Recent advances in MXenes-based glucose biosensors
-
* Corresponding author.
E-mail address: fanghuahope99@outlook.com (F. Li)
Citation:
Shunyao Tian, Meng Wang, Paolo Fornasiero, Xiaoyu Yang, Seeram Ramakrishna, Shih-Hsin Ho, Fanghua Li. Recent advances in MXenes-based glucose biosensors[J]. Chinese Chemical Letters,
;2023, 34(10): 108241.
doi:
10.1016/j.cclet.2023.108241
D. Wang, G. Xu, X. Zhang, et al., Sens. Actuators B: Chem. 359 (2022) 131512.
doi: 10.1016/j.snb.2022.131512
H. Sun, P. Saeedi, S. Karuranga, et al., Diabetes Res. Clin. Pr. 183 (2022) 109119.
doi: 10.1016/j.diabres.2021.109119
W. Wu, L. Lin, Z. Lin, et al., Obes. Surg. 28 (2018) 3087–3094.
doi: 10.1007/s11695-018-3291-z
D.W. Hwang, S. Lee, M. Seo, T.D. Chung, Anal. Chim. Acta. 1033 (2018) 1–34.
doi: 10.1016/j.aca.2018.05.051
J. Zhu, E. Ha, G. Zhao, et al., Coord. Chem. Rev. 352 (2017) 306–327.
doi: 10.1016/j.ccr.2017.09.012
Z. Juan, M. Dong, X. Zhang, Chin. J. Anal. Chem. 50 (2021) 87–96.
Y.T. Liu, P. Zhang, N. Sun, et al., Adv. Mater. 30 (2018) e1707334.
doi: 10.1002/adma.201707334
U. Yorulmaz, A. Özden, N.K. Perkgöz, F. Ay, C. Sevik, Nanotechnology 27 (2016) 335702.
doi: 10.1088/0957-4484/27/33/335702
S.H. Talib, Z. Lu, B. Bashir, et al., Chin. Chem. Lett. 34 (2022) 2213–2762.
M. Naguib, M. Kurtoglu, V. Presser, et al., Adv. Mater. 23 (2011) 4248–4253.
doi: 10.1002/adma.201102306
Z. Bao, C. Lu, X. Cao, et al., Chin. Chem. Lett. 32 (2021) 2648–2658.
doi: 10.1016/j.cclet.2021.02.012
Y. An, Y. Tian, J. Feng, Y. Qian, Mater. Today 57 (2022) 146–179.
doi: 10.1016/j.mattod.2022.06.006
B. Lu, Z. Zhu, B. Ma, et al., Small 17 (2021) 2100946.
doi: 10.1002/smll.202100946
Y. Wang, W. Feng, Y. Chen, Chin. Chem. Lett. 31 (2020) 937–946.
doi: 10.1016/j.cclet.2019.11.016
M. Naguib, Y. Gogotsi, Acc. Chem. Res. 48 (2015) 128–135.
doi: 10.1021/ar500346b
H.C. Wang, A.R. Lee, J. Food Drug Anal. 23 (2015) 191–200.
doi: 10.1016/j.jfda.2014.12.001
R. Reghunath, K. devi, K.K. Singh, Nano-Struct. Nano-Objects. 26 (2021) 100750.
doi: 10.1016/j.nanoso.2021.100750
M. Burt, G. Roberts, N. Aguilar-Loza, S. Stranks, Diabetes Technol. Ther. 15 (2013) 241–245.
doi: 10.1089/dia.2012.0282
R.A. Soomro, S. Jawaid, Q. Zhu, Z. Abbas, B. Xu, Chin. Chem. Lett. 31 (2020) 922–930.
doi: 10.1016/j.cclet.2019.12.005
P.K. Kalambate, N.S. Gadhari, X. Li, et al., Trends Anal. Chem. 20 (2019) 115643.
A.T. Lawal, Biosens. Bioelectron. 141 (2019) 111384.
doi: 10.1016/j.bios.2019.111384
A. Sanati, Y. Esmaeili, E. Bidram, et al., Appl. Mater. Today 26 (2022) 101350.
doi: 10.1016/j.apmt.2021.101350
I. Lee, D. Probst, D. Klonoff, K. Sode, Biosens. Bioelectron. 181 (2021) 113054.
doi: 10.1016/j.bios.2021.113054
M.J. Tierney, J.A. Tamada, R.O. Potts, L. Jovanovic, S. Garg, Biosens. Bioelectron. 16 (2001) 621–629.
doi: 10.1016/S0956-5663(01)00189-0
D. Zhang, S. Yang, X. Fang, et al., Chin. Chem. Lett. 33 (2022) 4669–4674.
doi: 10.1016/j.cclet.2022.02.001
M. Xu, P. Zhao, C.Y. Tang, X. Yi, X. Wang, Chin. Chem. Lett. 33 (2022) 3818–3822.
doi: 10.1016/j.cclet.2021.11.071
B. Guan, X. Sun, Y. Zhang, et al., Chin. Chem. Lett. 32 (2021) 2249–2253.
doi: 10.1016/j.cclet.2020.12.051
W. Yuan, X. Qu, Y. Lu, et al., Chin. Chem. Lett. 32 (2021) 2021–2026.
doi: 10.1016/j.cclet.2020.12.003
S.K. Bhardwaj, H. Singh, M. Khatri, K.H. Kim, N. Bhardwaj, Biosens. Bioelectron. 202 (2022) 113995.
doi: 10.1016/j.bios.2022.113995
B. Xu, Y. Gogotsi, Chin. Chem. Lett. 31 (2020) 919–921.
doi: 10.1016/j.cclet.2020.03.054
S. Alwarappan, N. Nesakumar, D. Sun, T.Y. Hu, C.Z. Li, Biosens. Bioelectron. 205 (2022) 113943.
doi: 10.1016/j.bios.2021.113943
M.M. Baig, I.H. Gul, S.M. Baig, F. Shahzad, J. Electroanal. Chem. 904 (2022) 115920.
doi: 10.1016/j.jelechem.2021.115920
W. Jiang, X. Zou, H. Du, et al., Chem. Mater. 30 (2018) 2687–2693.
doi: 10.1021/acs.chemmater.8b00156
C. Li, X. Zhang, K. Wang, X. Sun, Y. Ma, Chin. Chem. Lett. 31 (2020) 1009–1013.
doi: 10.1016/j.cclet.2019.09.056
X. Xu, L. Yang, W. Zheng, et al., Mater. Today Energy 2 (2022) 100080.
Z.M. Sun, Int. Mater. Rev. 56 (2011) 143–166.
doi: 10.1179/1743280410Y.0000000001
M. Barsoum, Introduction History of the MAX Phases References, MAX Phases: M. Barsoum, Properties of Machinable Ternary Carbides and Nitrides, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2013, pp. 1–12.
M. Baig, I. Gul, S. Baig, F. Shahzad, J. Electroanal. Chem. 904 (2021) 115920.
A. Zamhuri, G.P. Lim, N.L. Ma, K.S. Tee, C.F. Soon, Biomed. Eng. Online 20 (2021) 33.
doi: 10.1186/s12938-021-00873-9
C. Xu, L. Wang, Z. Liu, et al., Nat. Mater. 14 (2015) 1135–1141.
doi: 10.1038/nmat4374
D. Dhamodharan, V. Dhinakaran, H.S. Byun, Carbon 192 (2022) 366–383.
doi: 10.1016/j.carbon.2022.03.004
Y. Yao, J. Zhao, X. Yang, C. Chai, Chin. Chem. Lett. 32 (2021) 620–634.
doi: 10.1016/j.cclet.2020.07.029
M. Wu, Q. Zhang, Y. Fang, et al., J. Colloid Interface Sci. 586 (2021) 20–29.
doi: 10.1016/j.jcis.2020.10.065
L. Verger, C. Xu, V. Natu, et al., Curr. Opin. Solid State Mater. Sci. 23 (2019) 149–163.
doi: 10.1016/j.cossms.2019.02.001
M. Naguib, M. Barsoum, Y. Gogotsi, et al., Adv. Mater. 33 (2021) 2103393.
doi: 10.1002/adma.202103393
S.B. Ambade, R.B. Ambade, W. Eom, et al., Adv. Mater. Interfaces 5 (2018) 1801361.
doi: 10.1002/admi.201801361
C. Zhou, X. Zhao, Y. Xiong, et al., Eur. Polym. J. 167 (2022) 111063.
doi: 10.1016/j.eurpolymj.2022.111063
H. Hu, S. Wei, S. Lin, L. Chen, C. Pan, Asian J. Surg. 341 (2022) 111468.
X. Li, Y. Lu, Q. Liu, Talanta 235 (2021) 122726.
doi: 10.1016/j.talanta.2021.122726
M. Ghidiu, M.R. Lukatskaya, M.Q. Zhao, Y. Gogotsi, M.W. Barsoum, Nature 516 (2014) 78–81.
doi: 10.1038/nature13970
L. Li, J. Wen, X. Zhang, ChemSusChem 13 (2020) 1296–1329.
doi: 10.1002/cssc.201902679
M. Alhabeb, K. Maleski, T. Mathis, et al., Angew. Chem. Int. Ed. 57 (2019) 5444–5448.
M. Li, J. Lu, K. Luo, et al., J. Am. Chem. Soc. 141 (2019) 4730–4737.
doi: 10.1021/jacs.9b00574
W. Sun, S.A. Shah, Y. Chen, et al., J. Mater. Chem. A 5 (2017) 21663–21668.
doi: 10.1039/C7TA05574A
S. Kajiyama, L. Szabova, H. Iinuma, et al., Adv. Energy Mater. 7 (2017) 1601873.
doi: 10.1002/aenm.201601873
S. Yang, P. Zhang, F. Wang, et al., Angew. Chem. Int. Ed. 57 (2018) 15491–15495.
doi: 10.1002/anie.201809662
S.Y. Pang, Y.T. Wong, S. Yuan, et al., J. Am. Chem. Soc. 141 (2019) 9610–9616.
doi: 10.1021/jacs.9b02578
W. Sun, S. Shah, Y. Chen, et al., J. Mater. Chem. A 5 (2017) 103360475.
S. Wu, H. Wang, L. Li, et al., Chin. Chem. Lett. 31 (2020) 961–968.
doi: 10.1016/j.cclet.2020.02.046
M. Malaki, A. Maleki, R.S. Varma, J. Mater. Chem. A 7 (2019) 10843–10857.
doi: 10.1039/c9ta01850f
M. Jeon, B.M. Jun, S. Kim, et al., Chemosphere 261 (2020) 127781.
doi: 10.1016/j.chemosphere.2020.127781
G. Lv, J. Wang, Z. Shi, L. Fan, Mater. Lett. 219 (2018) 45–50.
doi: 10.1016/j.matlet.2018.02.016
X. Li, F. Ran, F. Yang, J. Long, L. Shao, Trans. Tianjin Univ. 27 (2021) 217–247.
doi: 10.1007/s12209-021-00282-y
M. Naguib, R.R. Unocic, B.L. Armstrong, J. Nanda, Dalton Trans. 44 (2015) 9353–9358.
doi: 10.1039/C5DT01247C
M.R. Lukatskaya, O. Mashtalir, C.E. Ren, et al., Science 341 (2013) 1502–1505.
doi: 10.1126/science.1241488
J. Wu, Y. Wang, Y. Zhang, et al., J. Energy Chem. 47 (2020) 203–209.
doi: 10.3390/bios10120203
A. Hu, J. Yu, H. Zhao, H. Zhang, W. Li, Appl. Surf. Sci. 505 (2020) 144538.
doi: 10.1016/j.apsusc.2019.144538
A.Y. Hu, J.L. Yu, H. Zhao, H. Zhang, W. Li, Appl. Surf. Sci. 505 (2020) 144538.
doi: 10.1016/j.apsusc.2019.144538
D.W. Bowden, Curr. Diab. Rep. 2 (2002) 191–200.
doi: 10.1007/s11892-002-0080-8
K. Berg, Physcian Sportsmed. 7 (1979) 71–79.
doi: 10.1080/00913847.1979.11948523
G. Li, D. Wen, Chin. Chem. Lett. 32 (2021) 221–228.
doi: 10.1016/j.cclet.2020.10.028
J. Zhou, D. Men, X.E. Zhang, Chin. J. Anal. Chem. 50 (2022) 87–96.
doi: 10.1016/j.cjac.2021.11.004
Q. Chen, Y. Zhao, Y. Liu, Chin. Chem. Lett. 32 (2021) 3705–3717.
doi: 10.1016/j.cclet.2021.05.043
H. Riazi, G. Taghizadeh, M. Soroush, ACS Omega 6 (2021) 11103–11112.
doi: 10.1021/acsomega.0c05828
Y. Sun, P. Li, Y. Zhu, et al., Biosens. Bioelectron. 194 (2021) 113600.
doi: 10.1016/j.bios.2021.113600
M. Mathew, C.S. Rout, Curr. Opin. Electrochem. 30 (2021) 100782.
doi: 10.1016/j.coelec.2021.100782
Y. Lei, W. Zhao, Y. Zhang, et al., Small 15 (2019) 1901190.
doi: 10.1002/smll.201901190
J.A. Clayton, N. Engl. J. Med. 378 (2018) 2212–2223.
doi: 10.1056/NEJMra1407936
J.R. Sempionatto, L.C. Brazaca, L. García-Carmona, et al., Biosens. Bioelectron. 137 (2019) 161–170.
doi: 10.1016/j.bios.2019.04.058
Q. Huang, J. Li, Mater. Lett. 204 (2017) 85–88.
doi: 10.1016/j.matlet.2017.06.019
X. Cui, J. Li, Y. Li, et al., Spectrochim. Acta A 266 (2022) 120432.
doi: 10.1016/j.saa.2021.120432
T. Unmüssig, A. Weltin, S. Urban, et al., J. Electroanal. Chem. 816 (2018) 215–222.
doi: 10.1016/j.jelechem.2018.03.061
V. Myndrul, L. Vysloužilová, A. Klápšťová, et al., Coatings 10 (2020) 1199.
doi: 10.3390/coatings10121199
M. Pavlenko, V. Myndrul, G. Gottardi, et al., Materials 13 (2020) 1987.
doi: 10.3390/ma13081987
A. Tereshchenko, M. Bechelany, R. Viter, et al., Sens. Actuators B: Chem. 229 (2016) 664–677.
doi: 10.1016/j.snb.2016.01.099
V. Myndrul, E. Coy, N. Babayevska, et al., Biosens. Bioelectron. 207 (2022) 114141.
doi: 10.1016/j.bios.2022.114141
R.B. Rakhi, P. Nayak, C. Xia, H.N. Alshareef, Sci. Rep. 6 (2016) 36422.
doi: 10.1038/srep36422
F. Zhang, Q. Wan, C.X. Li, et al., Chin. J. Chem. 21 (2010) 1619–1623.
doi: 10.1002/cjoc.20030211219
J. Wang, Chem. Rev. 108 (2008) 814–825.
doi: 10.1021/cr068123a
X. Kang, J. Wang, H. Wu, et al., Biosens. Bioelectron. 25 (2009) 901–905.
doi: 10.1016/j.bios.2009.09.004
B. Unnikrishnan, S. Palanisamy, S.M. Chen, Biosens. Bioelectron. 39 (2013) 70–75.
doi: 10.1016/j.bios.2012.06.045
H. Liu, C. Duan, C. Yang, et al., Sens. Actuators B: Chem. 218 (2015) 60–66.
doi: 10.1016/j.snb.2015.04.090
S. Deng, G. Jian, J. Lei, Z. Hu, H. Ju, Biosens. Bioelectron. 25 (2009) 373–377.
doi: 10.1016/j.bios.2009.07.016
H.L. Chia, C.C. Mayorga-Martinez, N. Antonatos, et al., Anal. Chem. 92 (2020) 2452–2459.
doi: 10.1021/acs.analchem.9b03634
Z. Gu, A.A. Aimetti, Q. Wang, et al., ACS Nano 7 (2013) 4194–4201.
doi: 10.1021/nn400630x
X. Liu, Y. Liu, J. Wang, T. Wei, Z. Dai, ACS Appl. Mater. Interfaces 11 (2019) 23065–23071.
doi: 10.1021/acsami.9b08257
L. Lorencova, T. Bertok, E. Dosekova, et al., Electrochim. Acta 235 (2017) 471–479.
doi: 10.1016/j.electacta.2017.03.073
M. Wei, Y. Qiao, H. Zhao, et al., Chem. Commun. 56 (2020) 14553–14569.
doi: 10.1039/d0cc05650b
S. Fu, G. Fan, L. Yang, F. Li, Electrochim. Acta 152 (2015) 146–154.
doi: 10.1016/j.electacta.2014.11.115
R. Wilson, A.P.F. Turner, Biosens. Bioelectron. 7 (1992) 165–185.
doi: 10.1016/0956-5663(92)87013-F
E. Shoji, M.S. Freund, J. Am. Chem. Soc. 123 (2001) 3383–3384.
doi: 10.1021/ja005906j
J.A. Bauer, M. Zámocká, J. Majtán, V. Bauerová-Hlinková, Biomolecules 12 (2022) 12030472.
Q. Dong, H. Ryu, Y. Lei, Electrochim. Acta 370 (2021) 137744.
doi: 10.1016/j.electacta.2021.137744
S. Park, H. Boo, T.D. Chung, Anal. Chim. Acta 556 (2006) 46–57.
doi: 10.1016/j.aca.2005.05.080
I.U. Hassan, H. Salim, G.A. Naikoo, et al., J. Saudi Chem. Soc. 25 (2021) 101228.
doi: 10.1016/j.jscs.2021.101228
M. Li, L. Fang, H. Zhou, et al., Appl. Surf. Sci. 495 (2019) 143554.
doi: 10.1016/j.apsusc.2019.143554
A. Sinha, Dhanjai, H. Zhao, et al., Trends Anal. Chem. 105 (2018) 424–435.
doi: 10.1016/j.trac.2018.05.021
X. Cai, X. Shen, L. Ma, et al., Chem. Eng. J. 268 (2015) 251–259.
doi: 10.1016/j.cej.2015.01.072
Y. Ren, L. Gao, J. Am. Ceram. Soc. 93 (2010) 3560–3564.
doi: 10.1111/j.1551-2916.2010.04090.x
M. Li, H. Wang, X. Wang, et al., Biosens. Bioelectron. 142 (2019) 111535.
doi: 10.1016/j.bios.2019.111535
G. Chen, H. Wang, X. Wei, et al., Sens. Actuators B: Chem. 312 (2020) 127951.
doi: 10.1016/j.snb.2020.127951
H. Wang, T. Sheng, S. Zhao, et al., Curr. Opin. Biomed. Eng. 20 (2021) 100326.
doi: 10.1016/j.cobme.2021.100326
E. Sehit, Z. Altintas, Biosens. Bioelectron. 159 (2020) 112165.
doi: 10.1016/j.bios.2020.112165
Xinqiong Li , Guocheng Rao , Xi Peng , Chan Yang , Yanjing Zhang , Yan Tian , Xianghui Fu , Jia Geng . Direct detection of C9orf72 hexanucleotide repeat expansions by nanopore biosensor. Chinese Chemical Letters, 2024, 35(5): 109419-. doi: 10.1016/j.cclet.2023.109419
Xiaoning Li , Quanyu Shi , Meng Li , Ningxin Song , Yumeng Xiao , Huining Xiao , Tony D. James , Lei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021
Jia Fu , Shilong Zhang , Lirong Liang , Chunyu Du , Zhenqiang Ye , Guangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804
Linghui Zou , Meng Cheng , Kaili Hu , Jianfang Feng , Liangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129
Hao Deng , Yuxin Hui , Chao Zhang , Qi Zhou , Qiang Li , Hao Du , Derek Hao , Guoxiang Yang , Qi Wang . MXene−derived quantum dots based photocatalysts: Synthesis, application, prospects, and challenges. Chinese Chemical Letters, 2024, 35(6): 109078-. doi: 10.1016/j.cclet.2023.109078
Lu Dai , Yuxin Ren , Shuang Li , Meidi Wang , Chentao Hu , Ya-Pan Wu , Guangtong Hai , Dong-Sheng Li . Room-temperature synthesis of Co(OH)2/Mo2TiC2Tx hetero-nanosheets with interfacial coupling for enhanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 109774-. doi: 10.1016/j.cclet.2024.109774
Shaojie Deng , Peihua Ma , Qinghong Bai , Xin Xiao . The transformation of nor-seco-cucurbit[10]uril to cucurbit[5]uril and cucurbit[8]uril controlled by its own concentration. Chinese Chemical Letters, 2025, 36(2): 109878-. doi: 10.1016/j.cclet.2024.109878
Weidan Meng , Yanbo Zhou , Yi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961
Ming-Yi Sun , Lu Zhang , Ya Li , Chong-Chen Wang , Peng Wang , Xueying Ren , Xiao-Hong Yi . Recovering Ag+ with nano-MOF-303 to form Ag/AgCl/MOF-303 photocatalyst: The role of stored Cl− ions. Chinese Chemical Letters, 2025, 36(2): 110035-. doi: 10.1016/j.cclet.2024.110035
Yuxin Xiao , Xiaowei Wang , Yutong Yin , Fangchao Yin , Jinchao Li , Zhiyuan Hou , Mashooq Khan , Rusong Zhao , Wenli Wu , Qiongzheng Hu . Distance-based lateral flow biosensor for the quantitative detection of bacterial endotoxin. Chinese Chemical Letters, 2024, 35(12): 109718-. doi: 10.1016/j.cclet.2024.109718
Erzhuo Cheng , Yunyi Li , Wei Yuan , Wei Gong , Yanjun Cai , Yuan Gu , Yong Jiang , Yu Chen , Jingxi Zhang , Guangquan Mo , Bin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386
Meiqing Yang , Lu Wang , Haozi Lu , Yaocheng Yang , Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046
Jiahui Li , Qiao Shi , Ying Xue , Mingde Zheng , Long Liu , Tuoyu Geng , Daoqing Gong , Minmeng Zhao . The effects of in ovo feeding of selenized glucose on liver selenium concentration and antioxidant capacity in neonatal broilers. Chinese Chemical Letters, 2024, 35(6): 109239-. doi: 10.1016/j.cclet.2023.109239
Yue Sun , Yingnan Zhu , Jiahang Si , Ruikang Zhang , Yalan Ji , Jinjie Fan , Yuze Dong . Glucose-activated nanozyme hydrogels for microenvironment modulation via cascade reaction in diabetic wound. Chinese Chemical Letters, 2025, 36(4): 110012-. doi: 10.1016/j.cclet.2024.110012
Kezuo Di , Jie Wei , Lijun Ding , Zhiying Shao , Junling Sha , Xilong Zhou , Huadong Heng , Xujing Feng , Kun Wang . A wearable sensor device based on screen-printed chip with biofuel cell-driven electrochromic display for noninvasive monitoring of glucose concentration. Chinese Chemical Letters, 2025, 36(2): 109911-. doi: 10.1016/j.cclet.2024.109911
Tong Zhou , Liyi Xie , Chuyu Liu , Xiyan Zheng , Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048
Chunhui Zhang , Jie Wang , Jieyang Zhan , Runmin Yang , Guanggang Gao , Jiayuan Zhang , Linlin Fan , Mengqi Wang , Hong Liu . Highly sensitive hydrazine detection through a novel Raman scattering quenching mechanism enabled by a crystalline and noble metal–free polyoxometalate substrate. Chinese Chemical Letters, 2025, 36(3): 109719-. doi: 10.1016/j.cclet.2024.109719
Gaowa Xing , Yuting Shang , Xiaorui Wang , Zengnan Wu , Qiang Zhang , Jiebing Ai , Qiaosheng Pu , Ling Lin . A microfluidic biosensor for multiplex immunoassay of foodborne pathogens agitated by programmed audio signals. Chinese Chemical Letters, 2024, 35(10): 109491-. doi: 10.1016/j.cclet.2024.109491
Caixia Zhu , Qing Hong , Kaiyuan Wang , Yanfei Shen , Songqin Liu , Yuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560
Bharathi Natarajan , Palanisamy Kannan , Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349