Strategies to accelerate bubble detachment for efficient hydrogen evolution
-
* Corresponding author.
E-mail address: wanglonglu@njupt.edu.cn (L. Wang).
Citation:
Weinan Yin, Lexing Yuan, Hao Huang, Yuntao Cai, Junan Pan, Ning Sun, Qiyu Zhang, Qianhe Shu, Chen Gu, Zechao Zhuang, Longlu Wang. Strategies to accelerate bubble detachment for efficient hydrogen evolution[J]. Chinese Chemical Letters,
;2024, 35(1): 108351.
doi:
10.1016/j.cclet.2023.108351
H. Ishaq, I. Dincer, C. Crawford, Int. J. Hydrog. Energy 47 (2022) 26238–26264.
doi: 10.1016/j.ijhydene.2021.11.149
M. Younas, S. Shafique, A. Hafeez, F. Javed, F. Rehman, Fuel 316 (2022) 123317.
doi: 10.1016/j.fuel.2022.123317
A. Kovač, M. Paranos, D. Marciuš, Int. J. Hydrog. Energy 46 (2021) 10016–10035.
doi: 10.1016/j.ijhydene.2020.11.256
T. Capurso, M. Stefanizzi, M. Torresi, S.M. Camporeale, Energ. Convers. Manag. 251 (2022) 114898.
doi: 10.1016/j.enconman.2021.114898
X. Li, L. Zhao, J. Yu, et al., Nano-Micro Lett. 12 (2020) 131.
doi: 10.1007/s40820-020-00469-3
T. Terlouw, C. Bauer, R. McKenna, M. Mazzotti, Energy Environ. Sci. 15 (2022) 3583–3602.
doi: 10.1039/d2ee01023b
X. Xiao, L. Yang, W. Sun, et al., Small 18 (2022) 2105830.
doi: 10.1002/smll.202105830
Z. Yu, Y. Duan, X. Feng, et al., Adv. Mater. 33 (2021) 2007100.
doi: 10.1002/adma.202007100
Q. He, L. Wang, K. Yin, S. Luo, Nanoscale Res. Lett. 13 (2018) 167.
doi: 10.1186/s11671-018-2570-x
M. Liu, H. Li, S. Liu, et al., Nano Res. 15 (2022) 5946–5952.
doi: 10.1007/s12274-022-4267-9
Y. Li, Y. Sun, Y. Qin, et al., Adv. Energy Mater. 10 (2020) 1903120.
doi: 10.1002/aenm.201903120
Y. Fu, Y. Shan, G. Zhou, et al., Joule 3 (2019) 2955–2967.
doi: 10.1016/j.joule.2019.09.006
Y. Li, L. Wang, S. Zhang, et al., Catal. Sci. Technol. 7 (2017) 718–724.
doi: 10.1039/C6CY02649D
C. Chang, L. Wang, L. Xie, et al., Nano Res. 15 (2022) 8613–8635.
doi: 10.1007/s12274-022-4507-z
R. Iwata, L. Zhang, K.L. Wilke, et al., Joule 5 (2021) 887–900.
doi: 10.1016/j.joule.2021.02.015
L. Chen, X. Zhang, A. Chen, et al., Chin. J. Catal. 43 (2022) 11–32.
doi: 10.1016/S1872-2067(21)63852-4
Y. Zeng, M. Zhao, Z. Huang, et al., Adv. Energy Mater. 12 (2022) 2201713.
doi: 10.1002/aenm.202201713
M. Jin, X. Zhang, S. Niu, et al., ACS Nano 16 (2022) 11577–11597.
doi: 10.1021/acsnano.2c02820
T. Guo, L. Li, Z. Wang, Adv. Energy Mater. 12 (2022) 2200827.
doi: 10.1002/aenm.202200827
A. Ali, F. Long, P. Shen, Electrochem. Energy Rev. 5 (2022) 1–30.
K. Dastafkan, Q. Meyer, X. Chen, C. Zhao, Small 16 (2020) 2002412.
doi: 10.1002/smll.202002412
P.A. Kempler, R.H. Coridan, N.S. Lewis, Energy Environ. Sci. 13 (2020) 1808–1817.
doi: 10.1039/d0ee00356e
T. Kou, S. Wang, R. Shi, et al., Adv. Energy Mater. 10 (2020) 2002955.
doi: 10.1002/aenm.202002955
S. Xu, Q. Wu, B. Lu, et al., Acta Phys. Chim. Sin. 39 (2022) 2209001.
doi: 10.3866/pku.whxb202209001
Y. Luo, Z. Zhang, M. Chhowalla, B. Liu, Adv. Mater. 34 (2022) 2108133.
doi: 10.1002/adma.202108133
S. Ben, Y. Ning, Z. Zhao, et al., Adv. Funct. Mater. 32 (2022) 2113374.
doi: 10.1002/adfm.202113374
R.A. Márquez, K. Kawashima, Y.J. Son, et al., ACS Appl. Mater. Interfaces 14 (2022) 42153–42170.
doi: 10.1021/acsami.2c12579
M. Jiang, H. Wang, Y. Li, et al., Small 13 (2017) 1602240.
doi: 10.1002/smll.201602240
Y. Xu, X. Jiang, G. Shao, et al., Energy Environ. Mater. 4 (2021) 117–125.
doi: 10.1002/eem2.12104
M. Liu, Z. Sun, S. Li, et al., J. Mater. Chem. A 9 (2021) 22129–22139.
doi: 10.1039/d1ta04713b
X. Li, Y. Jiang, Z. Zhang, et al., Colloid. Surface A 621 (2021) 126547.
doi: 10.1016/j.colsurfa.2021.126547
T. Iida, H. Matsushima, Y. Fukunaka, J. Electrochem. Soc. 154 (2007) E112.
doi: 10.1149/1.2742807
F. Foroughi, C. Immanuel Bernäcker, L. Röntzsch, B.G. Pollet, Ultrason. Sonochemistry 84 (2022) 105979.
doi: 10.1016/j.ultsonch.2022.105979
S. Merouani, O. Hamdaoui, Ultrason. Sonochemistry 32 (2016) 320–327.
doi: 10.1016/j.ultsonch.2016.03.026
M. Wang, Z. Wang, Z. Guo, Z. Li, Int. J. Hydrog. Energy 36 (2011) 3305–3312.
doi: 10.1016/j.ijhydene.2010.12.116
K. Wang, C. Liao, W. Wang, et al., ACS Appl. Energy Mater. 3 (2020) 6752–6757.
doi: 10.1021/acsaem.0c00890
Y. Zhang, C. Liang, J. Wu, et al., ACS Appl. Energy Mater. 3 (2020) 10303–10316.
doi: 10.1021/acsaem.0c02104
Y. Li, L. Zhang, J. Peng, W. Zhang, K. Peng, J. Power Sources 433 (2019) 226704.
doi: 10.1016/j.jpowsour.2019.226704
K.M. Cho, P.R. Deshmukh, W.G. Shin, Ultrason. Sonochemistry 80 (2021) 105796.
doi: 10.1016/j.ultsonch.2021.105796
Y. Liu, L. Pan, H. Liu, et al., Int. J. Hydrog. Energy 44 (2019) 1352–1358.
doi: 10.1016/j.ijhydene.2018.11.103
L. Elias, A. Chitharanjan Hegde, Electrocatalysis 8 (2017) 375–382.
doi: 10.1007/s12678-017-0382-x
Y. Ehrnst, P.C. Sherrell, A.R. Rezk, L.Y. Yeo, Adv. Energy Mater. 13 (2023) 2203164.
doi: 10.1002/aenm.202203164
X. Yin, G. Sun, A. Song, et al., Electrochim. Acta 249 (2017) 52–63.
doi: 10.1016/j.electacta.2017.08.010
J. Zhang, F. Dong, C. Wang, et al., ACS Appl. Mater. Interfaces 13 (2021) 32435–32441.
doi: 10.1021/acsami.1c04993
T. Shi, H. Feng, D. Liu, Y. Zhang, Q. Li, Appl. Energ. 325 (2022) 119887.
doi: 10.1016/j.apenergy.2022.119887
Y. Zhang, P. Guo, S. Guo, et al., Angew. Chem. Int. Ed. 61 (2022) e202209703.
doi: 10.1002/anie.202209703
H. Rox, A. Bashkatov, X. Yang, et al., Int. J. Hydrog. Energy 48 (2023) 2892–2905.
doi: 10.1016/j.ijhydene.2022.10.165
A. Hodges, A.L. Hoang, G. Tsekouras, et al., Nat. Commun. 13 (2022) 1304.
doi: 10.1038/s41467-022-28953-x
Y. Chen, J. Chen, K. Bai, Z. Xiao, S. Fan, J. Power Sources 561 (2023) 232733.
doi: 10.1016/j.jpowsour.2023.232733
N. Pande, G. Mul, D. Lohse, B. Mei, J. Electrochem. Soc. 166 (2019) E280.
doi: 10.1149/2.0191910jes
A.R. Zeradjanin, P. Narangoda, I. Spanos, J. Masa, R. Schlögl, Curr. Opin. Electrochem. 30 (2021) 100797.
doi: 10.1016/j.coelec.2021.100797
G.B. Darband, M. Aliofkhazraei, S. Shanmugam, Renew. Sustain. Energy Rev. 114 (2019) 109300.
doi: 10.1016/j.rser.2019.109300
Z. Xie, S. Yu, G. Yang, et al., Chem. Eng. 410 (2021) 128333.
doi: 10.1016/j.cej.2020.128333
Y. Li, H. Zhang, T. Xu, et al., Adv. Funct. Mater. 25 (2015) 1737–1744.
doi: 10.1002/adfm.201404250
M. Wang, Z. Wang, Z. Guo, Int. J. Hydrog. Energy 35 (2010) 3198–3205.
doi: 10.1016/j.ijhydene.2010.01.128
X. Yu, M. Wang, Z. Wang, X. Gong, Z. Guo, J. Phys. Chem. C 121 (2017) 16792–16802.
doi: 10.1021/acs.jpcc.7b03822
M. Bae, Y. Kang, D.W. Lee, D. Jeon, J. Ryu, Adv. Energy Mater. 12 (2022) 2201452.
doi: 10.1002/aenm.202201452
D. Jeon, J. Park, C. Shin, et al., Sci. Adv. 6 (2020) eaaz3944.
doi: 10.1126/sciadv.aaz3944
B. Wu, T. Wang, B. Liu, et al., Nat. Commun. 13 (2022) 4460.
doi: 10.1038/s41467-022-32099-1
W. Yin, Y. Cai, L. Xie, et al., Nano Res. (2022) 10.1007/s12274-022-5133–5.
doi: 10.1007/s12274-022-5133-5
Y. He, Y. Cui, W. Shang, Z. Zhao, P. Tan, Chem. Eng. J. 448 (2022) 137782.
doi: 10.1016/j.cej.2022.137782
Y. He, Y. Cui, W. Shang, Z. Zhao, P. Tan, Chem. Eng. J. 438 (2022) 135541.
doi: 10.1016/j.cej.2022.135541
J. Tan, B. Kang, K. Kim, et al., Nat. Energy 7 (2022) 537–547.
doi: 10.1038/s41560-022-01042-5
Q. Song, Z. Xue, C. Liu, et al., J. Am. Chem. Soc. 142 (2020) 1857–1863.
doi: 10.1021/jacs.9b10388
K. Torii, M. Kodama, S. Hirai, Int. J. Hydrog. Energy 46 (2021) 35088–35101.
doi: 10.1016/j.ijhydene.2021.08.101
L. Jiang, N. Yang, C. Yang, et al., Appl. Catal. B: Environ. 269 (2020) 118780.
doi: 10.1016/j.apcatb.2020.118780
Y. Tang, F. Liu, W. Liu, et al., Appl. Catal. B: Environ. 321 (2023) 122081.
doi: 10.1016/j.apcatb.2022.122081
W. Xu, Z. Lu, P. Wan, Y. Kuang, X. Sun, Small 12 (2016) 2492–2498.
doi: 10.1002/smll.201600189
J. Shen, B. Li, Y. Zheng, et al., Chem. Eng. J. 433 (2022) 133517.
doi: 10.1016/j.cej.2021.133517
D. Wang, Y. Liu, L. Liu, et al., Nano Res. 16 (2023) 6584–6592.
doi: 10.1007/s12274-022-5373-4
W. Liu, X. Wang, F. Wang, et al., Nat. Commun. 12 (2021) 6776.
doi: 10.1038/s41467-021-27118-6
X. Xu, G. Fu, Y. Wang, et al., Nano Lett. 23 (2023) 629–636.
doi: 10.1021/acs.nanolett.2c04380
O. van der Heijden, S. Park, J.J.J. Eggebeen, M.T.M. Koper, Angew. Chem. Int. Ed. 62 (2023) e202216477.
doi: 10.1002/anie.202216477
G. Issabayeva, M.K. Aroua, N.M. Sulaiman, Desalination 194 (2006) 192–201.
doi: 10.1016/j.desal.2005.09.029
G.F. Swiegers, A.L. Hoang, A. Hodges, et al., Curr. Opin. Electrochem. 32 (2022) 100881.
doi: 10.1016/j.coelec.2021.100881
D. Huang, B. Xiong, J. Fang, et al., Appl. Energy 314 (2022) 118987.
doi: 10.1016/j.apenergy.2022.118987
J. Zhou, M. Guo, L. Wang, et al., Chem. Eng. J. 366 (2019) 163–171.
doi: 10.1016/j.cej.2019.02.079
S. Wang, L. Wang, L. Xie, et al., Nano Res. 15 (2022) 4996–5003.
doi: 10.1007/s12274-022-4158-0
L. Lin, P. Sherrell, Y. Liu, et al., Adv. Energy Mater. 10 (2020) 1903870.
doi: 10.1002/aenm.201903870
Y. Xu, L. Wang, X. Liu, et al., J. Mater. Chem. A 4 (2016) 16524–16530.
doi: 10.1039/C6TA06534A
A. Han, X. Zhou, X. Wang, et al., Nat. Commun. 12 (2021) 709.
doi: 10.1038/s41467-021-20951-9
S. Zhang, L. Wang, C. Liu, et al., Water Res. 121 (2017) 11–19.
doi: 10.1016/j.watres.2017.05.013
L. Wang, X. Liu, Q. Zhang, et al., Nano Energy 61 (2019) 194–200.
doi: 10.2174/1872212112666180628145856
Q. Zhang, L. Wang, J. Wang, et al., J. Mater. Chem. A 6 (2018) 9411–9419.
doi: 10.1039/C8TA00995C
N. Han, K.R. Yang, Z. Lu, et al., Nat. Commun. 9 (2018) 924.
doi: 10.1038/s41467-018-03429-z
J. Schröder, V.A. Mints, A. Bornet, et al., JACS Au 1 (2021) 247–251.
doi: 10.1021/jacsau.1c00015
X. Shan, J. Liu, H. Mu, et al., Angew. Chem. Int. Ed. 59 (2020) 1659–1665.
doi: 10.1002/anie.201911617
J. Cao, J. Zhou, M. Li, et al., Chin. Chem. Lett. 33 (2022) 3745–3751.
doi: 10.1016/j.cclet.2021.11.007
Q. Hu, Z. Wang, X. Huang, et al., Appl. Catal. B Environ. 286 (2021) 119920.
doi: 10.1016/j.apcatb.2021.119920
Z. Lu, Y. Li, X. Lei, J. Liu, X. Sun, Mater. Horiz. 2 (2015) 294–298.
doi: 10.1039/C4MH00208C
Z. Lu, W. Zhu, X. Yu, et al., Adv. Mater. 26 (2014) 2683–2687.
doi: 10.1002/adma.201304759
L. Xie, L. Wang, W. Zhao, et al., Nat. Commun. 12 (2021) 5070.
doi: 10.1038/s41467-021-25381-1
P. Lv, P. Peñas, H.Le The, et al., Phys. Rev. Lett. 127 (2021) 235501.
doi: 10.1103/PhysRevLett.127.235501
G.F. Swiegers, R.N.L. Terrett, G. Tsekouras, et al., Sustain. Energ. Fuels 5 (2021) 1280–1310.
doi: 10.1039/d0se01886d
X. Yu, X. Ren, Y. Zhang, et al., J. Mater. Sci. Technol. 65 (2021) 118–125.
doi: 10.1109/mwc.001.2100145
Y. Zhang, W. Cui, L. Li, et al., Int. J. Hydrog. Energy 47 (2022) 13552–13560.
doi: 10.1016/j.ijhydene.2022.02.100
L. Wang, G. Zhou, H. Luo, et al., Appl. Catal. B Environ. 256 (2019) 117802.
doi: 10.1016/j.apcatb.2019.117802
Q. Cheng, M. Wang, J. Ni, et al., Carbon Energy (2023) e307.
doi: 10.1002/cey2.307
X. Zhao, H. Ren, L. Luo, Langmuir 35 (2019) 5392–5408.
doi: 10.1021/acs.langmuir.9b00119
L. Mattarozzi, S. Cattarin, N. Comisso, et al., Electrochim. Acta 140 (2014) 337–344.
doi: 10.1016/j.electacta.2014.04.048
Y. Yang, J. Li, Y. Yang, et al., Appl. Energy 307 (2022) 118278.
doi: 10.1016/j.apenergy.2021.118278
H. Liu, R. Xie, Y. Luo, et al., Nat. Commun. 13 (2022) 6382.
doi: 10.1038/s41467-022-34121-y
C. Zhang, Z. Xu, N. Han, et al., Sci. Adv. 9 (2023) eadd6978.
doi: 10.1126/sciadv.add6978
A.A. Yadav, Y.M. Hunge, S.W. Kang, Ultrason. Sonochem. 72 (2021) 105454.
doi: 10.1016/j.ultsonch.2020.105454
P.V. Cherepanov, M. Ashokkumar, D.V. Andreeva, Ultrason. Sonochemistry 23 (2015) 142–147.
doi: 10.1016/j.ultsonch.2014.10.012
S. Wang, R. Herrmann, A. Reiner, A. Wixforth, C. Westerhausen, Catal. Sci. Technol. 11 (2021) 1458–1466.
doi: 10.1039/d0cy01788d
N. Merabet, K. Kerboua, Int. J. Hydrog. Energy 47 (2022) 17879–17893.
doi: 10.1016/j.ijhydene.2022.04.108
H. Abid, G. Rekhila, F. Ait Ihaddadene, Y. Bessekhouad, M. Trari, Int. J. Hydrog. Energy 44 (2019) 10301–10308.
doi: 10.1016/j.ijhydene.2019.02.231
B.G. Pollet, F. Foroughi, A.Y. Faid, D.R. Emberson, M. Islam, Ultrason. Sonochem. 69 (2020) 105238.
doi: 10.1016/j.ultsonch.2020.105238
S. Guo, J. Su, H. Luo, et al., ACS Catal. 13 (2023) 296–307.
doi: 10.1021/acscatal.2c05365
X. Ma, T. Xing, B. Huang, Q. Li, Y. Yang, Ultrason. Sonochem. 40 (2018) 480–487.
doi: 10.1016/j.ultsonch.2017.07.035
J. Yao, W. Huang, W. Fang, et al., Small Methods 4 (2020) 2000494.
doi: 10.1002/smtd.202000494
W. Zhou, M. Chen, M. Guo, et al., Nano Lett. 20 (2020) 2923–2930.
doi: 10.1021/acs.nanolett.0c00845
M. Wang, Z. Wang, Z. Guo, Int. J. Hydrog. Energy 34 (2009) 5311–5317.
doi: 10.1016/j.ijhydene.2009.05.043
K. Brinkert, M.H. Richter, Ö. Akay, et al., Nat. Commun. 9 (2018) 1–8.
doi: 10.1038/s41467-017-02088-w
A.E. Angulo, D. Frey, M.A. Modestino, Energy Fuels 36 (2022) 7908–7914.
doi: 10.1021/acs.energyfuels.2c01543
M.I. Gillespie, F. van der Merwe, R.J. Kriek, J. Power Sources 293 (2015) 228–235.
doi: 10.1016/j.jpowsour.2015.05.077
M.M. Saleh, Electrochim. Acta 45 (1999) 959–967.
doi: 10.1016/S0013-4686(99)00296-0
F. Rocha, R. Delmelle, C. Georgiadis, J. Proost, J. Environ. Chem. Eng. 10 (2022) 107648.
doi: 10.1016/j.jece.2022.107648
Q. Lan, D. Ye, X. Zhu, et al., J. Power Sources 544 (2022) 231881.
doi: 10.1016/j.jpowsour.2022.231881
F. Yang, M.J. Kim, M. Brown, B.J. Wiley, Adv. Energy Mater. 10 (2020) 2001174.
doi: 10.1002/aenm.202001174
A. Maljusch, O. Conradi, S. Hoch, M. Blug, W. Schuhmann, Anal. Chem. 88 (2016) 7597–7602.
doi: 10.1021/acs.analchem.6b01289
Z. Ge, T. Wang, Y. Ding, et al., Adv. Energy Mater. 12 (2022) 2103916.
doi: 10.1002/aenm.202103916
W. Yu, Z. Chen, Y. Fu, et al., Adv. Funct. Mater. 33 (2023) 2210855.
doi: 10.1002/adfm.202210855
Y. Gao, D. Zheng, Q. Li, et al., Adv. Funct. Mater. 32 (2022) 2203206.
doi: 10.1002/adfm.202203206
Y. Gao, Z. Chen, Y. Zhao, et al., Appl. Catal. B: Environ. 303 (2022) 120879.
doi: 10.1016/j.apcatb.2021.120879
Z. Wu, Y. Zhao, W. X, et al., ACS Nano 16 (2022) 18038–18047.
doi: 10.1021/acsnano.2c04090
W. Yu, Z. Chen, W. Xiao, et al., Inorg. Chem. Front. 9 (2022) 1847–1855.
doi: 10.1039/D2QI00086E
Shudi Yu , Jie Li , Jiongting Yin , Wanyu Liang , Yangping Zhang , Tianpeng Liu , Mengyun Hu , Yong Wang , Zhengying Wu , Yuefan Zhang , Yukou Du . Built-in electric field and core-shell structure of the reconstructed sulfide heterojunction accelerated water splitting. Chinese Chemical Letters, 2024, 35(12): 110068-. doi: 10.1016/j.cclet.2024.110068
Yuting Wu , Haifeng Lv , Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375
Min Chen , Boyu Peng , Xuyun Guo , Ye Zhu , Hanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051
Ying Chen , Xingyuan Xia , Lei Tian , Mengying Yin , Ling-Ling Zheng , Qian Fu , Daishe Wu , Jian-Ping Zou . Constructing built-in electric field via CuO/NiO heterojunction for electrocatalytic reduction of nitrate at low concentrations to ammonia. Chinese Chemical Letters, 2024, 35(12): 109789-. doi: 10.1016/j.cclet.2024.109789
Lingyun Shen , Shenxiang Yin , Qingshu Zheng , Zheming Sun , Wei Wang , Tao Tu . A rechargeable and portable hydrogen storage system grounded on soda water. Chinese Chemical Letters, 2025, 36(3): 110580-. doi: 10.1016/j.cclet.2024.110580
Xiaoyu Zhang , Xin Yu . Solar-powered heterogeneous water disinfection nano-system. Chinese Journal of Structural Chemistry, 2025, 44(3): 100439-100439. doi: 10.1016/j.cjsc.2024.100439
Xuanyu Wang , Zhao Gao , Wei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757
Yuan Dong , Mutian Ma , Zhenyang Jiao , Sheng Han , Likun Xiong , Zhao Deng , Yang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049
Lili Zhang , Hui Gao , Gong Zhang , Yuning Dong , Kai Huang , Zifan Pang , Tuo Wang , Chunlei Pei , Peng Zhang , Jinlong Gong . Cross-section design of the flow channels in membrane electrode assembly electrolyzer for CO2 reduction reaction through numerical simulations. Chinese Chemical Letters, 2025, 36(1): 110204-. doi: 10.1016/j.cclet.2024.110204
Yuchen Wang , Zhenhao Xu , Kai Yan . Rational design of metal-metal hydroxide interface for efficient electrocatalytic oxidation of biomass-derived platform molecules. Chinese Journal of Structural Chemistry, 2025, 44(1): 100418-100418. doi: 10.1016/j.cjsc.2024.100418
Xue Zhao , Rui Zhao , Qian Liu , Henghui Chen , Jing Wang , Yongfeng Hu , Yan Li , Qiuming Peng , John S Tse . A p-d block synergistic effect enables robust electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(11): 109496-. doi: 10.1016/j.cclet.2024.109496
Wenhao Chen , Jian Du , Hanbin Zhang , Hancheng Wang , Kaicheng Xu , Zhujun Gao , Jiaming Tong , Jin Wang , Junjun Xue , Ting Zhi , Longlu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168
Shuyuan Pan , Zehui Yang , Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373
Kun Wang , Jiaxuan Qiu , Zefei Wu , Yang Liu , Yongqi Liu , Xiangpeng Chen , Bao Zang , Jianmei Chen , Yunchao Lei , Longlu Wang , Qiang Zhao . Wafer-level GaN-based nanowires photocatalyst for water splitting. Chinese Chemical Letters, 2025, 36(3): 109993-. doi: 10.1016/j.cclet.2024.109993
Tianli Hui , Tao Zheng , Xiaoluo Cheng , Tonghui Li , Rui Zhang , Xianghai Meng , Haiyan Liu , Zhichang Liu , Chunming Xu . A review of plasma treatment on nano-microstructure of electrochemical water splitting catalysts. Chinese Journal of Structural Chemistry, 2025, 44(3): 100520-100520. doi: 10.1016/j.cjsc.2025.100520
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Yuchen Guo , Xiangyu Zou , Xueling Wei , Weiwei Bao , Junjun Zhang , Jie Han , Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206
Ji Chen , Yifan Zhao , Shuwen Zhao , Hua Zhang , Youyu Long , Lingfeng Yang , Min Xi , Zitao Ni , Yao Zhou , Anran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268
Rui Deng , Wenjie Jiang , Tianqi Yu , Jiali Lu , Boyao Feng , Panagiotis Tsiakaras , Shibin Yin . Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(7): 100290-100290. doi: 10.1016/j.cjsc.2024.100290
Lu Qi , Zhaoyang Chen , Xiaoyu Luan , Zhiqiang Zheng , Yurui Xue , Yuliang Li . Atomically dispersed Mn enhanced catalytic performance for overall water splitting on graphdiyne-coated copper hydroxide nanowire. Chinese Journal of Structural Chemistry, 2024, 43(1): 100197-100197. doi: 10.1016/j.cjsc.2023.100197