Two-dimensional g-C3N4 nanosheets-based photo-catalysts for typical sustainable processes
-
* Corresponding authors.
E-mail addresses: lxlei@tju.edu.cn (X. Li), shenzhurui@nankai.edu.cn (Z. Shen).
Citation:
Xiaodong Zhao, Qian Liu, Xiaolei Li, Huiming Ji, Zhurui Shen. Two-dimensional g-C3N4 nanosheets-based photo-catalysts for typical sustainable processes[J]. Chinese Chemical Letters,
;2023, 34(11): 108306.
doi:
10.1016/j.cclet.2023.108306
A. Fujishima, K. Honda, Nature 238 (1972) 37–38.
doi: 10.1038/238037a0
Z. Wang, C.Y. Yang, T.Q. Lin, et al., Adv. Funct. Mater. 23 (2013) 5444–5450.
doi: 10.1002/adfm.201300486
B. Liu, H.M. Chen, C. Liu, et al., J. Am. Chem. Soc. 135 (2013) 9995–9998.
doi: 10.1021/ja403761s
J.C. Yu, J. Yu, W. Ho, Z. Jiang, L. Zhang, Chem. Mater. 14 (2002) 3808–3816.
doi: 10.1021/cm020027c
J.G. Yu, J.X. Low, W. Xiao, P. Zhou, M. Jaroniec, J. Am. Chem. Soc. 136 (2014) 8839–8842.
doi: 10.1021/ja5044787
R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293 (2001) 269–271.
doi: 10.1126/science.1061051
C. Han, Z. Chen, N. Zhang, J.C. Colmenares, Y.J. Xu, Adv. Funct. Mater. 25 (2015) 221–229.
doi: 10.1002/adfm.201402443
H. Shuai, J. Wang, X.G. Wang, G.X. Du, Materials 14 (2021) 6474.
doi: 10.3390/ma14216474
A. Tanaka, K. Hashimoto, H. Kominami, J. Am. Chem. Soc. 136 (2014) 586–589.
doi: 10.1021/ja410230u
X.Y. Xiong, Y.R. Jin, H.W. Wang, et al., Mater. Chem. Phys. 281 (2022) 125824.
doi: 10.1016/j.matchemphys.2022.125824
Z. Liu, D.D. Sun, P. Guo, J.O. Leckle, Nano Lett. 7 (2007) 1081–1085.
doi: 10.1021/nl061898e
I. Fatimah, G. Purwiandono, H. Hidayat, et al., Nanomaterials 11 (2021) 3012.
doi: 10.3390/nano11113012
Y.X. Guo, H.W. Huang, Y. He, et al., Nanoscale 7 (2015) 11702–11711.
doi: 10.1039/C5NR02246K
Z.Q. Zheng, F. Han, B. Xing, X.B. Han, B.X. Li, J. Colloid Interface Sci. 624 (2022) 460–470.
doi: 10.1016/j.jcis.2022.05.161
S. Kohtani, M. Koshiko, A. Kudo, et al., Appl. Catal. B: Environ. 46 (2003) 573–586.
doi: 10.1016/S0926-3373(03)00320-5
D. Philo, S.Q. Luo, C. He, et al., Adv. Funct. Mater. 32 (2022) 2206811.
doi: 10.1002/adfm.202206811
Z.G. Yi, J.H. Ye, N. Kikugawa, et al., Nat. Mater. 9 (2010) 559–564.
doi: 10.1038/nmat2780
Z.G. Zou, J.H. Ye, K. Sayama, H. Arakawa, Nature 414 (2001) 625–627.
doi: 10.1038/414625a
D.M. Schultz, T.P. Yoon, Science 343 (2014) 1239176.
doi: 10.1126/science.1239176
N. Torkian, A. Bahrami, A. Hosseini-Abari, et al., Environ. Res. 207 (2022) 112157.
doi: 10.1016/j.envres.2021.112157
T. Cheng, Q. Ma, H. Gao, et al., Mater. Today Chem. 23 (2022) 100750.
doi: 10.1016/j.mtchem.2021.100750
Y.Q. Yang, L.C. Yin, Y. Gong, et al., Adv. Mater. 30 (2018) 1704479.
doi: 10.1002/adma.201704479
G. Yang, P. Qiu, J.Y. Xiong, X.T. Zhu, G. Cheng, Chin. Chem. Lett. 33 (2022) 3709–3712.
doi: 10.1016/j.cclet.2021.10.047
L.Z. Liu, T.P. Hu, K. Dai, J.F. Zhang, C.H. Liang, Chin. J. Catal. 42 (2021) 46–55.
doi: 10.1016/S1872-2067(20)63560-4
H. Yang, Z.L. Jin, D.D. Liu, K. Fan, G.R. Wang, J. Phys. Chem. C 122 (2018) 10430–10441.
doi: 10.1021/acs.jpcc.8b01666
J. Liu, J. Ke, Y. Li, et al., Appl. Catal. B: Environ. 236 (2018) 396–403.
doi: 10.1016/j.apcatb.2018.05.042
Y.L. Wu, Y.Y. Xu, Y. Zhang, et al., Chin. Chem. Lett. 33 (2022) 2741–2746.
doi: 10.1016/j.cclet.2021.08.099
F. Goettmann, A. Fischer, M. Antonietti, A. Thomas, Angew. Chem. Int. Ed. 45 (2006) 4467–4471.
doi: 10.1002/anie.200600412
W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, S.P. Chai, Chem. Rev. 116 (2016) 7159–7329.
doi: 10.1021/acs.chemrev.6b00075
S.C. Yan, Z.S. Li, Z.G. Zou, Langmuir 25 (2009) 10397–10401.
doi: 10.1021/la900923z
Q.J. Xiang, J.G. Yu, M. Jaroniec, J. Phys. Chem. C 115 (2011) 7355–7363.
doi: 10.1021/jp200953k
S.W. Cao, J.G. Yu, J. Phys. Chem. Lett. 5 (2014) 2101–2107.
doi: 10.1021/jz500546b
X.F. Li, J.F. Zhang, Y. Huo, et al., Appl. Catal. B: Environ. 280 (2021) 119452.
doi: 10.1016/j.apcatb.2020.119452
D.Y. Han, J. Liu, H. Cai, et al., Appl. Surf. Sci. 464 (2019) 577–585.
doi: 10.1016/j.apsusc.2018.09.108
X.B. Li, B.B. Kang, F. Dong, et al., Nano Energy 81 (2021) 105671.
doi: 10.1016/j.nanoen.2020.105671
D.H. Kim, K.J. Yong, Appl. Catal. B: Environ. 282 (2021) 119538.
doi: 10.1016/j.apcatb.2020.119538
H.R. Sun, F. Guo, J.J. Pan, et al., Chem. Eng. J. 406 (2021) 126844.
doi: 10.1016/j.cej.2020.126844
L. Ge, F. Zuo, J.K. Liu, et al., J. Phys. Chem. C 116 (2012) 13708–13714.
doi: 10.1021/jp3041692
G.M. Jiang, J.W. Cao, M. Chen, X.M. Zhang, F. Dong, Appl. Surf. Sci. 458 (2018) 77–85.
doi: 10.1016/j.apsusc.2018.07.087
X.C. Wang, K. Maeda, A. Thomas, et al., Nat. Mater. 8 (2009) 76–80.
doi: 10.1038/nmat2317
P. Niu, L.L. Zhang, G. Liu, H.M. Cheng, Adv. Funct. Mater. 22 (2012) 4763–4770.
doi: 10.1002/adfm.201200922
M. Tahir, C.B. Cao, N. Mahmood, et al., ACS Appl. Mater. Interfaces 6 (2014) 1258–1265.
doi: 10.1021/am405076b
X.J. Bai, L. Wang, R.L. Zong, Y.F. Zhu, J. Phys. Chem. C 117 (2013) 9952–9961.
doi: 10.1021/jp402062d
K. Gu, X.T. Pan, W.W. Wang, et al., Small 14 (2018) 1801812.
doi: 10.1002/smll.201801812
X.C. Wang, K. Maeda, X.F. Chen, et al., J. Am. Chem. Soc. 131 (2009) 1680–1681.
doi: 10.1021/ja809307s
X.F. Wu, J.S. Cheng, X.F. Li, Y.H. Li, K.L. Lv, Appl. Surf. Sci. 465 (2019) 1037–1046.
doi: 10.1016/j.apsusc.2018.09.165
L.B. Jiang, X.Z. Yuan, G.M. Zeng, et al., J. Colloid Interface Sci. 536 (2019) 17–29.
doi: 10.1016/j.jcis.2018.10.033
B. Lin, H. Li, H. An, et al., Appl. Catal. B: Environ. 220 (2018) 542–552.
doi: 10.1016/j.apcatb.2017.08.071
A. Kumar, G. Sharma, A. Kumari, et al., Appl. Catal. B: Environ. 284 (2021) 119808.
doi: 10.1016/j.apcatb.2020.119808
Q.H. Liang, X.J. Liu, J.J. Wang, et al., J. Hazard. Mater. 401 (2021) 123355.
doi: 10.1016/j.jhazmat.2020.123355
P.Y. Kuang, Y.Z. Su, G.F. Chen, et al., Appl. Surf. Sci. 358 (2015) 296–303.
doi: 10.1016/j.apsusc.2015.08.066
P.F. Xia, B.C. Zhu, J.G. Yu, S.W. Cao, M. Jaroniec, J. Mater. Chem. A 5 (2017) 3230–3238.
doi: 10.1039/C6TA08310B
M.Q. Qiu, Z.X. Liu, S.Q. Wang, B.W. Hu, Environ. Res. 196 (2021) 110349.
doi: 10.1016/j.envres.2020.110349
K. Takanabe, K. Kamata, X.C. Wang, et al., Phys. Chem. Chem. Phys. 12 (2010) 13020–13025.
doi: 10.1039/c0cp00611d
X. Li, H.P. Jiang, C.C. Ma, et al., Appl. Catal. B: Environ. 283 (2021) 119638.
doi: 10.1016/j.apcatb.2020.119638
W.Y. Lei, Y. Mi, R.J. Feng, et al., Nano Energy 50 (2018) 552–561.
doi: 10.1016/j.nanoen.2018.06.001
D. Huang, X.B. Sun, Y.D. Liu, et al., Chin. Chem. Lett. 32 (2021) 2787–2791.
doi: 10.1016/j.cclet.2021.01.012
H.R. Sun, L.J. Wang, F. Guo, et al., J. Alloy Compd. 900 (2022) 163410.
doi: 10.1016/j.jallcom.2021.163410
P. Zhou, J. Yu, M. Jaroniec, Adv. Mater. 26 (2014) 4920–4935.
doi: 10.1002/adma.201400288
L. Shi, Z. Li, K. Marcus, et al., Chem. Commun. 54 (2018) 3747–3750.
doi: 10.1039/C8CC01370E
J.W. Fu, Q.L. Xu, J.X. Low, C.J. Jiang, J.G. Yu, Appl. Catal. B: Environ. 243 (2019) 556–565.
doi: 10.1016/j.apcatb.2018.11.011
J.Q. Yan, H. Wu, H. Chen, et al., Appl. Catal. B: Environ. 191 (2016) 130–137.
doi: 10.1016/j.apcatb.2016.03.026
Q.L. Xu, L.Y. Zhang, J.G. Yu, et al., Mater. Today 21 (2018) 1042–1063.
doi: 10.1016/j.mattod.2018.04.008
X. Liu, J. Zhang, Y.M. Dong, et al., New J. Chem. 42 (2018) 12180–12187.
doi: 10.1039/C8NJ01782D
T. Komatsu, T. Nakamura, J. Mater. Chem. 11 (2001) 474–478.
doi: 10.1039/b005982j
A. Thomas, A. Fischer, F. Goettmann, et al., J. Mater. Chem. 18 (2008) 4893–4908.
doi: 10.1039/b800274f
Y.S. Jun, W.H. Hong, M. Antonietti, A. Thomas, Adv. Mater. 21 (2009) 4270–4274.
doi: 10.1002/adma.200803500
A.K. Geim, Science 324 (2009) 1530–1534.
doi: 10.1126/science.1158877
X.L. Li, G.Y. Zhang, X.D. Bai, et al., Nat. Nanotechnol. 3 (2008) 538–542.
doi: 10.1038/nnano.2008.210
R.Z. Ma, T. Sasaki, Adv. Mater. 22 (2010) 5082–5104.
doi: 10.1002/adma.201001722
G.F. Walker, Nature 187 (1960) 312–313.
doi: 10.1038/187312a0
X.P. Dong, F.X. Cheng, J. Mater. Chem. A 3 (2015) 23642–23652.
doi: 10.1039/C5TA07374J
K.S. Novoselov, A.K. Geim, S.V. Morozov, et al., Science 306 (2004) 666–669.
doi: 10.1126/science.1102896
Y. Hernandez, V. Nicolosi, M. Lotya, et al., Nat. Nanotechnol. 3 (2008) 563–568.
doi: 10.1038/nnano.2008.215
J.N. Coleman, M. Lotya, A. O'Neill, et al., Science 331 (2011) 568–571.
doi: 10.1126/science.1194975
V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, J.N. Coleman, Science 340 (2013) 1226419.
doi: 10.1126/science.1226419
Q.W. Yan, W. Dai, J.Y. Gao, et al., ACS Nano 15 (2021) 6489–6498.
doi: 10.1021/acsnano.0c09229
G. Chakraborty, I.H. Park, R. Medishetty, J.J. Vittal, Chem. Rev. 121 (2021) 3751–3891.
doi: 10.1021/acs.chemrev.0c01049
S.B. Yang, Y.J. Gong, J.S. Zhang, et al., Adv. Mater. 25 (2013) 2452–2456.
doi: 10.1002/adma.201204453
Y.J. Yuan, Z.K. Shen, S.T. Wu, et al., Appl. Catal. B: Environ. 246 (2019) 120–128.
doi: 10.1016/j.apcatb.2019.01.043
Y. Yin, J.C. Han, X.H. Zhang, et al., RSC Adv. 4 (2014) 32690–32697.
doi: 10.1039/C4RA06036A
H.P. Liu, S.L. Ma, L. Shao, et al., Appl. Catal. B: Environ. 261 (2020) 118201.
doi: 10.1016/j.apcatb.2019.118201
C.Z. Wu, S.Y. Xue, Z.J. Qin, et al., Appl. Catal. B: Environ. 282 (2021) 119557.
doi: 10.1016/j.apcatb.2020.119557
Y.Z. Zhang, Z.X. Huang, C.L. Dong, et al., Chem. Eng. J. 431 (2022) 134101.
doi: 10.1016/j.cej.2021.134101
B.V. Lotsch, M. Döblinger, J. Sehnert, et al., Chemistry 13 (2007) 4969–4980.
doi: 10.1002/chem.200601759
L.S. Jiang, J. Li, K. Wang, et al., Appl. Catal. B: Environ. 260 (2020) 118181.
doi: 10.1016/j.apcatb.2019.118181
L. Acharya, S.P. Pattnaik, A. Behera, R. Acharya, K. Parida, Inorg. Chem. 60 (2021) 5021–5033.
doi: 10.1021/acs.inorgchem.1c00062
Z.W. Zhao, Y.J. Sun, Q. Luo, et al., Sci. Rep. 5 (2015) 14643.
doi: 10.1038/srep14643
W.W. Liu, R.F. Peng, X.P. Ye, J.F. Guo, L.B. Luo, Appl. Surf. Sci. 560 (2021) 150013.
doi: 10.1016/j.apsusc.2021.150013
Q.H. Liang, Z. Li, Z.H. Huang, F.Y. Kang, Q.H. Yang, Adv. Funct. Mater. 25 (2015) 6885–6892.
doi: 10.1002/adfm.201503221
F. Dong, Y.H. Li, Z.Y. Wang, W.K. Ho, Appl. Surf. Sci. 358 (2015) 393–403.
doi: 10.1016/j.apsusc.2015.04.034
M.L. Zhang, Y. Yang, X.Q. An, et al., J. Hazard. Mater. 424 (2022) 127424.
doi: 10.1016/j.jhazmat.2021.127424
A. Beyhaqi, S.M.T. Azimi, Z.H. Chen, C. Hu, Q.Y. Zeng, Int. J. Hydrogen Energy 46 (2021) 20547–20559.
doi: 10.1016/j.ijhydene.2021.03.174
S.W. Zhang, H.H. Gao, Y.S. Huang, et al., Environ. Sci. : Nano 5 (2018) 1179–1190.
doi: 10.1039/C8EN00124C
Y.C. Deng, L. Tang, C.Y. Feng, et al., ACS Appl. Mater. Interfaces 9 (2017) 42816–42828.
doi: 10.1021/acsami.7b14541
Y.Z. Zhang, S.C. Zong, C. Cheng, et al., Appl. Catal. B: Environ. 233 (2018) 80–87.
doi: 10.1016/j.apcatb.2018.03.104
Y.S. Chen, B. Yang, W.Y. Xie, et al., J. Mater. Res. Technol. 13 (2021) 301–310.
doi: 10.1016/j.jmrt.2021.04.056
X.L. Liu, Y.H. Guo, P. Wang, et al., Int. J. Hydrogen Energy 46 (2021) 3595–3604.
doi: 10.1016/j.ijhydene.2020.10.233
J. Pan, H.X. Wang, L.A. Xu, et al., Solid State Sci. 129 (2022) 106915.
doi: 10.1016/j.solidstatesciences.2022.106915
X.D. Zhang, X. Xie, H. Wang, et al., J. Am. Chem. Soc. 135 (2012) 18–21.
T.M.O. Le, T.H. Lam, T.N. Pham, et al., Polymers (Basel) 10 (2018) 633.
doi: 10.3390/polym10060633
Y.P. Liu, S.J. Shen, Z.G. Li, et al., Mater. Charact. 174 (2021) 111031.
doi: 10.1016/j.matchar.2021.111031
H. Mei, H.W. Shu, M.Y. Lv, W. Liu, X.D. Wang, Microchim. Acta 187 (2020) 159.
doi: 10.1007/s00604-020-4135-9
Q. Wang, W. Wang, L.L. Zhong, et al., Appl. Catal. B: Environ. 220 (2018) 290–302.
doi: 10.1016/j.apcatb.2017.08.049
X.F. Zhang, W.J. Du, Q. Li, C.P. Lv, RSC Adv. 12 (2022) 20618–20627.
doi: 10.1039/D2RA02609K
M.I. Chebanenko, A.A. Lobinsky, V.N. Nevedomskiy, V.I. Popcov, Dalton Trans. 49 (2020) 12088–12097.
doi: 10.1039/D0DT01602K
D.M. Zhao, J. Chen, C.L. Dong, et al., J. Catal. 352 (2017) 491–497.
doi: 10.1016/j.jcat.2017.06.020
X.J. Wang, C. Liu, X.L. Li, et al., Appl. Surf. Sci. 394 (2017) 340–350.
doi: 10.1016/j.apsusc.2016.10.081
X. Li, Q. Wu, M. Hussain, et al., RSC Adv. 12 (2022) 15378–15384.
doi: 10.1039/D2RA02441A
H.T. Shin, D.U. Lee, S. Chaudhari, et al., J. Taiwan Inst. Chem. E 132 (2022) 104126.
doi: 10.1016/j.jtice.2021.10.026
T.D. Munusamy, S.Y. Chin, M. Tarek, M.M.R. Khan, Int. J. Hydrogen Energy 46 (2021) 30988–30999.
doi: 10.1016/j.ijhydene.2021.01.176
T.V. de Medeiros, A.O. Porto, H.A. Bicalho, et al., J. Mater. Chem. C 9 (2021) 7622–7631.
doi: 10.1039/D1TC01734A
M.J. Bojdys, N. Severin, J.P. Rabe, et al., Macromol. Rapid Commun. 34 (2013) 850–854.
doi: 10.1002/marc.201300086
J. Xu, L.W. Zhang, R. Shi, Y.F. Zhu, J. Mater. Chem. A 1 (2013) 14766–14772.
doi: 10.1039/c3ta13188b
L. Shi, K. Chang, H.B. Zhang, et al., Small 12 (2016) 4431–4439.
doi: 10.1002/smll.201601668
G.N. Li, L. Li, H.Y. Yuan, et al., J. Colloid Interface Sci. 495 (2017) 19–26.
doi: 10.1016/j.jcis.2017.01.112
J.F. Wang, J. Chen, P.F. Wang, et al., Appl. Catal. B: Environ. 239 (2018) 578–585.
doi: 10.1016/j.apcatb.2018.08.048
R.P. Wang, Y. Wang, S.H. Mao, et al., J. Inorg. Organomet. Polym. 31 (2021) 32–42.
doi: 10.1007/s10904-020-01626-2
A. Mishra, A. Mehta, S. Kainth, S. Basu, J. Mater. Sci. 53 (2018) 13126–13142.
doi: 10.1007/s10853-018-2565-0
C. Liang, C.G. Niu, H. Guo, et al., Catal. Sci. Technol. 8 (2018) 1161–1175.
doi: 10.1039/C7CY02190A
Y.Y. Fan, H.M. Chen, D.F. Cui, Z. Fan, C.Y. Xue, Energy Technol. 9 (2021) 2000973.
doi: 10.1002/ente.202000973
K.H. Chen, X.W. Wang, Q.Y. Li, et al., Chem. Eng. J. 418 (2021) 129476.
doi: 10.1016/j.cej.2021.129476
J.P. Wang, Y. Yu, J.Y. Cui, et al., Appl. Catal. B: Environ. 301 (2022) 120814.
doi: 10.1016/j.apcatb.2021.120814
J.Z. Jiang, Z.G. Xiong, H.T. Wang, et al., J. Mater. Sci. Technol. 118 (2022) 15–24.
doi: 10.1016/j.jmst.2021.12.018
D.V. Thuan, T.L. Nguyen, H.H.P. Thi, et al., Opt. Mater. 123 (2022) 111885.
doi: 10.1016/j.optmat.2021.111885
R.Y. Zhang, S.Y. Niu, J.M. Xiang, et al., Sep. Purif. Technol. 261 (2021) 118258.
doi: 10.1016/j.seppur.2020.118258
Y.Y. Wang, W.J. Jiang, W.J. Luo, X.J. Chen, Y.F. Zhu, Appl. Catal. B: Environ. 237 (2018) 633–640.
doi: 10.1016/j.apcatb.2018.06.013
H.Y. Wang, R.R. Niu, J.H. Liu, et al., Nano Res. 15 (2022) 6987–6998.
doi: 10.1007/s12274-022-4329-z
H. Jung, T.T. Pham, E.W. Shin, Appl. Surf. Sci. 458 (2018) 369–381.
doi: 10.1016/j.apsusc.2018.07.048
K.L. He, J. Xie, M.L. Li, X. Li, Appl. Surf. Sci. 430 (2018) 208–217.
doi: 10.1016/j.apsusc.2017.08.191
J. Wang, R.H. Pan, Q. Hao, et al., Appl. Surf. Sci. 599 (2022) 153875.
doi: 10.1016/j.apsusc.2022.153875
B.L. Dai, Y.Y. Li, J.M. Xu, et al., Appl. Surf. Sci. 592 (2022) 153309.
doi: 10.1016/j.apsusc.2022.153309
Z.W. Zhao, K. Dai, J.F. Zhang, G. Dawson, Adv. Sustain. Syst. 7 (2022) 2100498.
A. Mardiroosi, A.R. Mahjoub, H. Fakhri, R. Boukerroub, J. Mol. Struct. 1246 (2021) 131244.
doi: 10.1016/j.molstruc.2021.131244
G.L. Xu, H.B. Zhang, J. Wei, et al., ACS Nano 12 (2018) 5333–5340.
doi: 10.1021/acsnano.8b00110
J.B. Liu, H.J. Shi, Q. Shen, C.Y. Guo, C.H. Zhao, Green Chem. 19 (2017) 5900–5910.
doi: 10.1039/C7GC02657A
A. Rajan, B. Neppolian, Appl. Mater. Today 28 (2022) 101524.
doi: 10.1016/j.apmt.2022.101524
Y. Di, X.C. Wang, A. Thomas, M. Antonietti, ChemCatChem 2 (2010) 834–838.
doi: 10.1002/cctc.201000057
Z.H. Chen, F. Guo, H.R. Sun, Y.X. Shi, W.L. Shi, J. Colloid Interface Sci. 607 (2021) 1391–1401.
T.Y. Ren, Y.P. Dang, Y. Xiao, et al., Inorg. Chem. Commun. 123 (2021) 108367.
doi: 10.1016/j.inoche.2020.108367
J.W. Zhou, F.F. Duo, C.Y. Jia, et al., Environ. Eng. Sci. 38 (2021) 1098–1107.
doi: 10.1089/ees.2020.0213
T. Tong, B.C. Zhu, C.J. Jiang, B. Cheng, J.G. Yu, Appl. Surf. Sci. 433 (2018) 1175–1183.
doi: 10.1016/j.apsusc.2017.10.120
S.J. Wang, Y.X. Feng, M.A. Yu, Q. Wan, S. Lin, ACS Appl. Mater. Interfaces 9 (2017) 33267–33273.
doi: 10.1021/acsami.7b08665
X.L. Zhang, X.X. Zhang, J.D. Li, et al., Appl. Catal. B: Environ. 237 (2018) 50–58.
doi: 10.1016/j.apcatb.2018.05.034
W. Liu, Y.Y. Li, F.Y. Liu, et al., Water Res. 151 (2019) 8–19.
doi: 10.1016/j.watres.2018.11.084
Z.Y. Shi, L. Rao, P.F. Wang, L.X. Zhang, Chemosphere 308 (2022) 136257.
doi: 10.1016/j.chemosphere.2022.136257
Z.Y. Shi, L. Rao, P.F. Wang, L.X. Zhang, Environ. Sci. Pollut. Res. 29 (2022) 83981–83992.
doi: 10.1007/s11356-022-21535-w
M. Karimi-Nazarabad, E.K. Goharshadi, R. Mehrkhah, M. Davardoostmanesh, Sep. Purif. Technol. 279 (2021) 119788.
doi: 10.1016/j.seppur.2021.119788
H.J. He, L.H. Huang, Z.J. Zhong, S.Z. Tan, Appl. Surf. Sci. 441 (2018) 285–294.
doi: 10.1016/j.apsusc.2018.01.298
D. Liu, J. Yao, S.T. Chen, et al., Appl. Catal. B: Environ. 318 (2022) 121822.
doi: 10.1016/j.apcatb.2022.121822
F.G. Hu, S.P. Sun, H.L. Xu, et al., J. Phys. Chem. Solids 156 (2021) 110181.
doi: 10.1016/j.jpcs.2021.110181
X.J. Chen, J. Wang, Y.Q. Chai, Z.J. Zhang, Y.F. Zhu, Adv. Mater. 33 (2021) 2007479.
doi: 10.1002/adma.202007479
P. Sarkar, S.R.D. De, S. Neogi, Appl. Catal. B: Environ. 307 (2022) 121165.
doi: 10.1016/j.apcatb.2022.121165
J.E. Du, S.L. Ma, N. Zhang, et al., Colloid. Surf. A 654 (2022) 130094.
doi: 10.1016/j.colsurfa.2022.130094
W.L. Shi, C. Liu, M.Y. Li, et al., J. Hazard. Mater. 389 (2020) 121907.
doi: 10.1016/j.jhazmat.2019.121907
H.F. Xu, S.J. Liang, X. Zhu, et al., Biosens. Bioelectron. 92 (2017) 695–701.
doi: 10.1016/j.bios.2016.10.026
Q. Qiao, W.Q. Huang, Y.Y. Li, et al., J. Mater. Sci. 53 (2018) 15882–15894.
doi: 10.1007/s10853-018-2762-x
W.N. Xing, G. Chen, C.M. Li, et al., Nanoscale 10 (2018) 5239–5245.
doi: 10.1039/C7NR09161C
Y.Y. Liu, Y. Zhang, L. Shi, Colloid Surf. A 641 (2022) 128577.
doi: 10.1016/j.colsurfa.2022.128577
M.Y. Cao, K. Wang, I. Tudela, X.F. Fan, Appl. Surf. Sci. 536 (2021) 147784.
doi: 10.1016/j.apsusc.2020.147784
Y. Ding, S. Maitra, C.H. Wang, et al., J. Energy Chem. 70 (2022) 236–247.
doi: 10.1016/j.jechem.2022.02.031
L. Deng, J.J. Sun, J. Sun, et al., Appl. Surf. Sci. 597 (2022) 153586.
doi: 10.1016/j.apsusc.2022.153586
B. Yang, X.L. Li, Q. Zhang, et al., Appl. Catal. B: Environ. 314 (2022) 121521.
doi: 10.1016/j.apcatb.2022.121521
S. Mao, C. Liu, Y. Wu, M.Z. Xia, F.Y. Wang, Chemosphere 291 (2022) 133039.
doi: 10.1016/j.chemosphere.2021.133039
J.C. Wang, Y.X. Huo, F.D. Feng, et al., Appl. Surf. Sci. 537 (2021) 148014.
doi: 10.1016/j.apsusc.2020.148014
X.A. Dong, J.Y. Li, Q. Xing, Y. Zhou, H.W. Huang, Appl. Catal. B: Environ. 232 (2018) 69–76.
doi: 10.1016/j.apcatb.2018.03.054
C.H. Choi, L.H. Lin, S.J. Gim, et al., ACS Catal. 8 (2018) 4241–4256.
doi: 10.1021/acscatal.7b03512
C.C. Dong, Z.Y. Ma, R.T. Qie, et al., Appl. Catal. B: Environ. 217 (2017) 629–636.
doi: 10.1016/j.apcatb.2017.06.028
S.H. Cao, B. Fan, Y.C. Feng, et al., Chem. Eng. J. 353 (2018) 147–156.
doi: 10.1016/j.cej.2018.07.116
G.H. Dong, D.L. Jacobs, L. Zang, C.Y. Wang, Appl. Catal. B: Environ. 218 (2017) 515–524.
doi: 10.1016/j.apcatb.2017.07.010
Q.C. Li, Y.W. Tong, Y.B. Zeng, X.K. Gu, M.Y. Ding, Chem. Eng. J. 450 (2022) 138010.
doi: 10.1016/j.cej.2022.138010
F.P. Meng, W.J. Tian, Z.H. Tian, et al., Sci. Total Environ. 851 (2022) 158360.
doi: 10.1016/j.scitotenv.2022.158360
H.W. Huang, K. Xiao, N. Tian, et al., J. Mater. Chem. A 5 (2017) 17452–17463.
doi: 10.1039/C7TA04639A
Z.Q. Jiang, Y.R. Shen, Y.J. You, Molecules 27 (2022) 6054.
doi: 10.3390/molecules27186054
T.T. Li, S.L. Wang, L. Li, et al., J. Colloid Interface Sci. 628 (2022) 214–221.
doi: 10.1016/j.jcis.2022.08.049
Q. Liu, X.L. Wang, Q. Yang, Z.G. Zhang, X.M. Fang, Appl. Surf. Sci. 450 (2018) 46–56.
doi: 10.1016/j.apsusc.2018.04.175
S.W. Cao, J.X. Low, J.G. Yu, M. Jaroniec, Adv. Mater. 27 (2015) 2150–2176.
doi: 10.1002/adma.201500033
J.J. Yi, T. Fei, L. Li, et al., Appl. Catal. B: Environ. 281 (2021) 119475.
doi: 10.1016/j.apcatb.2020.119475
A. Majumdar, U. Ghosh, A. Pal, et al., J. Colloid Interface Sci. 584 (2021) 320–331.
doi: 10.1016/j.jcis.2020.09.101
C. Murugan, K. Ranjithkumar, A. Pandikumar, et al., J. Colloid Interface Sci. 602 (2021) 437–451.
doi: 10.1016/j.jcis.2021.05.179
H.J. Li, Y. Zhou, W.G. Tu, J.H. Ye, Z.G. Zou, Adv. Funct. Mater. 25 (2015) 998–1013.
doi: 10.1002/adfm.201401636
W.K. Jo, N.C.S. Selvam, Chem. Eng. J. 317 (2017) 913–924.
doi: 10.1016/j.cej.2017.02.129
M.Q. Wu, T. Ding, Y.T. Wang, et al., Catal. Today 355 (2020) 311–318.
doi: 10.1016/j.cattod.2019.04.061
Z.X. Liu, Y.D. Liu, X.B. Sun, et al., Chem. Eng. J. 433 (2022) 133604.
doi: 10.1016/j.cej.2021.133604
I. Hong, Y.A. Chen, Y.J. Hsu, K.J. Yong, ACS Appl. Mater. Interfaces 13 (2021) 52670–52680.
doi: 10.1021/acsami.1c15883
P. Wen, Y.H. Sun, H. Li, et al., Appl. Catal. B: Environ. 263 (2020) 118180.
doi: 10.1016/j.apcatb.2019.118180
J.G. Yu, S.H. Wang, J.X. Low, W. Xiao, Phys. Chem. Chem. Phys. 15 (2013) 16883–16890.
doi: 10.1039/c3cp53131g
G.X. Li, Y.D. Cai, X.D. Wang, et al., Chem. Phys. 559 (2022) 111558.
doi: 10.1016/j.chemphys.2022.111558
H. Zhang, J. He, P. Wu, W. Jiang, J. Environ. Chem. Eng. 10 (2022) 107804.
doi: 10.1016/j.jece.2022.107804
T. Feng, J.Y. Jin, Y.R. Cao, et al., Int. J. Hydrogen Energy 47 (2022) 5999–6010.
doi: 10.1016/j.ijhydene.2021.11.242
N.K. Ding, B. Chen, L. Zhou, et al., Chin. Chem. Lett. 33 (2022) 3797–3801.
doi: 10.1016/j.cclet.2021.11.042
M.X. Zhang, H.X. Du, J. Ji, et al., Molecules 26 (2021) 2062.
doi: 10.3390/molecules26072062
K. Wang, G.K. Zhang, J. Li, Y. Li, X.Y. Wu, ACS Appl. Mater. Interfaces 9 (2017) 43704–43715.
doi: 10.1021/acsami.7b14275
N. Nie, L.Y. Zhang, J.W. Fu, B. Cheng, J.G. Yu, Appl. Surf. Sci. 441 (2018) 12–22.
doi: 10.1016/j.apsusc.2018.01.193
X.W. Liu, J. Chen, L.F. Yang, et al., J. Phys. Chem. Solids 160 (2021) 110339.
X.F. Zhang, X.B. Jia, P.Z. Duan, et al., Colloid Surf. A 608 (2021) 125580.
doi: 10.1016/j.colsurfa.2020.125580
Q. Ye, M. Yang, W. Li, et al., Environ. Sci. Pollut. Res. 29 (2022) 58762–58772.
doi: 10.1007/s11356-022-19934-0
P. Ke, D.L. Zeng, J.W. Cui, X. Li, Y. Chen, Catalysts 12 (2022) 247.
doi: 10.3390/catal12030247
X.L. Zhu, C.L. Duan, W.Z. Wang, G.X. Xin, J.L. Song, Mater. Lett. 317 (2022) 132045.
doi: 10.1016/j.matlet.2022.132045
X.D. Yang, J. Duan, X. Zhang, et al., Chin. Chem. Lett. 33 (2022) 3792–3796.
doi: 10.1016/j.cclet.2021.11.031
D.T. Dung, N.V. Hiep, M.B. Nguyen, V.D. Thao, N.N. Huy, Korean J. Chem. Eng. 38 (2021) 2034–2046.
doi: 10.1007/s11814-021-0846-9
M. Li, Q.H. Li, M.W. Xu, et al., Carbon 184 (2021) 479–491.
doi: 10.1016/j.carbon.2021.08.045
A. Hagghi, N. Dalali, M.M. Abolghasemi, et al., Sep. Sci. Technol. 56 (2021) 2398–2406.
doi: 10.1080/01496395.2020.1830293
D.D. Zhang, J.J. Qi, H.D. Ji, et al., Chem. Eng. J. 400 (2020) 125918.
doi: 10.1016/j.cej.2020.125918
L.M. Zhao, L.J. Guo, Y.L. Tang, J.F. Zhou, B. Shi, Ind. Eng. Chem. Res. 60 (2021) 13594–13603.
doi: 10.1021/acs.iecr.1c02411
M.Y. Xu, X.X. Zhao, H.P. Jiang, S.T. Chen, P.W. Huo, J. Environ. Chem. Eng. 9 (2021) 106469.
doi: 10.1016/j.jece.2021.106469
Z.L. Tang, C.J. Wang, W.J. He, et al., Chin. Chem. Lett. 33 (2022) 939–942.
doi: 10.1016/j.cclet.2021.07.020
X.X. Zhao, M. Gao, Q. Liu, et al., Sustain. Energy Fuels 6 (2022) 3768–3777.
doi: 10.1039/D2SE00706A
Z.W. Zhao, Y.J. Sun, F. Dong, Nanoscale 7 (2015) 15–37.
doi: 10.1039/C4NR03008G
Z.L. Jin, Y.B. Li, X.Q. Hao, Acta Phys. Chim. Sin. 37 (2021) 1912033.
Y.X. Wang, F.T. He, L. Chen, et al., Chin. Chem. Lett. 31 (2020) 2668–2672.
doi: 10.1016/j.cclet.2020.08.003
W. Tahir, T.Y. Cheang, J.H. Li, et al., Catal. Sci. Technol. 12 (2022) 2023–2029.
doi: 10.1039/D1CY02039K
W. Zhao, Y.J. Li, P.S. Zhao, et al., Chem. Eng. J. 405 (2021) 126555.
doi: 10.1016/j.cej.2020.126555
C. Cheng, L.H. Mao, J.W. Shi, et al., J. Mater. Chem. A 9 (2021) 12299–12306.
doi: 10.1039/D1TA00241D
J. Jia, W.J. Sun, Q.Q. Zhang, et al., Appl. Catal. B: Environ. 261 (2020) 118249.
doi: 10.1016/j.apcatb.2019.118249
X.X. He, H.Y. Shang, C. Wang, et al., Chin. Chem. Lett. 32 (2021) 3377–3381.
doi: 10.1016/j.cclet.2021.04.028
I. Camussi, B. Mannucci, A. Speltini, et al., ACS Sustain. Chem. Eng. 7 (2019) 8176–8182.
doi: 10.1021/acssuschemeng.8b06164
Y. Li, Y.N. Li, S.L. Ma, et al., J. Hazard. Mater. 338 (2017) 33–46.
doi: 10.1016/j.jhazmat.2017.05.011
Q.D. Le, P.N. Ngoc, H.T. Huu, et al., Chem. Phys. Lett. 796 (2022) 139550.
doi: 10.1016/j.cplett.2022.139550
Z.P. Li, W.X. Dong, X.Y. Du, G.M. Wen, X.J. Fan, Microchem. J. 152 (2020) 104259.
doi: 10.1016/j.microc.2019.104259
E. Dhandapani, S. Prabhu, N. Duraisamy, R. Ramesh, J. Energy Storage 44 (2021) 103360.
doi: 10.1016/j.est.2021.103360
F. Goudarzy, J. Zolgharnein, J.B. Ghasemi, Inorg. Chem. Commun. 141 (2022) 109512.
doi: 10.1016/j.inoche.2022.109512
K. Radhakrishnan, S. Sivanesan, P. Panneerselvam, J. Photochem. Photobiol. A 389 (2020) 112204.
doi: 10.1016/j.jphotochem.2019.112204
X.J. Liu, Q.E. Wang, J. Chen, X. Chen, W.S. Yang, Talanta 221 (2021) 121379.
doi: 10.1016/j.talanta.2020.121379
Xiaoming Fu , Haibo Huang , Guogang Tang , Jingmin Zhang , Junyue Sheng , Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214
Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148
Cailiang Yue , Nan Sun , Yixing Qiu , Linlin Zhu , Zhiling Du , Fuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698
Chunyan Yang , Qiuyu Rong , Fengyin Shi , Menghan Cao , Guie Li , Yanjun Xin , Wen Zhang , Guangshan Zhang . Rationally designed S-scheme heterojunction of BiOCl/g-C3N4 for photodegradation of sulfamerazine: Mechanism insights, degradation pathways and DFT calculation. Chinese Chemical Letters, 2024, 35(12): 109767-. doi: 10.1016/j.cclet.2024.109767
Yanghanbin Zhang , Dongxiao Wen , Wei Sun , Jiahe Peng , Dezhong Yu , Xin Li , Yang Qu , Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469
Yihu Ke , Shuai Wang , Fei Jin , Guangbo Liu , Zhiliang Jin , Noritatsu Tsubaki . Charge transfer optimization: Role of Cu-graphdiyne/NiCoMoO4 S-scheme heterojunction and Ohmic junction. Chinese Journal of Structural Chemistry, 2024, 43(12): 100458-100458. doi: 10.1016/j.cjsc.2024.100458
Xingmin Chen , Yunyun Wu , Yao Tang , Peishen Li , Shuai Gao , Qiang Wang , Wen Liu , Sihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245
Zhinan GUO , Junli WANG , Qiang ZHAO , Zhifang JIA , Zuopeng LI , Kewei WANG , Yong GUO . Cu2O/Bi2CrO6 Z-scheme heterojunction: Construction and photocatalytic degradation properties for tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 741-752. doi: 10.11862/CJIC.20240403
Kai Han , Guohui Dong , Ishaaq Saeed , Tingting Dong , Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416
Hao Lv , Zhi Li , Peng Yin , Ping Wan , Mingshan Zhu . Recent progress on non-metallic carbon nitride for the photosynthesis of H2O2: Mechanism, modification and in-situ applications. Chinese Chemical Letters, 2025, 36(1): 110457-. doi: 10.1016/j.cclet.2024.110457
Zhi Zhu , Xiaohan Xing , Qi Qi , Wenjing Shen , Hongyue Wu , Dongyi Li , Binrong Li , Jialin Liang , Xu Tang , Jun Zhao , Hongping Li , Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
Min WANG , Dehua XIN , Yaning SHI , Wenyao ZHU , Yuanqun ZHANG , Wei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
Yingqi BAI , Hua ZHAO , Huipeng LI , Xinran REN , Jun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259
Qinwen Zheng , Xin Liu , Lintao Tian , Yi Zhou , Libing Liao , Guocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771
Xin Jiang , Han Jiang , Yimin Tang , Huizhu Zhang , Libin Yang , Xiuwen Wang , Bing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005