Research progress of “rocking chair” type zinc-ion batteries with zinc metal-free anodes
-
* Corresponding authors.
E-mail addresses: qiuhengwei@mail.tsinghua.edu.cn (H. Qiu), zhangdan@snut.edu.cn (D. Zhang).
Citation:
Le Li, Shaofeng Jia, Minghui Cao, Yongqiang Ji, Hengwei Qiu, Dan Zhang. Research progress of “rocking chair” type zinc-ion batteries with zinc metal-free anodes[J]. Chinese Chemical Letters,
;2023, 34(12): 108307.
doi:
10.1016/j.cclet.2023.108307
B. Obama, Science 355 (2017) 126–129.
doi: 10.1126/science.aam6284
S. Carley, D.M. Konisky, Nat. Energy 5 (2020) 569–577.
doi: 10.1038/s41560-020-0641-6
W.P. Schill, Joule 4 (2020) 2059–2064.
doi: 10.1016/j.joule.2020.07.022
D. Zhang, L. Li, W. Zhang, et al., Chin. Chem. Lett. 34 (2022) 107122.
doi: 10.1016/j.cclet.2022.01.015
D. Zhang, C. Tan, T. Ou, et al., Energy Rep. 8 (2022) 4525–4534.
doi: 10.3390/cancers14184525
L. Li, D. Zhang, J. Deng, et al., Carbon 183 (2021) 721–734.
doi: 10.1016/j.carbon.2021.07.053
L. Li, W. Zhang, W. Pan, et al., Nanoscale 13 (2021) 19291–19305.
doi: 10.1039/d1nr05873h
J. Zheng, Z. Huang, F. Ming, et al., Small 18 (2022) 2200006.
doi: 10.1002/smll.202200006
J. Cao, D. Zhang, X. Zhang, et al., Energy Environ. Sci. 15 (2022) 499–528.
doi: 10.1039/d1ee03377h
Z. Liu, Y. Huang, Y. Huang, et al., Chem. Soc. Rev. 49 (2020) 180–232.
doi: 10.1039/c9cs00131j
Y. Tian, Y. An, C. Liu, et al., Energy Storage Mater. 41 (2021) 343–353.
doi: 10.1016/j.ensm.2021.06.019
D. Chao, F. Xie, C. Ye, et al., Sci. Adv. 6 (2020) eaba4098.
doi: 10.1126/sciadv.aba4098
H. Liu, Q. Liu, Y. Wang, et al., Chin. Chem. Lett. 33 (2022) 683–692.
doi: 10.1016/j.cclet.2021.07.038
H. Li, L. Ma, C. Han, et al., Nano Energy 62 (2019) 550–587.
doi: 10.1016/j.nanoen.2019.05.059
Y. Niu, D. Wang, Y. Ma, et al., Chin. Chem. Lett. 33 (2022) 1430–1434.
doi: 10.1016/j.cclet.2021.08.058
J. Abdulla, J. Cao, D. Zhang, et al., ACS Appl. Energy Mater. 4 (2021) 4602–4609.
doi: 10.1021/acsaem.1c00224
S. Higashi, S.W. Lee, J.S. Lee, et al., Nat. Commun. 7 (2016) 1–6.
doi: 10.1038/ncomms11801
L. Ma, S. Chen, N. Li, et al., Adv. Mater. 32 (2020) 1908121.
doi: 10.1002/adma.201908121
M. Zhou, S. Guo, G. Fang, et al., J. Energy Chem. 55 (2021) 549–556.
doi: 10.1016/j.jechem.2020.07.021
V. Jabbari, T. Foroozan, R. Shahbazian-Yassar, et al., Adv. Energy Sustain. Res. 2 (2021) 2000082.
doi: 10.1002/aesr.202000082
J. Abdulla, J. Cao, P. Wangyao, et al., J. Met. Mater. Miner. 30 (2020) 1–8.
Q. Zhang, L. Mei, X. Cao, et al., J. Mater. Chem. A 8 (2020) 15417–15444.
doi: 10.1039/d0ta03727c
T. Zhou, L. Zhu, L. Xie, et al., J. Colloid Interf. Sci. 605 (2022) 828–850.
doi: 10.1016/j.jcis.2021.07.138
T. Zhou, L. Xie, Q. Han, et al., Chem. Eng. J. 445 (2022) 136789.
doi: 10.1016/j.cej.2022.136789
T. Zhou, Q. Han, L. Xie, et al., Chem. Rec. 22 (2022) e202100275.
doi: 10.1002/tcr.202100275
Z. Yi, G. Chen, F. Hou, et al., Adv. Energy Mater. 11 (2021) 2003065.
doi: 10.1002/aenm.202003065
W. Zhang, H.L. Zhuang, L. Fan, et al., Sci. Adv. 4 (2018) eaar4410.
doi: 10.1126/sciadv.aar4410
S. -B. Wang, Q. Ran, R.Q. Yao, et al., Nat. Commun. 11 (2020) 1–9.
doi: 10.1038/s41467-019-13993-7
Q. Yang, G. Liang, Y. Guo, et al., Adv. Mater. 31 (2019) 1903778.
doi: 10.1002/adma.201903778
L. Ma, M.A. Schroeder, O. Borodin, et al., Nat. Energy 5 (2020) 743–749.
doi: 10.1038/s41560-020-0674-x
J. Xie, Z. Liang, Y.C. Lu, Nat. Mater. 19 (2020) 1006–1011.
doi: 10.1038/s41563-020-0667-y
L. Suo, O. Borodin, T. Gao, et al., Science 350 (2015) 938–943.
doi: 10.1126/science.aab1595
L. Chen, J. Zhang, Q. Li, et al., ACS Energy Lett. 5 (2020) 968–974.
doi: 10.1021/acsenergylett.0c00348
P. Sun, L. Ma, W. Zhou, et al., Angew. Chem. Int. Ed. 133 (2021) 18395–18403.
doi: 10.1002/ange.202105756
F. Wang, O. Borodin, T. Gao, et al., Nat. Mater. 17 (2018) 543–549.
doi: 10.1038/s41563-018-0063-z
N. Dubouis, A. Serva, E. Salager, et al., J. Phys. Chem. Lett. 9 (2018) 6683–6688.
doi: 10.1021/acs.jpclett.8b03066
J. Hao, X. Li, X. Zeng, et al., Energy Environ. Sci. 13 (2020) 3917–3949.
doi: 10.1039/d0ee02162h
D. Strmcnik, P.P. Lopes, B. Genorio, et al., Nano Energy 29 (2016) 29–36.
doi: 10.1016/j.nanoen.2016.04.017
X. Jia, C. Liu, Z.G. Neale, et al., Chem. Rev. 120 (2020) 7795–7866.
doi: 10.1021/acs.chemrev.9b00628
D. Kundu, B.D. Adams, V. Duffort, et al., Nat. Energy 1 (2016) 1–8.
doi: 10.1038/nenergy.2016.119
H. Liang, Z. Cao, F. Ming, et al., Nano Lett. 19 (2019) 3199–3206.
doi: 10.1021/acs.nanolett.9b00697
X. Wang, Z. Zhang, B. Xi, et al., ACS Nano 15 (2021) 9244–9272.
doi: 10.1021/acsnano.1c01389
H. Gan, J. Wu, R. Li, et al., Energy Storage Mater. 47 (2022) 602–610.
doi: 10.1016/j.ensm.2022.02.040
X. Chen, W. Li, S. Hu, et al., Nano Energy 98 (2022) 107269.
doi: 10.1016/j.nanoen.2022.107269
J. Zheng, Q. Zhao, T. Tang, et al., Science 366 (2019) 645–648.
doi: 10.1126/science.aax6873
J. Cao, D. Zhang, C. Gu, et al., Adv. Energy Mater. 11 (2021) 2101299.
doi: 10.1002/aenm.202101299
H. Zhao, D. Lei, Y.B. He, et al., Adv. Energy Mater. 8 (2018) 1800266.
doi: 10.1002/aenm.201800266
X. Shi, G. Xu, S. Liang, et al., ACS Sustain. Chem. Eng. 7 (2019) 17737–17746.
doi: 10.1021/acssuschemeng.9b04085
W. Guo, Z. Cong, Z. Guo, et al., Energy Storage Mater. 30 (2020) 104–112.
doi: 10.1016/j.ensm.2020.04.038
Q. Jian, Z. Guo, L. Zhang, et al., Chem. Eng. J. 425 (2021) 130643.
doi: 10.1016/j.cej.2021.130643
J. Cao, D. Zhang, X. Zhang, J. Mater. Chem. A 8 (2020) 9331–9344.
doi: 10.1039/d0ta02486d
J. Cao, D. Zhang, C. Gu, et al., Nano Energy 89 (2021) 106322.
doi: 10.1016/j.nanoen.2021.106322
Q. Zhao, Y. Wang, W. Liu, et al., Adv. Mater. Interfaces 9 (2022) 2102254.
doi: 10.1002/admi.202102254
G. Liang, J. Zhu, B. Yan, et al., Energy Environ. Sci. 15 (2022) 1086–1096.
doi: 10.1039/d1ee03749h
J. Zhou, L. Zhang, M. Peng, et al., Adv. Mater. 34 (2022) 2200131.
doi: 10.1002/adma.202200131
P. Lin, J. Cong, J. Li, et al., Energy Storage Mater. 49 (2022) 172–180.
doi: 10.1016/j.ensm.2022.04.010
Z. Lv, B. Wang, M. Ye, et al., ACS Appl. Mater. Interfaces 14 (2022) 1126–1137.
doi: 10.1021/acsami.1c21168
J. Cao, D. Zhang, Y. Yue, et al., Chem. Eng. J. 426 (2021) 131893.
doi: 10.1016/j.cej.2021.131893
A. Mauger, C.M. Julien, J.B. Goodenough, et al., J. Electrochem. Soc. 167 (2020) 070507.
doi: 10.1149/2.0072007jes
J.O. Besenhard, G. Eichinger, J. Electroanal. Chem. 68 (1976) 1.
doi: 10.1016/S0022-0728(76)80298-7
L. Yan, X. Zeng, Z. Li, et al., Mater. Today Energy 13 (2019) 323.
doi: 10.1016/j.mtener.2019.06.011
M. Winter, B. Barnett, K. Xu, Chem. Rev. 118 (2018) 11433–11456.
doi: 10.1021/acs.chemrev.8b00422
Z. Liu, Y. Huang, Y. Huang, et al., Chem. Soc. Rev. 49 (2020) 180–232.
doi: 10.1039/c9cs00131j
Y. Tian, Y. An, C. Wei, et al., Adv. Energy Mater. 11 (2021) 2002529.
doi: 10.1002/aenm.202002529
W. Yao, P. Zou, M. Wang, et al., Electrochem. Energy R. 4 (2021) 601–631.
doi: 10.1007/s41918-021-00106-6
M.R. Palacin, Chem. Soc. Rev. 38 (2009) 2565–2575.
doi: 10.1039/b820555h
F. Wu, J. Maier, Y. Yu, Chem. Soc. Rev. 49 (2020) 1569–1614.
doi: 10.1039/c7cs00863e
Z. Song, H. Zhou, Energy Environ. Sci. 6 (2013) 2280–2301.
doi: 10.1039/c3ee40709h
W. Li, K. Wang, S. Cheng, et al., Adv. Energy Mater. 9 (2019) 1900993.
doi: 10.1002/aenm.201900993
F. Wang, O. Borodin, T. Gao, et al., Nat. Mater. 17 (2018) 543.
doi: 10.1038/s41563-018-0063-z
W.S.V. Lee, T. Xiong, X. Wang, et al., Small Methods 5 (2021) 2000815.
doi: 10.1002/smtd.202000815
D. Zhang, L. Li, Y. Zhang, J. Alloy. Compd. 869 (2021) 159352.
doi: 10.1016/j.jallcom.2021.159352
L. Li, D. Zhang, Y. Gao, et al., J. Alloy. Compd. 862 (2021) 158551.
doi: 10.1016/j.jallcom.2020.158551
Y. Yang, J. Xiao, J. Cai, et al., Adv. Funct. Mater. 31 (2021) 2005092.
doi: 10.1002/adfm.202005092
B. Zhao, S. Wang, Q. Yu, et al., J. Power Sources 504 (2021) 230076.
doi: 10.1016/j.jpowsour.2021.230076
J. Zhang, Q. Lei, Z. Ren, et al., ACS Nano 15 (2021) 17748–17756.
doi: 10.1021/acsnano.1c05725
Z. Lv, B. Wang, M. Ye, et al., ACS Appl. Mater. Interfaces 14 (2022) 1126–113.
doi: 10.1021/acsami.1c21168
Q. Lei, J. Zhang, Z. Liang, et al., Adv. Energy Mater. 12 (2022) 2200547.
doi: 10.1002/aenm.202200547
Y. Du, B. Zhang, W. Zhou, et al., Energy Storage Mater. 51 (2022) 29–37.
doi: 10.1016/j.ensm.2022.06.015
Y. Du, B. Zhang, R. Kang, et al., J. Mater. Chem. A 10 (2022) 16976–16985.
doi: 10.1039/d2ta04912k
P. Cai, K. Wang, J. Ning, et al., Adv. Energy Mater. 12 (2022) 2202182.
doi: 10.1002/aenm.202202182
Z. Liu, H. Su, Y. Yang, et al., Energy Storage Mater. 34 (2021) 211–228.
doi: 10.1016/j.ensm.2020.09.010
C. Wu, J. Lou, J. Zhang, et al., Nano Energy 87 (2021) 106081.
doi: 10.1016/j.nanoen.2021.106081
T. Xiong, Y. Zhang, Y. Wang, et al., J. Mater. Chem. A 8 (2020) 9006–9012.
doi: 10.1039/d0ta02236e
S. Wang, S. Lu, X. Yang, et al., J. Electroanal. Chem. 882 (2021) 115033.
doi: 10.1016/j.jelechem.2021.115033
B. Wang, J. Yan, Y. Zhang, et al., Adv. Funct. Mater. 31 (2021) 2102827.
doi: 10.1002/adfm.202102827
X. Chen, R. Huang, M. Ding, et al., ACS Appl. Mater. Interfaces 14 (2022) 3961–3969.
doi: 10.1021/acsami.1c18975
H. Peng, Q. Yu, S. Wang, et al., Adv. Sci. 6 (2019) 1900431.
doi: 10.1002/advs.201900431
P. Poizot, J. Gaubicher, S. Renault, et al., Chem. Rev. 120 (2020) 6490–6557.
doi: 10.1021/acs.chemrev.9b00482
Y. Chen, C. Wang, Acc. Chem. Res. 53 (2020) 2636–2647.
doi: 10.1021/acs.accounts.0c00465
Y. Wang, C. Wang, Z. Ni, et al., Adv. Mater. 32 (2020) 2000338.
doi: 10.1002/adma.202000338
L. Yan, X. Zeng, Z. Li, et al., Mater. Today Energy 13 (2019) 323–330.
doi: 10.1016/j.mtener.2019.06.011
N. Liu, X. Wu, Y. Zhang, et al., Adv. Sci. 7 (2020) 2000146.
doi: 10.1002/advs.202000146
Y. Liu, M. Huang, F. Xiong, et al., Chem. Eng. J. 428 (2022) 131092.
doi: 10.1016/j.cej.2021.131092
Z. Xu, M. Li, W. Sun, et al., Adv. Mater. 34 (2022) 2200077.
doi: 10.1002/adma.202200077
M.S. Chae, S.T. Hong, Batteries 5 (2019) 3.
doi: 10.3390/batteries5010003
Y. Liu, X. Zhou, X. Wang, et al., Chem. Eng. J. 420 (2021) 129629.
doi: 10.1016/j.cej.2021.129629
X. Wang, Y. Wang, Y. Jiang, et al., Adv. Funct. Mater. 31 (2021) 2103210.
doi: 10.1002/adfm.202103210
Z. Chen, C. Li, Q. Yang, et al., Adv. Mater. 33 (2021) 2105426.
doi: 10.1002/adma.202105426
Q. Zhang, T. Duan, M. Xiao, et al., ACS Appl. Mater. Interfaces 14 (2022) 25516–25523.
doi: 10.1021/acsami.2c04946
D. Zhao, S. Chen, Y. Lai, et al., Nano Energy 100 (2022) 107520.
doi: 10.1016/j.nanoen.2022.107520
Q. Zhao, Y. Zhu, S. Liu, et al., ACS Appl. Mater. Interfaces 14 (2022) 32066–32074.
doi: 10.1021/acsami.2c07525
B. Long, Q. Zhang, T. Duan, et al., Adv. Sci. 9 (2022) 2204087.
doi: 10.1002/advs.202204087
Yaxin Sun , Huiyu Li , Shiquan Guo , Congju Li . Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chinese Chemical Letters, 2024, 35(5): 109418-. doi: 10.1016/j.cclet.2023.109418
Ce Liang , Qiuhui Sun , Adel Al-Salihy , Mengxin Chen , Ping Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306
Ziyang Yin , Lingbin Xie , Weinan Yin , Ting Zhi , Kang Chen , Junan Pan , Yingbo Zhang , Jingwen Li , Longlu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628
Gu Gong , Mengzhu Li , Ning Sun , Ting Zhi , Yuhao He , Junan Pan , Yuntao Cai , Longlu Wang . Versatile oxidized variants derived from TMDs by various oxidation strategies and their applications. Chinese Chemical Letters, 2024, 35(6): 108705-. doi: 10.1016/j.cclet.2023.108705
Junan Pan , Xinyi Liu , Huachao Ji , Yanwei Zhu , Yanling Zhuang , Kang Chen , Ning Sun , Yongqi Liu , Yunchao Lei , Kun Wang , Bao Zang , Longlu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515
Yatian Deng , Dao Wang , Jinglan Cheng , Yunkun Zhao , Zongbao Li , Chunyan Zang , Jian Li , Lichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141
Ze Liu , Xiaochen Zhang , Jinlong Luo , Yingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500
Haiying Lu , Weijie Li . The electrolyte solvation and interfacial chemistry for anode-free sodium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(11): 100334-100334. doi: 10.1016/j.cjsc.2024.100334
Yuhuan Meng , Long Zhang , Lequan Wang , Junming Kang , Hongbin Lu . 20 nm-ultra-thin fluorosiloxane interphase layer enables dendrite-free, fast-charging, and flexible aqueous zinc metal batteries. Chinese Chemical Letters, 2024, 35(12): 110025-. doi: 10.1016/j.cclet.2024.110025
Xiuwen Xu , Quan Zhou , Yacong Wang , Yunjie He , Qiang Wang , Yuan Wang , Bing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272
Tao Zhou , Jing Zhou , Yunyun Liu , Jie-Ping Wan , Fen-Er Chen . Transition metal-free tunable synthesis of 3-(trifluoromethylthio) and 3-trifluoromethylsulfinyl chromones via domino C–H functionalization and chromone annulation of enaminones. Chinese Chemical Letters, 2024, 35(11): 109683-. doi: 10.1016/j.cclet.2024.109683
Jiao Wang , Shuang-Yan Lang , Zhen-Zhen Shen , Gui-Xian Liu , Jian-Xin Tian , Yuan Li , Rui-Zhi Liu , Rui Wen . In situ imaging of the interfacial processes manipulated by salt concentration on zinc anodes in zinc metal batteries. Chinese Chemical Letters, 2025, 36(4): 109815-. doi: 10.1016/j.cclet.2024.109815
Yunyu Zhao , Chuntao Yang , Yingjian Yu . A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chinese Chemical Letters, 2024, 35(7): 108865-. doi: 10.1016/j.cclet.2023.108865
Boqiang Wang , Yongzhuo Xu , Jiajia Wang , Muyang Yang , Guo-Jun Deng , Wen Shao . Transition-metal free trifluoromethylimination of alkenes enabled by direct activation of N-unprotected ketimines. Chinese Chemical Letters, 2024, 35(9): 109502-. doi: 10.1016/j.cclet.2024.109502
Ying Li , Yanjun Xu , Xingqi Han , Di Han , Xuesong Wu , Xinlong Wang , Zhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189
Meirong HAN , Xiaoyang WEI , Sisi FENG , Yuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150
Zhiqiang Liu , Qiang Gao , Wei Shen , Meifeng Xu , Yunxin Li , Weilin Hou , Hai-Wei Shi , Yaozuo Yuan , Erwin Adams , Hian Kee Lee , Sheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338
Peipei CUI , Xin LI , Yilin CHEN , Zhilin CHENG , Feiyan GAO , Xu GUO , Wenning YAN , Yuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234
Shuo Zhang , Haitao Liao , Zhi-Qun Liu , Chong Yan , Jia-Qi Huang . Re-evaluating the nano-sized inorganic protective layer on Cu current collector for anode free lithium metal batteries. Chinese Chemical Letters, 2024, 35(7): 109284-. doi: 10.1016/j.cclet.2023.109284
Shuanglin TIAN , Tinghong GAO , Yutao LIU , Qian CHEN , Quan XIE , Qingquan XIAO , Yongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482