Emerging markers for antimicrobial resistance monitoring
-
* Corresponding authors.
E-mail addresses: gongdy@hfut.edu.cn (D. Gong), zbzha@hfut.edu.cn (Z. Zha).
Citation:
Zineng Yi, Xiaona Xu, Xiaohan Meng, Congyu Liu, Qianpeng Zhou, Deyan Gong, Zhengbao Zha. Emerging markers for antimicrobial resistance monitoring[J]. Chinese Chemical Letters,
;2023, 34(10): 108238.
doi:
10.1016/j.cclet.2023.108238
X. Lai, M.L. Han, Y. Ding, et al., Nat. Commun. 13 (2022) 343.
doi: 10.1038/s41467-022-28012-5
S. Santajit, N. Indrawattana, BioMed Res. Int. 2016 (2016) 2475067.
S. McGuire, Adv. Nutr. 7 (2016) 418–419.
doi: 10.3945/an.116.012211
A.P. Zavascki, L.Z. Goldani, J. Li, R.L. Nation, J. Antimicrob. Chemother. 60 (2007) 1206–1215.
doi: 10.1093/jac/dkm357
M. Boolchandani, A.W. D'Souza, G. Dantas, Nat. Rev. Genet. 20 (2019) 356–370.
G.G. Rao, N.S. Ly, J.B. Bulitta, et al., J. Antimicrob. Chemother. 71 (2016) 3148–3156.
doi: 10.1093/jac/dkw293
M. Krishnamurthy, M.M. Lemmon, E.M. Falcinelli, et al., Infect. Drug Resist. 12 (2019) 1393.
doi: 10.2147/idr.s196874
J. Choi, J. Yoo, M. Lee, et al., Sci. Transl. Med. 6 (2014) 267ra174.
S. Metzger, R.A. Frobel, W.M. Dunne, Jr., Diagn. Microbiol. Infect. Dis. 79 (2014) 160–165.
doi: 10.1016/j.diagmicrobio.2013.11.029
M. Fredborg, K.R. Andersen, E. Jørgensen, et al., J. Clin. Microbiol. 51 (2013) 2047–2053.
doi: 10.1128/JCM.00440-13
E.C. Reynoso, S. Laschi, I. Palchetti, et al., Chemosensors 9 (2021) 232.
doi: 10.3390/chemosensors9080232
Y.W. Lin, N.A. Rahim, J. Zhao, et al., Antimicrob. Agents Chemother. 63 (2019) e02176-18.
doi: 10.1128/AAC.02176-18
B.J.C. Walsh, D.P. Giedroc, J. Biol. Chem. 295 (2020) 13150–13168.
doi: 10.1074/jbc.rev120.011304
K. Hsieh, K.E. Mach, P. Zhang, et al., Acc. Chem. Res. 55 (2022) 123–133.
doi: 10.1021/acs.accounts.1c00462
L.A. Harris, P.L. Frick, S.P. Garbett, et al., Nat. Methods 13 (2016) 497–500.
doi: 10.1038/nmeth.3852
W. Zhang, M. Zhu, F. Wang, et al., Anal. Biochem. 509 (2016) 33–40.
doi: 10.12928/telkomnika.v14i3A.4426
Z. Chen, D. Li, N. Xu, et al., J. Med. Chem. 62 (2019) 589–603.
doi: 10.1021/acs.jmedchem.8b01198
Q. Hu, Y. Yu, D. Gu, et al., ACS Infect. Dis. 5 (2019) 1252–1263.
doi: 10.1021/acsinfecdis.9b00132
J. Cao, S. Nagl, E. Kothe, et al., Microchim. Acta 182 (2015) 385–394.
doi: 10.1007/s00604-014-1341-3
M. Gottfredsson, H. Erlendsdottir, S. Gudmundsson, Antimicrob. Agents Chemother. 35 (1991) 2658–2661.
doi: 10.1128/AAC.35.12.2658
M. Stemler, G. Stemke, J. Robertson, J. Clin. Microbiol. 25 (1987) 427–429.
doi: 10.1128/jcm.25.2.427-429.1987
N.J. Cira, J.Y. Ho, M.E. Dueck, et al., Lab Chip 12 (2012) 1052–1059.
doi: 10.1039/C2LC20887C
P. Zuo, X. Lu, Z. Sun, et al., Microchim. Acta 183 (2016) 519–542.
doi: 10.1007/s00604-015-1705-3
A. Chandra, N. Singh, ACS Biomater. Sci. Eng. 3 (2017) 3620–3627.
doi: 10.1021/acsbiomaterials.7b00740
A. Chandra, N. Singh, Chem. Commun. 54 (2018) 1643–1646.
doi: 10.1039/c7cc08678d
O. Shimomura, Angew. Chem. Int. Ed. 48 (2009) 5590–5602.
doi: 10.1002/anie.200902240
R.H. Valdivia, A.E. Hromockyj, D. Monack, et al., Gene 173 (1996) 47–52.
doi: 10.1016/0378-1119(95)00706-7
L.N. Schulte, B. Heinrich, H. Janga, et al., Angew. Chem. Int. Ed. 57 (2018) 11564–11568.
doi: 10.1002/anie.201804090
W.S. Lee, S. Lee, T. Kang, et al., Nanomaterials 9 (2019) 750.
doi: 10.3390/nano9050750
P. Bogaerts, A.M. Hujer, T. Naas, et al., Antimicrob. Agents Chemother. 55 (2011) 4457–4460.
doi: 10.1128/AAC.00353-11
P.H. Chan, K.C. Chan, H.B. Liu, et al., Anal. Chem. 77 (2005) 5268–5276.
doi: 10.1021/ac0502605
S. Mizukami, S. Watanabe, Y. Hori, et al., J. Am. Chem. Soc. 131 (2009) 5016–5017.
doi: 10.1021/ja8082285
Y. Chen, M. Xu, W. Xu, et al., Chem. Commun. 55 (2019) 9919–9922.
doi: 10.1039/c9cc04533c
C.W. Ma, K.K.H. Ng, B.H.C. Yam, et al., J. Am. Chem. Soc. 143 (2021) 6886–6894.
doi: 10.1021/jacs.1c00462
S.P. Gholap, C. Yao, O. Green, et al., Bioconjugate Chem. 32 (2021) 991–1000.
doi: 10.1021/acs.bioconjchem.1c00149
H.L. Chan, L. Lyu, J. Aw, et al., ACS Chem. Biol. 13 (2018) 1890–1896.
doi: 10.1021/acschembio.8b00172
J. Zhang, Y. Shen, S.L. May, et al., Angew. Chem. Int. Ed. 51 (2012) 1865–1868.
doi: 10.1002/anie.201107810
H.B.D. Thai, J.K. Yu, B.S. Park, et al., Biosens. Bioelectron. 77 (2016) 1026–1031.
doi: 10.1016/j.bios.2015.10.081
J. Aw, F. Widjaja, Y. Ding, et al., Chem. Commun. 53 (2017) 3330–3333.
doi: 10.1039/C6CC09296A
W. Mao, X. Qian, J. Zhang, et al., ChemBioChem. 18 (2017) 1990–1994.
doi: 10.1002/cbic.201700447
D. Gong, X. Huang, Z. Yi, et al., Mater. Today Commun. 32 (2022) 103959.
doi: 10.1016/j.mtcomm.2022.103959
W. Mao, L. Xia, Y. Wang, et al., Chem. Asian J. 11 (2016) 3493–3497.
doi: 10.1002/asia.201601344
J. Ge, L. Li, S.Q. Yao, Chem. Commun. 47 (2011) 10939–10941.
doi: 10.1039/c1cc14653j
D.H. Kwan, H.M. Chen, K. Ratananikom, et al., Angew. Chem. 123 (2011) 314–317.
doi: 10.1002/ange.201005705
M.L. Vera, A. Cánneva, C. Huck-Iriart, et al., J. Colloid Interface Sci. 496 (2017) 456–464.
doi: 10.1016/j.jcis.2017.02.040
S. Tummala, W.A. Huang, B.H. Wu, et al., ChemistryOpen 9 (2020) 1074–1081.
doi: 10.1002/open.202000221
Y. Cheng, H. Xie, P. Sule, et al., Angew. Chem. Int. Ed. 53 (2014) 9360–9364.
doi: 10.1002/anie.201405243
L. Li, Z. Li, W. Shi, et al., Anal. Chem. 86 (2014) 6115–6120.
doi: 10.1021/ac501288e
H. Shi, Y. Cheng, K.H. Lee, et al., Angew. Chem. 126 (2014) 8251–8254.
doi: 10.1002/ange.201402012
W. Mao, L. Xia, H. Xie, Angew. Chem. Int. Ed. 56 (2017) 4468–4472.
doi: 10.1002/anie.201612495
K. Bush, Antimicrob. Agents Chemother. 62 (2018) e01076-18.
H.S. Kim, J.O. Kim, J.E. Lee, et al., J. Clin. Microbiol. 58 (2019) e01026-19.
J. Kim, Y. Kim, A.Z. Abdelazem, et al., Bioorg. Chem. 94 (2020) 103405.
doi: 10.1016/j.bioorg.2019.103405
Y. Feng, A. Palanisami, J. Kuriakose, et al., Emerg. Infect. Dis. 26 (2020) 793.
doi: 10.3201/eid2604.181655
A. Song, Y. Cheng, J. Xie, et al., Chem. Sci. 8 (2017) 7669–7674.
doi: 10.1039/C7SC02416A
J. Wang, W. Xu, S. Xue, et al., Org. Biomol. Chem. 18 (2020) 4029–4033.
doi: 10.1039/d0ob00114g
Y. Feng, J.W. Swain, A. Palanisami, et al., J. Clin. Microbiol. 59 (2021) e02517–e02520.
M. Cellier, A.L. James, S. Orenga, et al., PLoS One 11 (2016) e0158378.
doi: 10.1371/journal.pone.0158378
H.A.J. Hibbard, M.M. Reynolds, J. Mater. Chem. B 7 (2019) 2009–2018.
doi: 10.1039/c8tb02552e
P.F. Roslansky, T.J. Novitsky, J. Clin. Microbiol. 29 (1991) 2477–2483.
doi: 10.1128/jcm.29.11.2477-2483.1991
G.H. Zhang, L. Baek, P.E. Nielsen, et al., J. Clin. Microbiol. 32 (1994) 416–422.
doi: 10.1128/jcm.32.2.416-422.1994
J. Sun, A.R. Warden, J. Huang, et al., Anal. Chem. 91 (2019) 7524–7530.
doi: 10.1021/acs.analchem.8b04997
W. Gao, B. Li, R. Yao, et al., Anal. Chem. 89 (2017) 9836–9842.
doi: 10.1021/acs.analchem.7b01813
M. Kang, C. Zhou, S. Wu, et al., J. Am. Chem. Soc. 141 (2019) 16781–16789.
doi: 10.1021/jacs.9b07162
Y. Li, Z. Zhao, J. Zhang, et al., Adv. Funct. Mater. 28 (2018) 1804632.
doi: 10.1002/adfm.201804632
G. Jiang, J. Wang, Y. Yang, et al., Biosens. Bioelectron. 85 (2016) 62–67.
doi: 10.1016/j.bios.2016.04.071
A. Gupta, P. Prasad, S. Gupta, et al., ACS Appl. Mater. Interfaces 12 (2020) 35967–35976.
doi: 10.1021/acsami.0c11161
M. Piuri, L. Rondón, E. Urdániz, et al., Appl. Environ. Microbiol. 79 (2013) 5608–5615.
doi: 10.1128/AEM.01016-13
L. Rondón, M. Piuri, W.R. Jacobs, et al., J. Clin. Microbiol. 49 (2011) 1838–1842.
doi: 10.1128/JCM.02476-10
J. Minion, E. Leung, D. Menzies, et al., Lancet Infect. Dis. 10 (2010) 688–698.
doi: 10.1016/S1473-3099(10)70165-1
H.H. El-Hajj, S.A.E. Marras, S. Tyagi, et al., J. Clin. Microbiol. 39 (2001) 4131–4137.
doi: 10.1128/JCM.39.11.4131-4137.2001
C.R. Horsburgh Jr., J. Am. Med. Assoc. 283 (2000) 2575–2576.
doi: 10.1001/jama.283.19.2575
W.H. Organization, World Health Organization Global Tuberculosis Report 2013, WHO Press, Geneva, 2014.
P. Jain, T.E. Hartman, N. Eisenberg, et al., J. Clin. Microbiol. 50 (2012) 1362–1369.
doi: 10.1128/JCM.06192-11
M.R. O'Donnell, A. Pym, P. Jain, et al., J. Clin. Microbiol. 53 (2015) 2188–2194.
doi: 10.1128/JCM.03530-14
J.M. Blair, L.J. Piddock, MBio 7 (2016) e00840-00816.
R. Iyer, A.L. Erwin, Res. Microbiol. 166 (2015) 516–524.
doi: 10.1016/j.resmic.2015.06.006
W.J. Lu, H.J. Lin, P.H. Hsu, et al., Antibiotics 9 (2020) 639.
doi: 10.3390/antibiotics9100639
M.R.L. Stone, U. Łapińska, S. Pagliara, et al., RSC Chem. Biol. 1 (2020) 395–404.
doi: 10.1039/d0cb00118j
D. Anderson et al., Nat. Rev. Microbiol. 8 (2010) 260–271.
doi: 10.2134/jeq2009.0093
H.K. Allen, J. Donato, H.H. Wang, et al., Nat. Rev. Microbiol. 8 (2010) 251–259.
doi: 10.1038/nrmicro2312
J. Ronholm, Z. Zhang, X. Cao, et al., Hybridoma 30 (2011) 43–52.
doi: 10.1089/hyb.2010.0066
S.A. Khan, A.K. Singh, D. Senapati, et al., Chem. Commun. 47 (2011) 9444–9446.
doi: 10.1039/c1cc13199k
E.D. Weinberg, Microbiol. Rev. 42 (1978) 45–66.
doi: 10.1128/mr.42.1.45-66.1978
M. van Oosten, T. Schäfer, J.A. Gazendam, et al., Nat. Commun. 4 (2013) 2584.
doi: 10.1038/ncomms3584
H.Y. Park, S.D. Zoller, V. Hegde, et al., Sci. Rep. 11 (2021) 1622.
doi: 10.1038/s41598-020-78362-7
T.S.A. Wang, P.L. Chen, Y.C.S. Chen, et al., ACS Infect. Dis. 7 (2021) 2584–2590.
doi: 10.1021/acsinfecdis.1c00235
B. Ballhausen, A. Kriegeskorte, N. Schleimer, et al., Antimicrob. Agents Chemother. 58 (2014) 3791–3798.
doi: 10.1128/AAC.02731-13
A. Rohde, J.A. Hammerl, S. Al Dahouk, Ann. Clin. Microbiol. Antimicrob. 15 (2016) 55.
doi: 10.1186/s12941-016-0167-8
S. Silvestri, E. Rampacci, V. Stefanetti, et al., Front. Vet. Sci. 8 (2021) 740934.
doi: 10.3389/fvets.2021.740934
Mengxing Liu , Jing Liu , Hongxing Zhang , Jianan Tao , Peiwen Fan , Xin Lv , Wei Guo . One-pot accessing of meso–aryl heptamethine indocyanine NIR fluorophores and potential application in developing dye-antibody conjugate for imaging tumor. Chinese Chemical Letters, 2025, 36(4): 109994-. doi: 10.1016/j.cclet.2024.109994
Feng-Qing Huang , Yu Wang , Ji-Wen Wang , Dai Yang , Shi-Lei Wang , Yuan-Ming Fan , Raphael N. Alolga , Lian-Wen Qi . Chemical isotope labeling-assisted liquid chromatography-mass spectrometry enables sensitive and accurate determination of dipeptides and tripeptides in complex biological samples. Chinese Chemical Letters, 2024, 35(11): 109670-. doi: 10.1016/j.cclet.2024.109670
Lijia Xu , Tong Zhong , Wei Zhao , Bing Yao , Lin Ding , Huangxian Ju . Chemoselective labeling-based spermatozoa glycan imaging reveals abnormal glycosylation in oligoasthenotspermia. Chinese Chemical Letters, 2024, 35(4): 108760-. doi: 10.1016/j.cclet.2023.108760
Fukui Shen , Yuqing Zhang , Guoqing Luan , Kaixue Zhang , Zhenzhen Wang , Yunhao Luo , Yuanyuan Hou , Gang Bai . Revealing drug targets with multimodal bioorthogonal AMPD probes through visual metabolic labeling. Chinese Chemical Letters, 2024, 35(12): 109646-. doi: 10.1016/j.cclet.2024.109646
Ruotong Wei , Aokun Liu , Jian Kuang , Zhiwen Wang , Lu Yu , Changlin Tian . Probing the dynamic properties in the LLPS process via site-directed spin labeling-electron paramagnetic resonance (SDSL-EPR) spectroscopy. Chinese Chemical Letters, 2025, 36(4): 110029-. doi: 10.1016/j.cclet.2024.110029
Bo Liu , Shuaiqiang Shao , Junjie Cai , Zijian Zhang , Feng Tian , Kun Yang , Fan Li . Signal cascade amplification of streptavidin-biotin-modified immunofluorescence nanocapsules for ultrasensitive detection of glial fibrillary acidic protein. Chinese Chemical Letters, 2025, 36(3): 109814-. doi: 10.1016/j.cclet.2024.109814
Gengchen Guo , Tianyu Zhao , Ruichang Sun , Mingzhe Song , Hongyu Liu , Sen Wang , Jingwen Li , Jingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198
Cheng Cheng , Nasir Ali , Ji Liu , Juan Qiao , Ming Wang , Li Qi . Construction of degradable liposome-templated microporous metal-organic frameworks with commodious space for enzymes. Chinese Chemical Letters, 2024, 35(11): 109812-. doi: 10.1016/j.cclet.2024.109812
Wenbi Wu , Yinchu Dong , Haofan Liu , Xuebing Jiang , Li Li , Yi Zhang , Maling Gou . Modification of plasma protein for bioprinting via photopolymerization. Chinese Chemical Letters, 2024, 35(8): 109260-. doi: 10.1016/j.cclet.2023.109260
Zixu Xie , Pengfei Zhang , Ziyao Zhang , Chen Chen , Xing Wang . The choice of antimicrobial polymers: Hydrophilic or hydrophobic?. Chinese Chemical Letters, 2024, 35(9): 109768-. doi: 10.1016/j.cclet.2024.109768
Chao Ma , Cong Lin , Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209
Yuhang Li , Yang Ling , Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237
Yixin Zhang , Ting Wang , Jixiang Zhang , Pengyu Lu , Neng Shi , Liqiang Zhang , Weiran Zhu , Nongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619
Mingqi Wang , Shixin Fa , Jiate Yu , Guoxian Zhang , Yi Yan , Qing Liu , Qiuyu Zhang . Light-controlled protein imprinted nanospheres with variable recognition specificity. Chinese Chemical Letters, 2025, 36(2): 110124-. doi: 10.1016/j.cclet.2024.110124
Guangyao Wang , Zhitong Xu , Ye Qi , Yueguang Fang , Guiling Ning , Junwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503
Ying Li , Long-Jie Wang , Yong-Kang Zhou , Jun Liang , Bin Xiao , Ji-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033
Si Ha , Jiacheng Zhu , Hua Xiang , Guoshun Luo . Hydrophobic tag tethering degrader as a promising paradigm of protein degradation: Past, present and future perspectives. Chinese Chemical Letters, 2024, 35(8): 109192-. doi: 10.1016/j.cclet.2023.109192
Boran Cheng , Lei Cao , Chen Li , Fang-Yi Huo , Qian-Fang Meng , Ganglin Tong , Xuan Wu , Lin-Lin Bu , Lang Rao , Shubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969
Gang Lang , Jing Feng , Bo Feng , Junlan Hu , Zhiling Ran , Zhiting Zhou , Zhenju Jiang , Yunxiang He , Junling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113
Wenhao Wang , Siyuan Peng , Zhengwei Huang , Xin Pan . Tuning amino/hydroxyl ratios of nanovesicles to manipulate protein corona-mediated in vivo fate. Chinese Chemical Letters, 2024, 35(11): 110134-. doi: 10.1016/j.cclet.2024.110134