Recent progress on fluorescent probes for viruses
-
* Corresponding authors.
E-mail addresses: xiaowm@smq.com.cn (W. Xiao), yinj@mail.ccnu.edu.cn (J. Yin).
1 These authors contributed equally to this work.
Citation:
Siyang Shen, Weilin Xu, Jianxiang Lu, Shuhui Wang, Yurou Huang, Xiaoyan Zeng, Weimin Xiao, Jun Yin. Recent progress on fluorescent probes for viruses[J]. Chinese Chemical Letters,
;2024, 35(1): 108360.
doi:
10.1016/j.cclet.2023.108360
D. Li, H. Chen, X. Gao, X. Mei, L. Yang, ACS Sens. 6 (2021) 613–627.
doi: 10.1021/acssensors.0c02322
H.M. Kariithia, C.N. Welchb, H.L. Ferreirab, et al., Infect. Genet. Evol. 78 (2020) 104074.
doi: 10.1016/j.meegid.2019.104074
N. Zhang, L. Wang, X. Deng, et al., J. Med. Virol. 92 (2020) 408–417.
doi: 10.1002/jmv.25674
L. Xu, J. Liu, M. Lu, D. Yang, X. Zheng, Liver Int. 40 (2020) 998–1004.
doi: 10.1111/liv.14435
H. Peng, D. Rossetto, S.S. Mancy, et al., ACS Nano 16 (2022) 4756–4774.
doi: 10.1021/acsnano.2c00048
X. Chen, H. Han, Z. Tang, Q. Jin, J. Ji, Adv. Healthc. Mater. 10 (2021) 2100736.
doi: 10.1002/adhm.202100736
A.A. Dawood, New Microb. New Infect. 35 (2020) 100673.
doi: 10.1016/j.nmni.2020.100673
S.M.J. Farsani, M. Deijs, R. Dijkman, et al., Influenza Other Respir. Viruses 9 (2015) 51–57.
doi: 10.1111/irv.12297
L. Olivier, D.C.F. Javier, M.F. Xavier, Biosens. Bioelectron. 22 (2007) 1205–1217.
doi: 10.1016/j.bios.2006.06.036
Y. Huang, W. Chen, J. Chung, J. Yin, J. Yoon, Chem. Soc. Rev. 50 (2021) 7725–7744.
doi: 10.1039/D0CS01340D
Z. Li, S. Chen, Y. Huang, et al., Chem. Eng. J. 450 (2022) 138087.
doi: 10.1016/j.cej.2022.138087
Y. Pan, C. Zhang, S.H. Liu, Y. Tan, J. Yin, Dyes Pigments 181 (2020) 108546.
doi: 10.1016/j.dyepig.2020.108546
W. Chen, X. Ma, H. Chen, S.H. Liu, J. Yin, Coordin. Chem. Rev. 427 (2021) 213584.
doi: 10.1016/j.ccr.2020.213584
L.J. Gui, K.Z. Wang, Y.X. Wang, et al., Chin. Chem. Lett. 34 (2023) 107586.
doi: 10.1016/j.cclet.2022.06.009
W. Chen, H. Chen, Y. Huang, et al., ACS Appl. Bio Mater. 5 (2022) 3428–3437.
doi: 10.1021/acsabm.2c00363
W. Chen, Y. Guan, Q. Chen, et al., Dyes Pigments 200 (2022) 110134.
doi: 10.1016/j.dyepig.2022.110134
B. Li, Q. Yu, Y. Duan, Crit. Rev. Biotechnol. 35 (2015) 82–93.
doi: 10.3109/07388551.2013.804487
X. Ma, Y. Huang, S.A.A. Abedi, et al., CCS Chem. 4 (2022) 1961–1976.
doi: 10.31635/ccschem.021.202101630
W. Liu, L. Miao, X. Li, Z. Xu, Coordin. Chem. Rev. 429 (2021) 213646.
doi: 10.1016/j.ccr.2020.213646
X. Zeng, Y. Huang, J. Dong, et al., Adv. Agrochem. 1 (2022) 73–84.
doi: 10.1016/j.aac.2022.08.001
Y. Huang, X. Ma, C. Gao, et al., Green Chem. Eng. 4 (2023) 417–426.
doi: 10.1016/j.gce.2022.08.004
X. Zeng, W. Chen, C. Liu, J. Yin, G.F. Yang, J. Agric. Food Chem. 69 (2021) 13700–13712.
doi: 10.1021/acs.jafc.1c05249
A.P. Marshall, J.D. Shirley, E.E. Carlson, Curr. Opin. Chem. Biol. 57 (2020) 155–165.
X. Ma, W. Chi, X. Han, et al., Chin. Chem. Lett. 32 (2021) 1790–1794.
doi: 10.1016/j.cclet.2020.12.031
F. Yan, J.N. Cui, C. Wang, et al., Chin. Chem. Lett. 33 (2022) 4219–4222.
doi: 10.1016/j.cclet.2022.03.006
Y.Y. Sun, X.N. Zhou, L.Y. Sun, et al., Chin. Chem. Lett. 33 (2022) 4229–4232.
doi: 10.1016/j.cclet.2022.01.087
L. Feng, W. Chen, X. Ma, S.H. Liu, J. Yin, Org. Biomol. Chem. 18 (2020) 9385–9397.
doi: 10.1039/D0OB01962C
W. Chen, C. Zhang, H. Chen, et al., Anal. Chem. 93 (2021) 3378–3385.
doi: 10.1021/acs.analchem.0c04260
D. Li, W. Chen, S.H. Liu, X. Chen, J. Yin, Chin. Chem. Lett. 31 (2020) 2891–2896.
doi: 10.1016/j.cclet.2020.02.047
D. Cao, Z. Liu, P. Verwilst, et al., Chem. Rev. 119 (2019) 10403–10519.
doi: 10.1021/acs.chemrev.9b00145
H.L. Wang, Y.H. Sun, X.M. Lin, et al., Chin. Chem. Lett. 34 (2023) 107626.
doi: 10.1016/j.cclet.2022.06.049
M. Tian, Y. Ma, W. Lin, Acc. Chem. Res. 52 (2019) 2147–2157.
doi: 10.1021/acs.accounts.9b00289
G. Li, J. Wang, D. Li, et al., Chin. Chem. Lett. 32 (2021) 1527–1531.
doi: 10.1016/j.cclet.2020.09.040
M.X. Zhang, X. Yang, K. Zhang, J. Yin, S.H. Liu, Chem. Eur. J. 27 (2021) 14645–14652.
doi: 10.1002/chem.202102180
A. Fernańdez, M. Vendrell, Chem. Soc. Rev. 45 (2016) 1182–1196.
doi: 10.1039/C5CS00567A
X. Wu, D. Li, J. Li, et al., Chin. Chem. Lett. 32 (2021) 1937–1941.
doi: 10.1016/j.cclet.2020.12.038
F. Ye, Y. Liu, J. Chen, et al., Org. Lett. 21 (2019) 7213–7217.
doi: 10.1021/acs.orglett.9b02292
Y. Huang, Y. Pan, X. Zeng, M. Qiu, J. Yin, Results Chem. 2 (2020) 100082.
doi: 10.1016/j.rechem.2020.100082
D. Wu, L. Chen, N. Kwon, J. Yoon, Chemistry (Easton) 1 (2016) 674–698.
H.V. Fineberg, N. Engl. J. Med. 370 (2014) 1335–1342.
doi: 10.1056/NEJMra1208802
Z. Li, Y. Lang, L. Liu, et al., Nat. Chem. 13 (2021) 496–503.
doi: 10.1038/s41557-021-00655-9
J.K. Park, Y. Xiao, M.D. Ramuta, et al., Nat. Med. 26 (2020) 1240–1246.
doi: 10.1038/s41591-020-0937-x
R.R. Kale, H. Mukundan, D.N. Price, et al., J. Am. Chem. Soc. 130 (2008) 8169–8171.
doi: 10.1021/ja800842v
X.P. He, Y.L. Zeng, X.Y. Tang, et al., Angew. Chem. Int. Ed. 55 (2016) 13995–13999.
doi: 10.1002/anie.201606488
W. Hai, T. Goda, H. Takeuchi, et al., ACS Appl. Mater. Interfaces 9 (2017) 14162–14170.
doi: 10.1021/acsami.7b02523
W.T. Dou, X. Wang, T. Liu, et al., Chemistry (Easton) 8 (2022) 1750–1761.
S.C. Hong, D.P. Murale, S.Y. Jang, et al., Angew. Chem. Int. Ed. 57 (2018) 9716–9721.
doi: 10.1002/anie.201804412
P.F. Simon, S. McCorrister, P. Hu, et al., J. Proteome Res. 14 (2015) 4511–4523.
doi: 10.1021/acs.jproteome.5b00196
O. Seitz, F. Bergmann, D. Heindl, Angew. Chem. Int. Ed. 38 (1999) 2203–2206.
doi: 10.1002/(SICI)1521-3773(19990802)38:15<2203::AID-ANIE2203>3.0.CO;2-2
O. Köhler, O. Seitz, Chem. Commun. 3 (2003) 2938–2939.
S. Kummer, A. Knoll, E. Socher, et al., Bioconjug. Chem. 23 (2012) 2051–2060.
doi: 10.1021/bc300249f
N. Raddaoui, S. Croce, F. Geiger, et al., ChemBioChem 21 (2020) 2214–2218.
doi: 10.1002/cbic.202000081
K.A. Covalciuc, K.H. Webb, C.A. Carlson, J. Clin. Microbiol. 37 (1999) 3971–3974.
doi: 10.1128/JCM.37.12.3971-3974.1999
T. Rowe, R.A. Abernathy, J. Hu-Primmer, et al., J. Clin. Microbiol. 37 (1999) 937–943.
doi: 10.1128/JCM.37.4.937-943.1999
M.V. Itzstein, Nat. Rev. Drug Discov. 6 (2007) 967–974.
doi: 10.1038/nrd2400
X. Pan, P. Liu, X. Wu, et al., Sens. Actuators B: Chem. 345 (2021) 130392.
doi: 10.1016/j.snb.2021.130392
Z. Shang, S.Y. Chan, W.J. Liu, P. Li, W. Huang, ACS Infect. Dis. 7 (2021) 1369–1388.
doi: 10.1021/acsinfecdis.0c00646
R. Chen, C. Ren, M. Liu, et al., ACS Nano 15 (2021) 8996–9004.
doi: 10.1021/acsnano.1c01932
X. Zhang, J. Cheng, J. Ma, et al., ACS Infect. Dis. 5 (2019) 759–768.
doi: 10.1021/acsinfecdis.8b00269
X. Zhang, C. Wang, P. Wang, et al., Chem. Sci. 7 (2016) 3614–3620.
doi: 10.1039/C6SC00266H
H. Guan, M. Cai, L. Chen, Y. Wang, Z. He, Luminescence 25 (2010) 311–316.
doi: 10.1002/bio.1151
X. Ye, C. Tateno, E.P. Thi, et al., ACS Infect. Dis. 5 (2019) 738–749.
doi: 10.1021/acsinfecdis.8b00192
A.M. Ortega-Prieto, C. Cherry, H. Gunn, M. Dorner, ACS Infect. Dis. 5 (2019) 688–702.
doi: 10.1021/acsinfecdis.8b00223
L. Chen, X. Zhang, G. Zhou, et al., Anal. Chem. 84 (2012) 3200–3207.
doi: 10.1021/ac203172x
L. Chen, X. Zhang, C. Zhang, et al., Anal. Chem. 83 (2011) 7316–7322.
doi: 10.1021/ac201129d
L.H. Xiong, X. He, Z. Zhao, et al., ACS Nano 12 (2018) 9549–9557.
doi: 10.1021/acsnano.8b05270
J. Xiong, K. Wang, Z. Yao, et al., ACS Appl. Mater. Interfaces 10 (2018) 5819–5827.
doi: 10.1021/acsami.7b18718
M. Bouche, M. Pühringer, A. Iturmendi, et al., ACS Appl. Mater. Interfaces 11 (2019) 28648–28656.
doi: 10.1021/acsami.9b08386
Z. Qiao, K.R. Wigginton, Environ. Sci. Technol. 50 (2016) 13371–13379.
doi: 10.1021/acs.est.6b04281
M.Y. Lee, J.A. Yang, H.S. Jung, et al., ACS Nano 6 (2012) 9522–9531.
doi: 10.1021/nn302538y
X. Luo, B. Xue, G. Feng, et al., J. Am. Chem. Soc. 141 (2019) 5182–5191.
doi: 10.1021/jacs.8b10265
Y. Kong, R. Wu, X. Wang, et al., RSC Adv. 12 (2022) 27933–27939.
doi: 10.1039/D2RA04549D
S. Sasaki, G.P.C. Drummen, G. Konishia, J. Mater. Chem. C 4 (2016) 2731–2743.
doi: 10.1039/C5TC03933A
V.M. Farzan, I.O. Aparin, O.A. Veselova, et al., Anal. Methods 8 (2016) 5826–5831.
doi: 10.1039/C6AY01304J
S.P. Yang, S.R. Chen, S.W. Liu, et al., Anal. Chem. 87 (2015) 12206–12214.
doi: 10.1021/acs.analchem.5b03084
J. Zhang, Y. Fu, Y. Mei, F. Jiang, J.R. Lakowicz, Anal. Chem. 82 (2010) 4464–4471.
doi: 10.1021/ac100241f
Z. Qiao, H. Qi, H. Zhang, et al., Anal. Chem. 92 (2020) 1934–1939.
doi: 10.1021/acs.analchem.9b04193
F. Chandra, W.L. Lee, F. Armas, et al., J. Thompson, Environ. Sci. Technol. Lett. 8 (2021) 785–791.
doi: 10.1021/acs.estlett.1c00517
Y.T. Tung, C.C. Chang, Y.L. Lin, S.L. Hsieh, G.J. Wang, Biosens. Bioelectron. 77 (2016) 90–98.
doi: 10.1016/j.bios.2015.09.007
E.M.A. Pereira, A.F. Dario, R.F.O. Franca, B.A.L. Fonseca, D.F.S. Petri, ACS Appl. Mater. Interfaces 2 (2010) 2602–2610.
doi: 10.1021/am100442f
M. Yang, J. Fan, J. Du, X. Peng, Chem. Sci. 11 (2020) 5127–5141.
doi: 10.1039/D0SC01482F
H. Ye, L. Sun, Z. Pang, et al., Anal. Chem. 94 (2022) 1733–1741.
doi: 10.1021/acs.analchem.1c04324
Z. Pang, H. Ye, D. Ma, et al., ChemBioChem 22 (2021) 2292–2299.
doi: 10.1002/cbic.202100138
J.M. Alonso, M. Ł. Górzny, A.M. Bittner, Trends Biotechnol. 31 (2013) 530–538.
doi: 10.1016/j.tibtech.2013.05.013
S.J. Gao, Z. Li, Z.C. Sun, et al., Chin. J. Polym. Sci. 38 (2020) 587–592.
doi: 10.1007/s10118-020-2365-2
P.J. Pacheco-Liñan, A. Garzon, J. Tolosa, et al., J. Phys. Chem. C 120 (2016) 18771–18779.
doi: 10.1021/acs.jpcc.6b05526
M. Leshabane, G.A. Dziwornu, D. Coertzen, et al., ACS Infect. Dis. 7 (2021) 1945–1955.
doi: 10.1021/acsinfecdis.0c00910
N. Dey, D. Bhagat, S. Bhattacharya, ACS Sustain. Chem. Eng. 7 (2019) 7667–7675.
doi: 10.1021/acssuschemeng.8b06152
L.W. Song, Y.B. Wang, L.L. Fang, et al., Anal. Chem. 87 (2015) 5173–5180.
doi: 10.1021/ac504832c
Y. Tian, X. Yan, M.L. Saha, Z. Niu, P.J. Stang, J. Am. Chem. Soc. 138 (2016) 12033–12036.
doi: 10.1021/jacs.6b07402
X. Ma, Y. Huang, W. Chen, et al., Angew. Chem. Int. Ed. 62 (2023) e202216109.
doi: 10.1002/anie.202216109
Y. Yue, F. Huo, P. Ning, et al., J. Am. Chem. Soc. 139 (2017) 3181.
doi: 10.1021/jacs.6b12845
C.X. Yin, K.M. Xiong, F.J. Huo, J.C. Salamanca, R.M. Strongin, Angew. Chem. Int. Ed. 56 (2017) 13188.
doi: 10.1002/anie.201704084
Y. Yue, F. Huo, F. Cheng, et al., Chem. Soc. Rev. 48 (2019) 4155–4177.
doi: 10.1039/C8CS01006D
Y.H. Pan, X.X. Chen, L. Dong, et al., Chin. Chem. Lett. 32 (2021) 3895–3898.
doi: 10.1016/j.cclet.2021.06.024
T.X. Jin, M.Y. Cui, D. Wu, et al., Chin. Chem. Lett. 32 (2021) 3899–3902.
doi: 10.1016/j.cclet.2021.06.033
Chuanfeng Fan , Jian Gao , Yingkai Gao , Xintong Yang , Gaoning Li , Xiaochun Wang , Fei Li , Jin Zhou , Haifeng Yu , Yi Huang , Jin Chen , Yingying Shan , Li Chen . A non-peptide-based chymotrypsin-targeted long-wavelength emission fluorescent probe with large Stokes shift and its application in bioimaging. Chinese Chemical Letters, 2024, 35(10): 109838-. doi: 10.1016/j.cclet.2024.109838
Fan Zheng , Runsha Xiao , Shuai Huang , Zhikang Chen , Chen Lai , Anyao Bi , Heying Yao , Xueping Feng , Zihua Chen , Wenbin Zeng . Accurate visualization colorectal cancer by monitoring viscosity variations with a novel mitochondria-targeted fluorescent probe. Chinese Chemical Letters, 2025, 36(2): 109876-. doi: 10.1016/j.cclet.2024.109876
Lixian Fu , Yiyun Tan , Yue Ding , Weixia Qing , Yong Wang . Water–soluble and polarity–sensitive near–infrared fluorescent probe for long–time specific cancer cell membranes imaging and C. Elegans label. Chinese Chemical Letters, 2024, 35(4): 108886-. doi: 10.1016/j.cclet.2023.108886
Quan Zhang , Shunjie Xing , Jingqian Han , Li Feng , Jianchun Li , Zhaosheng Qian , Jin Zhou . Organic pollutant sensing for human health based on carbon dots. Chinese Chemical Letters, 2025, 36(1): 110117-. doi: 10.1016/j.cclet.2024.110117
Xinqiong Li , Guocheng Rao , Xi Peng , Chan Yang , Yanjing Zhang , Yan Tian , Xianghui Fu , Jia Geng . Direct detection of C9orf72 hexanucleotide repeat expansions by nanopore biosensor. Chinese Chemical Letters, 2024, 35(5): 109419-. doi: 10.1016/j.cclet.2023.109419
Gaojian Yang , Zhiyang Li , Rabia Usman , Zhu Chen , Yuan Liu , Song Li , Hui Chen , Yan Deng , Yile Fang , Nongyue He . DNA walker induced "signal on" fluorescence aptasensor strategy for rapid and sensitive detection of extracellular vesicles in gastric cancer. Chinese Chemical Letters, 2025, 36(2): 109930-. doi: 10.1016/j.cclet.2024.109930
Bin Fang , Jiaqi Yang , Limin Wang , Haoqin Li , Jiaying Guo , Jiaxin Zhang , Qingyuan Guo , Bo Peng , Kedi Liu , Miaomiao Xi , Hua Bai , Li Fu , Lin Li . A mitochondria-targeted H2S-activatable fluorogenic probe for tracking hepatic ischemia-reperfusion injury. Chinese Chemical Letters, 2024, 35(6): 108913-. doi: 10.1016/j.cclet.2023.108913
Haixian Ren , Yuting Du , Xiaojing Yang , Fangjun Huo , Le Zhang , Caixia Yin . Development of ESIPT-based specific fluorescent probes for bioactive species based on the protection-deprotection of the hydroxyl. Chinese Chemical Letters, 2025, 36(2): 109867-. doi: 10.1016/j.cclet.2024.109867
Yudi Cheng , Xiao Wang , Jiao Chen , Zihan Zhang , Jiadong Ou , Mengyao She , Fulin Chen , Jianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156
Chuan-Zhi Ni , Ruo-Ming Li , Fang-Qi Zhang , Qu-Ao-Wei Li , Yuan-Yuan Zhu , Jie Zeng , Shuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862
Tao Liu , Xuwei Han , Xueyi Sun , Weijie Zhang , Ke Gao , Runan Min , Yuting Tian , Caixia Yin . An activated fluorescent probe to monitor NO fluctuation in Parkinson’s disease. Chinese Chemical Letters, 2025, 36(3): 110170-. doi: 10.1016/j.cclet.2024.110170
Huamei Zhang , Jingjing Liu , Mingyue Li , Shida Ma , Xucong Zhou , Aixia Meng , Weina Han , Jin Zhou . Imaging polarity changes in pneumonia and lung cancer using a lipid droplet-targeted near-infrared fluorescent probe. Chinese Chemical Letters, 2024, 35(12): 110020-. doi: 10.1016/j.cclet.2024.110020
Zhixiao Xiong , Shanni Qiu , Yuyu Wang , Houna Duan , Yi Xiao , Yufang Xu , Weiping Zhu , Xuhong Qian . Photocalibrated NO release from the zinc ion fluorescent probe based on naphthalimide and its application in living cells. Chinese Chemical Letters, 2025, 36(4): 110002-. doi: 10.1016/j.cclet.2024.110002
Lei Shen , Hongmei Liu , Ming Jin , Jinchao Zhang , Caixia Yin , Shuxiang Wang , Yutao Yang . “Three-in-one” strategy of trifluoromethyl regulated blood-brain barrier permeable fluorescent probe for peroxynitrite and antiepileptic evaluation of edaravone. Chinese Chemical Letters, 2024, 35(10): 109572-. doi: 10.1016/j.cclet.2024.109572
Han-Min Wang , Yan-Chen Li , Lu-Lu Sun , Ming-Ye Tang , Jia Liu , Jiahao Cai , Lei Dong , Jia Li , Yi Zang , Hai-Hao Han , Xiao-Peng He . Protein-encapsulated long-wavelength fluorescent probe hybrid for imaging lipid droplets in living cells and mice with non-alcoholic fatty liver. Chinese Chemical Letters, 2024, 35(11): 109603-. doi: 10.1016/j.cclet.2024.109603
Xin Jiang , Han Jiang , Yimin Tang , Huizhu Zhang , Libin Yang , Xiuwen Wang , Bing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415
Zengchao Guo , Weiwei Liu , Tengfei Liu , Jinpeng Wang , Hui Jiang , Xiaohui Liu , Yossi Weizmann , Xuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060
Yunlong Li , Xinyu Zhang , Shuang Liu , Chunsheng Li , Qiang Wang , Jin Ye , Yong Lu , Jiating Xu . Engineered iron-based metal-organic frameworks nanoplatforms for cancer theranostics: A mini review. Chinese Chemical Letters, 2025, 36(2): 110501-. doi: 10.1016/j.cclet.2024.110501
Jiajia Lv , Jie Gao , Hongyu Li , Zeli Yuan , Nan Dong . Rational design of hydroxytricyanopyrrole-based probes with high affinity and rapid visualization for amyloid-β aggregates in vitro and in vivo. Chinese Chemical Letters, 2024, 35(5): 108940-. doi: 10.1016/j.cclet.2023.108940
Chao Liu , Chao Jia , Shi-Xian Gan , Qiao-Yan Qi , Guo-Fang Jiang , Xin Zhao . A luminescent one-dimensional covalent organic framework for organic arsenic sensing in water. Chinese Chemical Letters, 2024, 35(11): 109750-. doi: 10.1016/j.cclet.2024.109750