) 409–442.
doi: 10.1080/00304948.2019.1633228
V. Cadierno, Metal-catalyzed routes for the synthesis of furocoumarins and coumestans, in: G. Brahmachari (Ed.), Green Synthetic Approaches For Biologically Relevant Heterocycles, Elsevier, Amsterdam, 2015, pp. 77–100.
V. Cadierno, Metal-catalyzed routes for the synthesis of furocoumarins and coumestans, in: G. Brahmachari (Ed.), Green Synthetic Approaches For Biologically Relevant Heterocycles, 2nd Ed., Elsevier, Amsterdam, 2021, pp. 53–96.
V.F. Traven, Molecules 9 (2004) 50–66.
doi: 10.3390/90300050
L. Santana, E. Uriarte, F. Roleira, et al., Curr. Med. Chem. 11 (2004) 3239–3261.
doi: 10.2174/0929867043363721
N. Singh, K. Rajotiya, N. Lamba, et al., Curr. Org. Chem. 26 (2022) 324–341.
doi: 10.2174/1385272826666220126155703
E.R. El-Sawy, A.B. Abdelwahab, G. Kirsch, et al., Molecules 26 (2021) 483.
doi: 10.3390/molecules26020483
I. Cortés, L.J. Cala, A.B.J. Bracca, et al., RSC Adv., 10 (2020) 33344–33377.
doi: 10.1039/d0ra06930b
F.G. Medina, J.G. Marrero, M. Macías-Alonso, et al., Nat. Prod. Rep. 32 (2015) 1472–1507.
doi: 10.1039/C4NP00162A
S. Pasricha, K. Mittal, P. Gahlot, et al., J. Iran. Chem. Soc. 19 (2022) 4035–4092.
doi: 10.1007/s13738-022-02603-x
G. Patel, S. Banerjee, Curr. Org. Chem. 24 (2020) 2566–2587.
doi: 10.2174/1385272824999200709125717
R. Gambari, I. Lampronti, N. Bianchi, et al., Structure and biological activity of furocoumarins, in: M.T.H. Khan (Ed.), Bioactive Heterocycles Ⅲ. Topics in Heterocyclic Chemistry (vol. 9), Springer, Berlin, Heidelberg, 2007, pp. 265–276.
S. Ahmed, H. Khan, M. Aschner, et al., Int. J. Mol. Sci. 21 (2020) 5622.
doi: 10.3390/ijms21165622
R. Bruni, D. Barreca, M. Protti, et al., Molecules 24 (2019) 2163.
doi: 10.3390/molecules24112163
Y. Ren, X. Song, L. Tan, et al., Front. Pharmacol. 11 (2020) 571535.
doi: 10.3389/fphar.2020.571535
A. Wu, J. Lu, G. Zhong, et al., Phytother. Res. 36 (2022) 3805–3832.
doi: 10.1002/ptr.7577
C.K. Mahendra, L.T.H. Tan, W.L. Lee, et al., Front. Pharmacol. 11 (2020) 366.
doi: 10.3389/fphar.2020.00366
M.M. Quetglas-Llabrés, C. Quispe, J. Herrera-Bravo, et al., Oxid. Med. Cell. Longev. 2022 (2022) 8615242.
M. Deng, L. Xie, L. Zhong, et al., Eur. J. Pharmacol. 879 (2020) 173124.
doi: 10.1016/j.ejphar.2020.173124
D. Wei, Y.J. Hou, Y.T. Xie, et al., J. Asian Nat. Prod. Res. 22 (2020) 153–166.
doi: 10.1080/10286020.2018.1540600
A. Hashimoto, T. Takamura-Enya, Y. Oda, Photochem. Photobiol. 95 (2019) 1403–1411.
doi: 10.1111/php.13138
B.Z. Zsidó, M. Balog, N. Erős, et al., Int. J. Mol. Sci. 21 (2020) 508.
doi: 10.3390/ijms21020508
S.R. Geenen, T. Schumann, T.J.J. Müller, J. Org. Chem. 85 (2020) 9737–9750.
doi: 10.1021/acs.joc.0c01059
S. Kokubo, S. Ohnuma, M. Murakami, et al., Int. J. Mol. Sci. 22 (2021) 12502.
doi: 10.3390/ijms222212502
J. Bertling, K.A. Thom, S. Geenen, et al., Photochem. Photobiol. 97 (2021) 1534–1547.
doi: 10.1111/php.13480
K. Nishikawa, T. Niwa, K. Nishikibe, et al., Chem. Eur. J. 27 (2021) 11045–11049.
doi: 10.1002/chem.202101603
C. Aekrungrueangkit, S. Wangngae, A. Kamkaew, et al., Sci. Rep. 12 (2022) 13487.
doi: 10.1038/s41598-022-17625-x
N. Wang, W. Liu, L. Zhou, et al., ACS Omega 7 (2022) 32131–32152.
doi: 10.1021/acsomega.2c03368
J. Dong, K. Li, Z. Hong, et al., Mol. Divers. 7 (2023) 571–588.
doi: 10.1007/s11030-022-10402-y
Z. Qin, M. Zhao, K. Zhang, et al., J. Org. Chem. 86 (2021) 7864–7871.
doi: 10.1021/acs.joc.1c00776
M. Tao, A. Wang, P. Guo, et al., Adv. Synth. Catal. 364 (2022) 24–29.
doi: 10.1002/adsc.202100940
C. Niu, D. Zang, H.A. Aisa, Chem. Res. Chin. Univ. 34 (2018) 408–414.
doi: 10.1007/s40242-018-7338-4
C. Niu, L. Yin, H.A. Aisa, Int. J. Mol. Sci. 19 (2018) 746.
doi: 10.3390/ijms19030746
E.S. Schiffrer, I. Sosic, A. Sterman, et al., MedChemComm 10 (2019) 1958–1965.
doi: 10.1039/c9md00365g
C.Y. Chen, T.H. Yang, C.D. Pan, et al., J. Carbohyd. Chem. 38 (2019) 179–191.
doi: 10.1080/07328303.2019.1609018
C. Niu, X. Lu, H.A. Aisa, RSC Adv. 9 (2019) 1671–1678.
doi: 10.1039/c8ra09755k
H. Xie, C. Niu, Z. Chao, et al., Heterocycl. Commun. 26 (2020) 176–184.
doi: 10.1515/hc-2020-0115
C. Niu, D. Zang, H.A. Aisa, Int. J. Mol. Sci. 23 (2022) 7959.
doi: 10.3390/ijms23147959
J. Dong, W. Gao, K. Li, et al., J. Agric. Food Chem. 70 (2022) 3435–3446.
doi: 10.1021/acs.jafc.1c07911
J.M. Timonen, K. Vuolteenaho, T. Leppänen, et al., J. Heterocyclic Chem. 55 (2018) 2590–2597.
doi: 10.1002/jhet.3318
J. Wu, L. Wang, Y. Zhang, et al., J. Agric. Food Chem. 69 (2021) 1091–1106.
doi: 10.1021/acs.jafc.0c07237
X. Shao, Z. Zhang, X. Qian, et al., Toxins 14 (2022) 677.
doi: 10.3390/toxins14100677
S.A. Kremis, D.S. Baev, A.V. Lipeeva, et al., J. Biochem. Mol. Toxicol. 33 (2019) e22396.
A.A. Ivanov, E.A. Ukladov, S.A. Kremis, et al., Protoplasma 259 (2022) 1321–1330.
doi: 10.1007/s00709-022-01739-0
D.I. Brahmbhatt, J.M. Gajera, C.N. Patel, et al., J. Heterocycl. Chem. 43 (2006) 1699–1702.
doi: 10.1002/jhet.5570430643
B. Borah, K.D. Dwivedi, R. Chowhan, Asian J. Org. Chem. 10 (2021) 3101–3126.
doi: 10.1002/ajoc.202100550
G.M. Mohammadi Ziarani, R. Moradi, T. Ahmadi, et al., Mol. Divers. 23 (2019) 1029–1064.
doi: 10.1007/s11030-019-09918-7
X. Chu, Z. Tang, J. Ma, et al., Tetrahedron 74 (2018) 970–974.
doi: 10.1016/j.tet.2018.01.012
S. Borthakur, P.P. Kaishap, S. Gogoi, Asian J. Org. Chem. 7 (2018) 918–921.
doi: 10.1002/ajoc.201800161
J. Kim, K. Lee, P.H. Lee, Bull. Korean Chem. Soc. 41 (2020) 709–718.
doi: 10.1002/bkcs.12058
T.A. To, Y.H. Vo, A.T. Nguyen, et al., Org. Biomol. Chem. 16 (2018) 5086–5089.
doi: 10.1039/C8OB01064A
M. He, Z. Yan, W. Wang, et al., Tetrahedron Lett. 59 (2018) 3706–3712.
doi: 10.1016/j.tetlet.2018.09.007
Q.T. Pham, P.Q. Le, H.V. Dang, et al., RSC Adv. 10 (2020) 44332–44338.
doi: 10.1039/d0ra07566c
S.A.Z. Ahmad, F.A. K.han, Synlett 34 (2023) 823–828.
doi: 10.1055/a-1912-3884
V.V. Pelipko, R.I. Baichurin, K.A. Lyssenko, et al., Mendeleev Commun. 32 (2022) 454–456.
doi: 10.1016/j.mencom.2022.07.009
P.H. Pham, Q.T.D. Nguyen, N.K.Q. Tran, et al., Eur. J. Org. Chem. 32 (2018) 4431–4435.
doi: 10.1002/ejoc.201800983
M. Patel, P. Parikh, J. Timaniya, et al., Arkivoc, 5 (2020) 155–167.
doi: 10.24820/ark.5550190.p011.170
S. Rani, N. Kamra, S. Thakral, et al., J. Heterocycl. Chem. 59 (2022) 144–160.
doi: 10.1002/jhet.4374
V. Nair, R.S. Menon, A.U. Vinod, et al., Tetrahedron Lett. 43 (2002) 2293–2295.
doi: 10.1016/S0040-4039(02)00226-5
A. Meydani, S. Yousefi, R. Gharibi, et al., ChemistrySelect 4 (2019) 3315–3324.
doi: 10.1002/slct.201900009
N. Muhamad Sarih, P. Myers, A. Slater, Sci. Rep. 9 (2019) 11834.
doi: 10.1038/s41598-019-47847-5
N.M. Sarih, A. Ciupa, S. Moss, et al., Sci. Rep. 10 (2020) 7421.
doi: 10.1038/s41598-020-63262-7
N.N.M.Y. Chan, A. Idris, Z.H.Z. Abidin, Mater. Chem. Phys. 276 (2022) 125406.
doi: 10.1016/j.matchemphys.2021.125406
N. Kerru, L. Gummidi, K. K. G.angu, et al., ChemistrySelect 5 (2020) 4104–4110.
doi: 10.1002/slct.202000796
H. Zhou, Y.W. Sun, J.B. Xu, et al., Res. Chem. Intermed. 48(2022) 1763–1772.
doi: 10.1007/s11164-022-04664-2
Y.O. Gorbunov, V.S. Mityanov, V.G. Melekhina, et al., Russ. Chem. Bull. 67 (2018) 304–307.
doi: 10.1007/s11172-018-2074-y
X. Chang, X. Zhang, Z. Chen, Org. Biomol. Chem. 16 (2018) 4279–4287.
doi: 10.1039/c8ob00942b
X. Chang, P. Zeng, Z. Chen, Eur. J. Org. Chem. 38(2019) 6478–6485.
doi: 10.1002/ejoc.201900987
Z. Chen, P. Zeng, S. Zhang, et al., ChemistrySelect 6 (2021) 4539–4543.
doi: 10.1002/slct.202101029
P. Rajesh, A.I. Almansour, N. Arumugam, et al., Org. Biomol. Chem. 19 (2021) 1060–1065.
doi: 10.1039/D0OB02276D
A. Jana, D. Ali, P. Bhaumick, et al., J. Org. Chem. 87 (2022) 7763–7777.
doi: 10.1021/acs.joc.2c00353
A.N. Komogortsev, V.G. Melekhina, B.V. Lichitsky, et al., Tetrahedron 111 (2022) 132716.
doi: 10.1016/j.tet.2022.132716
S. Kolita, P. Borah, P. S. N.aidu, et al., Tetrahedron 72 (2016) 532–538.
doi: 10.1016/j.tet.2015.12.016
T.A. Fattah, A. Saeed, Y.M. Al-Hiari, et al., J. Mol. Struct. 1179 (2019) 390–400.
doi: 10.1016/j.molstruc.2018.11.014
W.E. Noland, H.V. Kumar, A. Sharma, et al., Org. Lett. 22 (2020) 1801–1806.
doi: 10.1021/acs.orglett.0c00123
H. Abbasi-Dehnavi, M. Ghashang, Heterocycl. Commun., 24 (2018) 19–22.
doi: 10.1515/hc-2017-0141
D. Wagare, M. Shaikh, D. Lingampalle, et al., Curr. Organocatalysis 8 (2021) 217–222.
doi: 10.2174/2213337207999200706001142
V.N. Babu, A. Murugan, N. Katta, et al., J. Org. Chem. 84 (2019) 6631–6641.
doi: 10.1021/acs.joc.9b00096
V.P. Perevalov, V.S. Mityanov, B.V. Lichitsky, et al., Tetrahedron 76 (2020) 130947.
doi: 10.1016/j.tet.2020.130947
S.M. Yang, C.Y. Wang, C.K. Lin, et al., Angew. Chem. Int. Ed. 57 (2018) 1668–1672.
doi: 10.1002/anie.201711524
N. Panda, I. Mattan, RSC Adv. 8 (2018) 7716–7725.
doi: 10.1039/c7ra12419h
L. Fu, S. Li, Z. Cai, et al., Nat. Catal. 1 (2018) 469–478.
doi: 10.1038/s41929-018-0080-y
S.S. Vagh, B.J. Hou, A. Edukondalu, et al., Org. Lett. 23 (2021) 842–846.
doi: 10.1021/acs.orglett.0c04082
W. Zhang, S.C. Lun, S.H. Wang, et al., J. Med. Chem. 61 (2018) 791–803.
doi: 10.1021/acs.jmedchem.7b01319
W. Zhang, S.C. Lun, L.L. Liu, et al., J. Med. Chem. 62 (2019) 3575–3589.
doi: 10.1021/acs.jmedchem.9b00010
W. Zhang, L.L. Liu, S.C. Lun, et al., Eur. J. Med. Chem. 213 (2021) 113202.
doi: 10.1016/j.ejmech.2021.113202
W. Zhang, S.C. Lun, S.S. Wang, et al., J. Med. Chem., 65 (2022) 13240–13252.
doi: 10.1021/acs.jmedchem.2c01064
H. Zhang, C. Ma, Z. Zheng, et al., Chem. Commun. 54 (2018) 4935–4938.
doi: 10.1039/c8cc02474j
X. Song, X. Luo, J. Sheng, et al., RSC Adv. 9 (2019) 17391–17398.
doi: 10.1039/c9ra01909j
V.N. Shinde, K. Rangan, D. Kumar, et al., J. Org. Chem. 86 (2021) 9755–9770.
doi: 10.1021/acs.joc.1c01097
Q.F. Yan, Y. Jiang, X.H. Song, et al., J. Org. Chem. 87(2022) 5785–5794.
doi: 10.1021/acs.joc.2c00120
X.H. Ouyang, F.L. Tan, R.J. Song, et al., Org. Lett. 20 (2018) 6765–6768.
doi: 10.1021/acs.orglett.8b02883
Q. Li, X. He, J. Tao, et al., Adv. Synth. Catal., 361 (2019) 1874–1886.
doi: 10.1002/adsc.201900012
Y.J. Wang, T.T. Wang, L. Yao, et al., J. Org. Chem. 85 (2020) 9514–9524.
doi: 10.1021/acs.joc.0c00249
M.K. Pandya, M.R. Chhasatia, N.D. Vala, et al., J. Drug Deliv. Ther. 9 (2019) 32–42.
Y. Dong, J.T. Yu, S. Sun, et al., Chem. Commun., 56 (2020) 6688–6691.
doi: 10.1039/d0cc00176g
M.L.N. Rao, S. Nand, V.N. Murty, Asian J. Org. Chem. 11 (2022) e202100604.
doi: 10.1002/ajoc.202100604
G. Marzaro, I. Lampronti, E. D’Aversa, Eur. J. Med. Chem. 151 (2018) 285–293.
doi: 10.1016/j.ejmech.2018.03.080
A. Carbone, A. Montalbano, V. Spanò, et al., Eur. J. Med. Chem. 180 (2019) 283–290.
doi: 10.1016/j.ejmech.2019.07.025
T.V. Shokol, V.S. Moskvina, E.K. Glebov, et al., Chem. Nat. Compd. 55 (2019) 716–718.
doi: 10.1007/s10600-019-02787-4
T.V. Shokol, V.S. Moskvina, Ye.K. Hlibov, et al., Chem. Nat. Compd. 57 (2021) 33–37.
doi: 10.1007/s10600-021-03275-4
T. Shokol, A. Suprun, V. Moskvina, et al., French-Ukrainian J. Chem. 9 (2021) 83–93.
doi: 10.17721/fujcv9i2p83-93
C. Schultze, B. Schmidt, Beilstein J. Org. Chem. 14 (2018) 2991–2998.
doi: 10.3762/bjoc.14.278
T.O. Olomola, M.J. Mphahlele, J. Fluorine Chem. 229 (2020) 109395.
doi: 10.1016/j.jfluchem.2019.109395
E.N. Agbo, S. Gildenhuys, Y.S. Choong, et al., Bioorg. Chem. 101 (2020) 103997.
doi: 10.1016/j.bioorg.2020.103997
B.V. Lichitsky, A.N. Komogortsev, V.G. Melekhina, Molbank 2021 (2021) M1304.
doi: 10.3390/m1304
R. Singh, T. Horsten, R. Prakash, et al., Beilstein J. Org. Chem. 17(2021) 977982.
doi: 10.3762/bjoc.17.79
K. Rožman, E.M. Alexander, E. Ogorevc, et al., Molecules 25 (2020) 1305.
doi: 10.3390/molecules25061305
C.D. Guillon, Y.H. Jan, N. Foster, et al., Bioorg. Med. Chem. Lett. 29 (2019) 619–622.
doi: 10.1016/j.bmcl.2018.12.048
A.D. Buhimschi, D.M. Gooden, H. Jing, et al., Photochem. Photobiol. 96 (2020) 1014–1031.
doi: 10.1111/php.13263
L. Huang, H. Li, S. Huang, et al., Front. Cardiovasc. Med. 9(2022) 859422.
doi: 10.3389/fcvm.2022.859422
M.P. Olaya, N.E. Vergel, J.L. López, et al., Biomédica. 39 (2019) 491–501.
doi: 10.7705/biomedica.4299
L. Yin, G. Pang, C. Niu, et al., Int. J. Mol. Med. 41 (2018) 3727–3735.
D. Zang, C. Niu, H.A. Aisa, Drug Des. Devel. Ther. 13 (2019) 623–632.
doi: 10.2147/dddt.s180960
D. Zang, C. Niu, X. Lu, et al., Int. J. Mol. Sci. 23 (2022) 14190.
doi: 10.3390/ijms232214190
C. Wang, Y. Hou, S. Ge, et al., Biomed. Pharmacother. 150 (2022) 112982.
doi: 10.1016/j.biopha.2022.112982
I.O. Akchurin, A.I. Yakhutina, A.Y. Bochkov, et al., Heterocycl. Commun. 24 (2018) 85–91.
doi: 10.1515/hc-2017-0253
O.N. Tchaikovskaya, N.G. Dmitrieva, E.N. Bocharnikova, et al., Front. Chem. 9 (2021) 754950.
doi: 10.3389/fchem.2021.754950
M. Tang, Y. Liang, J. Liu, et al., CCS Chem. 4 (2022) 3230–3237.
doi: 10.31635/ccschem.022.202101679
M. Tang, Y. Liang, J. Liu, et al., Mater. Today Chem. 24 (2022) 100868.
doi: 10.1016/j.mtchem.2022.100868
L. Ma, X. Gao, X. Liu, et al., Chin. Chem. Lett. 34 (2023) 107735.
doi: 10.1016/j.cclet.2022.08.015
B. Wang, L. Zou, L. Wang, et al., Chin. Chem. Lett. 32 (2021) 1229–1232.
doi: 10.1016/j.cclet.2020.08.013
J. Xie, D. Zhao, Chin. Chem. Lett. 31 (2020) 2395–2400.
doi: 10.1016/j.cclet.2020.03.022
Hangwen Zheng , Ziqian Wang , HuiJie Zhang , Jing Lei , Rihui Li , Jian Yang , Haiyan Wang . Synthesis and applications of B, N co-doped carbons for zinc-based energy storage devices. Chinese Chemical Letters, 2025, 36(3): 110245-. doi: 10.1016/j.cclet.2024.110245
Hao Lv , Zhi Li , Peng Yin , Ping Wan , Mingshan Zhu . Recent progress on non-metallic carbon nitride for the photosynthesis of H2O2: Mechanism, modification and in-situ applications. Chinese Chemical Letters, 2025, 36(1): 110457-. doi: 10.1016/j.cclet.2024.110457
Yu Mao , Yilin Liu , Xiaochen Wang , Shengyang Ni , Yi Pan , Yi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443
Yulong Shi , Fenbei Chen , Mengyuan Wu , Xin Zhang , Runze Meng , Kun Wang , Yan Wang , Yuheng Mei , Qionglu Duan , Yinghong Li , Rongmei Gao , Yuhuan Li , Hongbin Deng , Jiandong Jiang , Yanxiang Wang , Danqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792
Huiju Cao , Lei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466
Peng Chen , Lijuan Liang , Yufei Zhu , Zhimin Xing , Zhenhua Jia , Teck-Peng Loh . Strategies for constructing seven-membered rings: Applications in natural product synthesis. Chinese Chemical Letters, 2024, 35(6): 109229-. doi: 10.1016/j.cclet.2023.109229
Teng-Yu Huang , Junliang Sun , De-Xian Wang , Qi-Qiang Wang . Recent progress in chiral zeolites: Structure, synthesis, characterization and applications. Chinese Chemical Letters, 2024, 35(12): 109758-. doi: 10.1016/j.cclet.2024.109758
Yiming Yang , Lichao Sun , Qingfeng Zhang . Plasmonic nanocrystals with intrinsic chirality: Biomolecule-directed synthesis and applications. Chinese Journal of Structural Chemistry, 2025, 44(1): 100467-100467. doi: 10.1016/j.cjsc.2024.100467
Yuqing Liu , Yu Yang , Yuhan E , Changlong Pang , Di Cui , Ang Li . Insight into microbial synthesis of metal nanomaterials and their environmental applications: Exploration for enhanced controllable synthesis. Chinese Chemical Letters, 2024, 35(11): 109651-. doi: 10.1016/j.cclet.2024.109651
Jiaming Xu , Yu Xiang , Weisheng Lin , Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093
Wei Zhou , Xi Chen , Lin Lu , Xian-Rong Song , Mu-Jia Luo , Qiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902
Shuaiwen Li , Zihui Chen , Feng Yang , Wanqing Yue . The age of vanadium-based nanozymes: Synthesis, catalytic mechanisms, regulation and biomedical applications. Chinese Chemical Letters, 2024, 35(4): 108793-. doi: 10.1016/j.cclet.2023.108793
Chaochao Jin , Kai Li , Jiongpei Zhang , Zhihua Wang , Jiajing Tan . N,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532
Anqiu LIU , Long LIN , Dezhi ZHANG , Junyu LEI , Kefeng WANG , Wei ZHANG , Junpeng ZHUANG , Haijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424
Guoping Yang , Zhoufu Lin , Xize Zhang , Jiawei Cao , Xuejiao Chen , Yufeng Liu , Xiaoling Lin , Ke Li . Assembly of Y(Ⅲ)-containing antimonotungstates induced by malic acid with catalytic activity for the synthesis of imidazoles. Chinese Chemical Letters, 2024, 35(12): 110274-. doi: 10.1016/j.cclet.2024.110274
Yao HUANG , Yingshu WU , Zhichun BAO , Yue HUANG , Shangfeng TANG , Ruixue LIU , Yancheng LIU , Hong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359
Conghui Wang , Lei Xu , Zhenhua Jia , Teck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
Xiaomeng Hu , Jie Yu , Lijie Sun , Linfeng Zhang , Wei Zhou , Dongpeng Yan , Xinrui Wang . Synthesis of an AVB@ZnTi-LDH composite with synergistically enhance UV blocking activity and high stability for potential application in sunscreen formulations. Chinese Chemical Letters, 2024, 35(11): 109466-. doi: 10.1016/j.cclet.2023.109466
Shehla Khalid , Muhammad Bilal , Nasir Rasool , Muhammad Imran . Photochemical reactions as synthetic tool for pharmaceutical industries. Chinese Chemical Letters, 2024, 35(9): 109498-. doi: 10.1016/j.cclet.2024.109498