Flexible electronics based on one-dimensional inorganic semiconductor nanowires and two-dimensional transition metal dichalcogenides
-
* Corresponding author.
E-mail address: wanglonglu@njupt.edu.cn (L. Wang).
Citation:
Kang Chen, Junan Pan, Weinan Yin, Chiyu Ma, Longlu Wang. Flexible electronics based on one-dimensional inorganic semiconductor nanowires and two-dimensional transition metal dichalcogenides[J]. Chinese Chemical Letters,
;2023, 34(11): 108226.
doi:
10.1016/j.cclet.2023.108226
J.A. Rogers, T. Someya, Y. Huang, Science 327 (2010) 1603–1607.
doi: 10.1126/science.1182383
O.A. Araromi, M.A. Graule, K.L. Dorsey, et al., Nature 587 (2020) 219–224.
doi: 10.1038/s41586-020-2892-6
S. Lee, S. Franklin, F. Arab Hassani, et al., Science 370 (2020) 966–970.
doi: 10.1126/science.abc9735
S. Park, S.W. Heo, W. Lee, et al., Nature 561 (2018) 516–521.
doi: 10.1038/s41586-018-0536-x
X. Shi, Y. Zuo, P. Zhai, et al., Nature 591 (2021) 240–245.
doi: 10.1038/s41586-021-03295-8
A. Hajiaghajani, A.H. Afandizadeh Zargari, M. Dautta, et al., Nat. Electron. 4 (2021) 808–817.
doi: 10.1038/s41928-021-00663-0
J. Gao, Y. Fan, Q. Zhang, et al., Adv. Mater. 34 (2022) 2107511.
doi: 10.1002/adma.202107511
Y. Ling, T. An, L.W. Yap, et al., Adv. Mater. 32 (2020) 1904664.
doi: 10.1002/adma.201904664
Y. Su, Z. Liu, L. Xu, Adv. Healthc. Mater. 5 (2016) 889–892.
doi: 10.1002/adhm.201501029
Y. Song, J. Min, W. Gao, ACS Nano 13 (2019) 12280–12286.
doi: 10.1021/acsnano.9b08323
K. Sanderson, Nature 591 (2021) 685–687.
doi: 10.1038/d41586-021-00739-z
H. Zhang, J. Guo, Y. Wang, et al., Adv. Sci. 8 (2021) 2102156.
doi: 10.1002/advs.202102156
X. Peng, K. Dong, C. Ye, et al., Sci. Adv. 6 (2020) eaba9624.
doi: 10.1126/sciadv.aba9624
G.H. Gelinck, H.E. Huitema, E. van Veenendaal, et al., Nat. Mater. 3 (2004) 106–110.
doi: 10.1038/nmat1061
T. Someya, Y. Kato, T. Sekitani, et al., Proc. Natl. Acad. Sci. U. S. A. 102 (2005) 12321–12325.
doi: 10.1073/pnas.0502392102
G. Eda, G. Fanchini, M. Chhowalla, Nat. Nanotechnol. 3 (2008) 270–274.
doi: 10.1038/nnano.2008.83
Y. Sun, J.A. Rogers, Adv. Mater. 19 (2007) 1897–1916.
doi: 10.1002/adma.200602223
R.F. Service, Science 312 (2006) 1593–1594.
doi: 10.1126/science.312.5780.1593
K.J. Yu, Z. Yan, M. Han, et al., Npj Flex. Electron. 1 (2017) 1–14.
doi: 10.1038/s41528-017-0001-1
C. Wu, X. Zhang, R. Wang, et al., Nanotechnology 33 (2021) 072001.
L. Li, C. Hu, G. Shen, Acc. Mater. Res. 2 (2021) 954–965.
doi: 10.1021/accountsmr.1c00170
L. Xiang, H. Zhang, Y. Hu, et al., J. Mater. Chem. C 6 (2018) 7714–7727.
doi: 10.1039/C8TC02280A
C. Wang, A. Badmaev, A. Jooyaie, et al., ACS Nano 5 (2011) 4169–4176.
doi: 10.1021/nn200919v
G. Shen, B. Liang, X. Wang, et al., ACS Nano 5 (2011) 2155–2161.
doi: 10.1021/nn103358y
Z. Liu, H. Huang, B. Liang, et al., Opt. Express 20 (2012) 2982–2991.
doi: 10.1364/OE.20.002982
Z. Liu, J. Xu, D. Chen, et al., Chem. Soc. Rev. 44 (2015) 161–192.
doi: 10.1039/C4CS00116H
S.J. Kim, K. Choi, B. Lee, et al., Annu. Rev. Mater. Res. 45 (2014) 63–84.
W. Zhu, S. Park, M. Yogeesh, et al., Flex. Print. Electron. 2 (2017) 043001.
doi: 10.1088/2058-8585/aa84a4
G. Fiori, F. Bonaccorso, G. Iannaccone, et al., Nat. Nanotechnol. 9 (2014) 768–779.
doi: 10.1038/nnano.2014.207
L. Gao, Small 13 (2017) 1603994.
doi: 10.1002/smll.201603994
X. Liu, T. Ma, N. Pinna, et al., Adv. Funct. Mater. 27 (2017) 1702168.
doi: 10.1002/adfm.201702168
Y. Zhou, M. Zhang, Z. Guo, et al., Mater. Horiz. 4 (2017) 997–1019.
doi: 10.1039/C7MH00543A
D. Akinwande, N. Petrone, J. Hone, Nat. Commun. 5 (2014) 5678.
doi: 10.1038/ncomms6678
Y. Pei, R. Chen, H. Xu, et al., Nano Res. 14 (2020) 1819–1839.
Z. Senfeng, T. Zhaowu, L. Chunsen, et al., Nano Res. 14 (2021) 1752–1767.
doi: 10.1007/s12274-020-2945-z
N. Li, Q. Wang, C. Shen, et al., Nat. Electron. 3 (2020) 1–7.
doi: 10.1038/s41928-020-0368-1
W. Yu, K. Gong, Y. Li, et al., Small 18 (2022) 2105383.
doi: 10.1002/smll.202105383
C.G. Nunez, A. Vilouras, W. Taube Navaraj, et al., IEEE Sens. J. 18 (2018) 7881–7888.
doi: 10.1109/jsen.2018.2853762
D.S. Schneider, A. Grundmann, A. Bablich, et al., ACS Photonics 7 (2020) 1388–1395.
doi: 10.1021/acsphotonics.0c00361
D. Yang, I. Cho, D. Kim, et al., ACS Appl. Mater. Interfaces 11 (2019) 24298–24307.
doi: 10.1021/acsami.9b06951
C. Yang, J. Xie, C. Lou, et al., Sensor. Actuator. B 333 (2021) 129571.
doi: 10.1016/j.snb.2021.129571
Z. Lv, Y. Luo, Y. Tang, et al., Adv. Mater. 30 (2018) 1704531.
doi: 10.1002/adma.201704531
P. Yu, W. Fu, Q. Zeng, et al., Adv. Mater. 29 (2017) 1701909.
doi: 10.1002/adma.201701909
X. Zhang, M. Zhang, Y. Tian, et al., RSC Adv. 8 (2018) 10698–10705.
doi: 10.1039/C8RA01226A
J. Huang, Y. Li, Y. Xia, et al., Nano Res. 10 (2017) 1010–1020.
doi: 10.1007/s12274-016-1360-y
B.J. Kooi, B. Noheda, Science 353 (2016) 221–222.
doi: 10.1126/science.aaf9081
M. Nolan, S. O'Callaghan, G. Fagas, et al., Nano Lett. 7 (2007) 34–38.
doi: 10.1021/nl061888d
S. Manzeli, D. Ovchinnikov, D. Pasquier, et al., Nat. Rev. Mater. 2 (2017) 17033.
doi: 10.1038/natrevmats.2017.33
B. Radisavljevic, A. Radenovic, J. Brivio, et al., Nat. Nanotechnol. 6 (2011) 147–150.
doi: 10.1038/nnano.2010.279
A. Splendiani, L. Sun, Y. Zhang, et al., Nano Lett. 10 (2010) 1271–1275.
doi: 10.1021/nl903868w
K.F. Mak, C. Lee, J. Hone, et al., Phys. Rev. Lett. 105 (2010) 136805.
doi: 10.1103/PhysRevLett.105.136805
A. Kormányos, G. Burkard, M. Gmitra, et al., 2D Mater. 2 (2015) 022001.
doi: 10.1088/2053-1583/2/2/022001
Z.Y. Zhu, Y.C. Cheng, U. Schwingenschlögl, Phys. Rev. B 84 (2011) 153402.
doi: 10.1103/PhysRevB.84.153402
Y. Zhang, J. Liu, R. He, et al., Chem. Mater. 13 (2001) 3899–3905.
doi: 10.1021/cm001422a
X. Peng, G. Meng, J. Zhang, et al., J. Mater. Res. 17 (2002) 1283–1286.
doi: 10.1557/JMR.2002.0192
A. Dong, H. Yu, F. Wang, et al., J. Am. Chem. Soc. 130 (2008) 5954–5961.
doi: 10.1021/ja711408t
M. Zervos, A. Othonos, J. Cryst. Growth 340 (2012) 28–33.
doi: 10.1016/j.jcrysgro.2011.11.063
D.H. Kwon, H.H. An, H.S. Kim, et al., Appl. Surf. Sci. 257 (2011) 4650–4654.
doi: 10.1016/j.apsusc.2010.12.109
C.T. Lim, Prog. Mater. Sci. 58 (2013) 705–748.
doi: 10.1016/j.pmatsci.2013.01.001
Z. Li, J. Sui, X. Li, et al., Langmuir 27 (2011) 2258–2264.
doi: 10.1021/la1043552
Z. Li, Ö. Kurtuluş, N. Fu, et al., Adv. Funct. Mater. 19 (2009) 3650–3661.
doi: 10.1002/adfm.200900569
D.J. Gargas, H. Gao, H. Wang, et al., Nano Lett. 11 (2011) 3792–3796.
doi: 10.1021/nl201850k
N.A. Alshehri, A.R. Lewis, C. Pleydell-Pearce, et al., J. Saudi Chem. Soc. 22 (2018) 538–545.
doi: 10.1016/j.jscs.2017.09.004
M. Belhaj, C. Dridi, Y.G. Habba, et al., Physica B 526 (2017) 64–70.
doi: 10.1016/j.physb.2017.08.034
J. Fan, F. Güell, C. Fábrega, et al., J. Phys. Chem. C 116 (2012) 19496–19502.
doi: 10.1021/jp302443n
S.M. Zhou, Mater. Lett. 61 (2007) 119–122.
doi: 10.1016/j.matlet.2006.04.018
J. Fan, A. Shavel, R. Zamani, et al., Acta Mater. 59 (2011) 6790–6800.
doi: 10.1016/j.actamat.2011.07.037
D. Nag, R. Sarkar, S. Bhunia, et al., Nanotechnology 31 (2020) 495705.
doi: 10.1088/1361-6528/abaadd
O. Lupan, G.A. Emelchenko, V.V. Ursaki, et al., Mater. Res. Bull. 45 (2010) 1026–1032.
doi: 10.1016/j.materresbull.2010.03.027
S. Mousavi, H. Haratizadeh, H. Minaee, Thin Solid Films 520 (2012) 4642–4645.
doi: 10.1016/j.tsf.2011.10.071
L.L. Yang, J.H. Yang, D.D. Wang, et al., Physica E Low Dimens. Syst. Nanostruct. 40 (2008) 920–923.
doi: 10.1016/j.physe.2007.11.025
G. Eda, H. Yamaguchi, D. Voiry, et al., Nano Lett. 11 (2011) 5111–5116.
doi: 10.1021/nl201874w
W. Zhao, Z. Ghorannevis, L. Chu, et al., ACS Nano 7 (2013) 791–797.
doi: 10.1021/nn305275h
Y.J. Kim, K. Son, I.C. Choi, et al., Adv. Funct. Mater. 21 (2011) 279–286.
doi: 10.1002/adfm.201001471
A.E. Tanur, J. Wang, A.L. Reddy, et al., J. Phys. Chem. B 117 (2013) 4618–4625.
doi: 10.1021/jp308893s
J. Du, Y. Yang, Z. Fan, et al., J. Alloy. Compd. 560 (2013) 142–146.
doi: 10.1016/j.jallcom.2013.02.005
J. Ma, Y. Liu, P. Hao, et al., Sci. Rep. 6 (2016) 1–7.
doi: 10.1038/s41598-016-0001-8
X. Tao, X. Li, Nano Lett. 8 (2008) 505–510.
doi: 10.1021/nl072678j
P. Kumar, M.N. Kiran, Nanoscale Res. Lett. 5 (2010) 1085–1092.
doi: 10.1007/s11671-010-9606-1
M.L. Palacio, B. Bhushan, Mater. Charact. 78 (2013) 1–20.
doi: 10.1016/j.matchar.2013.01.009
J.H. Seo, Y. Yoo, N.Y. Park, et al., Nano Lett. 11 (2011) 3499–3502.
doi: 10.1021/nl2022306
S. Vlassov, B. Polyakov, L.M. Dorogin, et al., Mater. Chem. Phys. 143 (2014) 1026–1031.
doi: 10.1016/j.matchemphys.2013.10.042
S. Dai, J. Zhao, M.R. He, et al., Nano Lett. 15 (2015) 8–15.
doi: 10.1021/nl501986d
S. Wang, Y. Wu, L. Lin, et al., Small 11 (2015) 1672–1676.
doi: 10.1002/smll.201402202
S. Wang, Y. He, H. Huang, et al., Nanotechnology 24 (2013) 285703.
doi: 10.1088/0957-4484/24/28/285703
Y. Ganesan, L. Yang, P. Cheng, et al., J. Microelectromech. Syst. 19 (2010) 675–682.
doi: 10.1109/JMEMS.2010.2046014
H. Zhang, J. Tersoff, S. Xu, et al., Sci. Adv. 2 (2016) 1501382.
doi: 10.1126/sciadv.1501382
G. Jing, X. Zhang, D. Yu, Appl. Phys. A 100 (2010) 473–478.
doi: 10.1007/s00339-010-5736-7
J.J. Brown, A.I. Baca, K.A. Bertness, et al., Sensor. Actuator. A 166 (2011) 177–186.
doi: 10.1016/j.sna.2010.04.002
H. Guo, K. Chen, Y. Oh, et al., Nano Lett. 11 (2011) 3207–3213.
doi: 10.1021/nl201460v
W. Ding, L. Calabri, X. Chen, et al., Compos. Sci. Technol. 66 (2006) 1112–1124.
doi: 10.1016/j.compscitech.2005.11.030
D. Almecija, D. Blond, J.E. Sader, et al., Carbon N Y 47 (2009) 2253–2258.
doi: 10.1016/j.carbon.2009.04.022
Y. Zhu, F. Xu, Q. Qin, et al., Nano Lett. 9 (2009) 3934–3939.
doi: 10.1021/nl902132w
C. Battaglia, K. Gaál-Nagy, C. Monney, et al., J. Phys. Condens. Matter 21 (2008) 013001.
M.J. Gordon, T. Baron, F. Dhalluin, et al., Nano Lett. 9 (2009) 525–529.
doi: 10.1021/nl802556d
G. Stan, C. Ciobanu, P.M. Parthangal, et al., Nano Lett. 7 (2007) 3691–3697.
doi: 10.1021/nl071986e
X. Wang, K. Chen, Y. Zhang, et al., Nano Lett. 15 (2015) 7886–7892.
doi: 10.1021/acs.nanolett.5b02852
S. Wang, Z. Shan, H. Huang, Adv. Sci. 4 (2017) 1600332.
doi: 10.1002/advs.201600332
K.L. Duncan, Y. Wang, S.R. Bishop, et al., J. Am. Ceram. Soc. 89 (2006) 3162–3166.
doi: 10.1111/j.1551-2916.2006.01193.x
Y. Chen, T. Burgess, X. An, et al., Nano Lett. 16 (2016) 1911–1916.
doi: 10.1021/acs.nanolett.5b05095
C.Y. Nam, P. Jaroenapibal, D. Tham, et al., Nano Lett. 6 (2006) 153–158.
doi: 10.1021/nl051860m
M. Ye, D. Zhang, Y.K. Yap, Electronics 6 (2017) 43.
doi: 10.3390/electronics6020043
L. Guo, H. Yan, Q. Moore, et al., Nanoscale 7 (2015) 11915–11921.
doi: 10.1039/C5NR03282B
Y. Yang, X. Li, M. Wen, et al., Adv. Mater. 29 (2017) 1604201.
doi: 10.1002/adma.201604201
H. Wang, E. Liu, Y. Wang, et al., Phys. Rev. B 96 (2017) 165418.
doi: 10.1103/PhysRevB.96.165418
S. Bertolazzi, J. Brivio, A. Kis, ACS Nano 5 (2011) 9703–9709.
doi: 10.1021/nn203879f
A. Castellanos-Gomez, M. Poot, G.A. Steele, et al., Adv. Mater. 24 (2012) 772–775.
doi: 10.1002/adma.201103965
G. Cao, H. Gao, Prog. Mater. Sci. 103 (2019) 558–595.
doi: 10.1016/j.pmatsci.2019.03.002
H. Jiang, L. Zheng, Z. Liu, et al., InfoMat 2 (2020) 1077–1094.
doi: 10.1002/inf2.12072
J.H. Kim, J.H. Jeong, N. Kim, et al., J. Phys. D 52 (2019) 083001.
doi: 10.1088/1361-6463/aaf465
A. Falin, M. Holwill, H. Lv, et al., ACS Nano 15 (2021) 2600–2610.
doi: 10.1021/acsnano.0c07430
D. Akinwande, C.J. Brennan, J.S. Bunch, et al., Extreme Mech. Lett. 13 (2017) 42–77.
doi: 10.1016/j.eml.2017.01.008
A. Mahata, J.W. Jiang, D.R. Mahapatra, et al., Nano-Struct. Nano-Objects 18 (2019) 100247.
doi: 10.1016/j.nanoso.2019.01.006
K. Liu, Q. Yan, M. Chen, et al., Nano Lett. 14 (2014) 5097–5103.
doi: 10.1021/nl501793a
Y.M. Niquet, C. Delerue, C. Krzeminski, Nano Lett. 12 (2012) 3545–3550.
doi: 10.1021/nl3010995
S. Li, J.P. Chou, H. Zhang, et al., J. Appl. Phys. 125 (2019) 082520.
doi: 10.1063/1.5052718
X. Fu, H. Nie, Z. Sun, et al., Nano Res. 15 (2022) 4575–4581.
doi: 10.1007/s12274-022-4080-5
S. Bao, D. Kim, C. Onwukaeme, et al., Nat. Commun. 8 (2017) 1–7.
doi: 10.1038/s41467-016-0009-6
R. Roldán, A. Castellanos-Gomez, E. Cappelluti, et al., J. Phys. Condens. Matter. 27 (2015) 313201.
doi: 10.1088/0953-8984/27/31/313201
A. McCreary, R. Ghosh, M. Amani, et al., ACS Nano 10 (2016) 3186–3197.
doi: 10.1021/acsnano.5b04550
J. Chaste, A. Missaoui, S. Huang, et al., ACS Nano 12 (2018) 3235–3242.
doi: 10.1021/acsnano.7b07689
Z. Liu, M. Amani, S. Najmaei, et al., Nat. Commun. 5 (2014) 1–9.
L. Ci, L. Song, C. Jin, et al., Nat. Mater. 9 (2010) 430–435.
doi: 10.1038/nmat2711
M. Zeng, J. Liu, L. Zhou, et al., Nat. Mater. 19 (2020) 528–533.
doi: 10.1038/s41563-020-0622-y
D. Lloyd, X. Liu, J.W. Christopher, et al., Nano Lett. 16 (2016) 5836–5841.
doi: 10.1021/acs.nanolett.6b02615
M. Hosseini, M. Elahi, M. Pourfath, et al., IEEE Trans. Electron Devices 62 (2015) 3192–3198.
doi: 10.1109/TED.2015.2461617
H.K. Ng, D. Xiang, A. Suwardi, et al., Nat. Electron. 5 (2022) 489–496.
doi: 10.1038/s41928-022-00777-z
H. Chen, T.R. Wei, K. Zhao, et al., InfoMat 3 (2020) 22–35.
J. Pu, L.J. Li, T. Takenobu, Phys. Chem. Chem. Phys. 16 (2014) 14996–15006.
doi: 10.1039/c3cp55270e
Z. Lou, G. Shen, Adv. Sci. 3 (2016) 1500287.
doi: 10.1002/advs.201500287
H.C. Ko, M.P. Stoykovich, J. Song, et al., Nature 454 (2008) 748–753.
doi: 10.1038/nature07113
J.M. Choi, H.Y. Jang, A.R. Kim, et al., Nanoscale 13 (2021) 672–680.
doi: 10.1039/d0nr07091b
M. Hossain, G.S. Kumar, S.N. Barimar Prabhava, et al., ACS Nano 12 (2018) 4727–4735.
doi: 10.1021/acsnano.8b01387
F. Zhang, Y. Ding, Y. Zhang, et al., ACS Nano 6 (2012) 9229–9236.
doi: 10.1021/nn3035765
C. Lan, Z. Zhou, Z. Zhou, et al., Nano Res. 11 (2018) 3371–3384.
doi: 10.1007/s12274-017-1941-4
Z. Zheng, T. Zhang, J. Yao, et al., Nanotechnology 27 (2016) 225501.
doi: 10.1088/0957-4484/27/22/225501
Y. Lei, J. Luo, X. Yang, et al., ACS Appl. Mater. Interfaces 12 (2020) 24940–24950.
doi: 10.1021/acsami.0c01781
W. Yu, S. Li, Y. Zhang, et al., Small 13 (2017) 1700268.
doi: 10.1002/smll.201700268
C. Xie, F. Yan, Small 13 (2017) 1701822.
doi: 10.1002/smll.201701822
D.H. Kim, W. Lee, J.M. Myoung, Nanoscale 10 37 (2018) 17705–17711.
doi: 10.1039/c8nr05096a
D.H. Kang, N.K. Kim, H.W. Kang, Nanotechnology 30 (2019) 365303.
doi: 10.1088/1361-6528/ab2278
Z. Zhang, Z. Kang, Q. Liao, et al., Chin. Phys. B 26 (2017) 118102.
doi: 10.1088/1674-1056/26/11/118102
J. Xu, G. Shen, Nano Energy 13 (2015) 131–139.
doi: 10.1080/02564602.2014.987328
Z. Liu, G. Chen, B. Liang, et al., Opt. Express 21 (2013) 7799–7810.
doi: 10.1364/OE.21.007799
C. Zhang, Y. Xie, H. Deng, et al., Small 13 (2017) 1604197.
doi: 10.1002/smll.201604197
Z. Zheng, L. Gan, H. Li, et al., Adv. Funct. Mater. 25 (2015) 5885–5894.
doi: 10.1002/adfm.201502499
Z. Lou, X. Yang, H. Chen, et al., J. Semicond. 39 (2018) 024002.
doi: 10.1088/1674-4926/39/2/024002
F. Koppens, T. Mueller, P. Avouris, et al., Nat. Nanotechnol. 9 (2014) 780–793.
doi: 10.1038/nnano.2014.215
K.F. Mak, J. Shan, Nat. Photonics 10 (2016) 216–226.
doi: 10.1038/nphoton.2015.282
W. Choi, N. Choudhary, G.H. Han, et al., Mater. Today 20 (2017) 116–130.
doi: 10.1016/j.mattod.2016.10.002
S. Manzeli, D. Ovchinnikov, D. Pasquier, et al., Nat. Rev. Mater. 2 (2017) 1–15.
Y.R. Lim, W. Song, J.K. Han, et al., Adv. Mater. 28 (2016) 5025–5030.
doi: 10.1002/adma.201600606
Y. Xue, Y. Zhang, Y. Liu, et al., ACS Nano 10 (2016) 573–580.
doi: 10.1021/acsnano.5b05596
K. Zhang, T. Zhang, G. Cheng, et al., ACS Nano 10 (2016) 3852–3858.
doi: 10.1021/acsnano.6b00980
G. Rao, X. Wang, Y. Wang, et al., InfoMat 1 (2019) 272–288.
doi: 10.1002/inf2.12018
B. Zheng, D. Li, C. Zhu, et al., InfoMat 2 (2020) 752–760.
doi: 10.1002/inf2.12071
P.M. Pataniya, V. Patel, C.K. Sumesh, Nanotechnology 32 (2021) 315709.
doi: 10.1088/1361-6528/abf77a
J. Sun, Y. Wang, S. Guo, et al., Adv. Mater. 32 (2020) 1906499.
doi: 10.1002/adma.201906499
N. VR, A.K. Mohapatra, R.K. Sinha, et al., Appl. Spectrosc. Rev. 56 (2021) 702–732.
doi: 10.1080/05704928.2020.1848857
Y. Wang, L. Duan, Z. Deng, et al., Sensors 20 (2020) 6781.
doi: 10.3390/s20236781
M. Bhuiyan, S. Katsuki, T. Ueda, et al., Sens. Lett. 6 (2008) 635–640.
doi: 10.1166/sl.2008.451
E. Comini, Mater. Today 19 (2016) 559–567.
doi: 10.1016/j.mattod.2016.05.016
S. Rackauskas, N. Barbero, C. Barolo, et al., Nanomaterials 7 (2017) 381.
doi: 10.3390/nano7110381
J. Zhang, T. Sun, Y. Chen, et al., Adv. Mater. Technol. (2022) 2200163.
doi: 10.1002/admt.202200163
M. Tonezzer, R. Lacerda, Phys. E Low Dimens. Syst. Nanostruct. 44 (2012) 1098–1102.
doi: 10.1016/j.physe.2010.11.029
Y. Sun, H.H. Wang, M. Xia, J. Phys. Chem. C 112 (2008) 1250–1259.
doi: 10.1021/jp076965n
M.G. Chung, D.H. Kim, D.K. Seo, et al., Sens. Actuators B: Chem. 169 (2012) 387–392.
doi: 10.1016/j.snb.2012.05.031
Y. Fu, Y. Zhao, P. Wang, et al., Phys. Chem. Chem. Phys. 17 (2015) 2121–2126.
doi: 10.1039/C4CP04983G
Z. Wen, Q. Shen, X. Sun, Nano-Micro Lett. 9 (2017) 45.
doi: 10.1007/s40820-017-0146-4
P. Goswami, G. Gupta, Mater. Today Chem. 23 (2022) 100726.
doi: 10.1016/j.mtchem.2021.100726
R. Kumar, N. Goel, M. Hojamberdiev, et al., Sens. Actuator. A 303 (2020) 111875.
doi: 10.1016/j.sna.2020.111875
M. Chhowalla, H.S. Shin, G. Eda, et al., Nat. Chem. 5 (2013) 263–275.
doi: 10.1038/nchem.1589
D. Burman, A. Sharma, P.K. Guha, IEEE Sens. Lett. 2 (2018) 1–4.
doi: 10.1109/lsens.2018.2817651
S. Guo, D. Yang, S. Zhang, et al., Adv. Funct. Mater. 29 (2019) 1900138.
doi: 10.1002/adfm.201900138
H. Guo, C. Lan, Z. Zhou, et al., Nanoscale 9 (2017) 6246–6253.
doi: 10.1039/C7NR01016H
J. Feng, L. Peng, C. Wu, et al., Adv. Mater. 24 (2012) 1969–1974.
doi: 10.1002/adma.201104681
X. Ma, Z. Xie, Z. Yang, et al., Mater. Res. Express 6 (2018) 015025.
doi: 10.1088/2053-1591/aae5c4
O.S.L. Camargo Moreira, W.Y. Cheng, H.R. Fuh, et al., ACS Sens. 4 (2019) 2546–2552.
doi: 10.1021/acssensors.9b01461
E. Lee, Y.S. Yoon, D.J. Kim, ACS Sens. 3 (2018) 2045–2060.
doi: 10.1021/acssensors.8b01077
H. Medina, J.G. Li, T.Y. Su, et al., Chem. Mater. 29 (2017) 1587–1598.
doi: 10.1021/acs.chemmater.6b04467
Y. Han, D. Huang, Y. Ma, et al., ACS Appl. Mater. Interfaces 10 (2018) 22640–22649.
doi: 10.1021/acsami.8b05811
N. Yi, Z. Cheng, H. Li, et al., Mater. Today Phys. 15 (2020) 100265.
doi: 10.1016/j.mtphys.2020.100265
Y. Zhao, J.G. Song, G.H. Ryu, et al., Nanoscale 10 (2018) 9338–9345.
doi: 10.1039/c8nr00108a
W.Y. Chen, C.C. Yen, S. Xue, et al., ACS Appl. Mater. Interfaces 11 (2019) 34135–34143.
doi: 10.1021/acsami.9b13827
B. Cho, A.R. Kim, D.J. Kim, et al., ACS Appl. Mater. Interfaces 8 (2016) 19635–19642.
doi: 10.1021/acsami.6b05943
L. Peng, Y. Zhu, H. Li, et al., Small 12 (2016) 6183–6199.
doi: 10.1002/smll.201602109
B. Yao, J. Zhang, T. Kou, et al., Adv. Sci. 4 (2017) 1700107.
doi: 10.1002/advs.201700107
F. Li, J. Chen, X. Wang, et al., Adv. Funct. Mater. 25 (2015) 4601–4606.
doi: 10.1002/adfm.201500718
R. Liu, Z.L. Wang, K. Fukuda, et al., Nat. Rev. Mater. 7 (2022) 870–886.
doi: 10.1038/s41578-022-00441-0
R. Na, G. Huo, S. Zhang, et al., J. Mater. Chem. A 4 (2016) 18116–18127.
doi: 10.1039/C6TA07846J
T. Lv, Y. Yao, N. Li, et al., Angew. Chem. Int. Ed. 55 (2016) 9191–9195.
doi: 10.1002/anie.201603356
S.D. Perera, B. Patel, N. Nijem, et al., Adv. Energy Mater. 1 (2011) 936–945.
doi: 10.1002/aenm.201100221
J. Bae, M.K. Song, Y.J. Park, et al., Angew. Chem. Int. Ed. 50 (2011) 1683–1687.
doi: 10.1002/anie.201006062
X. Lu, T. Zhai, X. Zhang, et al., Adv. Mater. 24 (2012) 938–944.
doi: 10.1002/adma.201104113
N. Joseph, P.M. Shafi, A.C. Bose, Energy Fuels 34 (2020) 6558–6597.
doi: 10.1021/acs.energyfuels.0c00430
Y. Chao, R. Jalili, Y. Ge, et al., Adv. Funct. Mater. 27 (2017) 1700234.
doi: 10.1002/adfm.201700234
C.C. Mayorga-Martinez, A. Ambrosi, A.Y.S. Eng, et al., Electrochem. Commun. 56 (2015) 24–28.
doi: 10.1016/j.elecom.2015.03.017
A. Ghorai, S.K. Ray, A. Midya, ACS Appl. Nano Mater. 2 (2019) 1170–1177.
doi: 10.1021/acsanm.8b02002
X. Wang, W. Ding, H. Li, et al., J. Mater. Chem. A 7 (2019) 19152–19160.
doi: 10.1039/c9ta06305f
V. Pokropivny, V. Skorokhod, Mater. Sci. Eng. C 27 (2007) 990–993.
doi: 10.1016/j.msec.2006.09.023
N. Li, T. Lv, Y. Yao, et al., J. Mater. Chem. A 5 (2017) 3267–3273.
doi: 10.1039/C6TA10165H
S. Wang, J. Zhu, Y. Shao, et al., Chemistry 23 (2017) 3438–3446.
doi: 10.1002/chem.201605465
H. Chang, L. Zhang, S. Lyu, et al., ACS Omega 7 (2022) 14390–14399.
doi: 10.1021/acsomega.2c01815
S. Liu, Y. Zeng, M. Zhang, et al., J. Mater. Chem. A 5 (2017) 21460–21466.
doi: 10.1039/C7TA07009H
S. Byun, D.M. Sim, J. Yu, et al., ChemElectroChem 2 (2015) 1938–1946.
doi: 10.1002/celc.201500393
X. Yang, J. Li, C. Hou, et al., Front. Chem. 8 (2020) 442.
doi: 10.3389/fchem.2020.00442
R. Zhang, X. Li, L. Zhang, et al., Adv. Sci. 3 (2016) 1600208.
doi: 10.1002/advs.201600208
Z.W. Seh, J. Kibsgaard, C.F. Dickens, et al., Science 355 (2017) eaad4998.
doi: 10.1126/science.aad4998
X. Zou, Y. Liu, G.D. Li, et al., Adv. Mater. 29 (2017) 1700404.
doi: 10.1002/adma.201700404
C. Liang, P. Zou, A. Nairan, et al., Energy Environ. Sci. 13 (2020) 86–95.
doi: 10.1039/c9ee02388g
X. Chia, A.Y.S. Eng, A. Ambrosi, et al., Chem. Rev. 115 (2015) 11941–11966.
doi: 10.1021/acs.chemrev.5b00287
T.F. Jaramillo, K.P. Jørgensen, J. Bonde, et al., Science 317 (2007) 100–102.
doi: 10.1126/science.1141483
L.R.L. Ting, Y. Deng, L. Ma, et al., ACS Catal. 6 (2016) 861–867.
doi: 10.1021/acscatal.5b02369
H. Li, M. Du, M.J. Mleczko, et al., J. Am. Chem. Soc. 138 (2016) 5123–5129.
doi: 10.1021/jacs.6b01377
S. Deng, Y. Zhong, Y. Zeng, et al., Adv. Mater. 29 (2017) 1700748.
doi: 10.1002/adma.201700748
M.S. Faber, R. Dziedzic, M.A. Lukowski, et al., J. Am. Chem. Soc. 136 (2014) 10053–10061.
doi: 10.1021/ja504099w
M.A. Lukowski, A.S. Daniel, F. Meng, et al., J. Am. Chem. Soc. 135 (2013) 10274–10277.
doi: 10.1021/ja404523s
C. Chang, L. Wang, L. Xie, et al., Nano Res. 15 (2022) 8613–8635.
doi: 10.1007/s12274-022-4507-z
M. Liu, H. Li, S. Liu, et al., Nano Res. 15 (2022) 5946–5952.
doi: 10.1007/s12274-022-4267-9
J. Cao, J. Zhou, M. Li, et al., Chin. Chem. Lett. 33 (2022) 3745–3751.
doi: 10.1016/j.cclet.2021.11.007
W. Yin, Y. Cai, L. Xie, et al., Nano Res. 16 (2023) 4381–4398.
doi: 10.1007/s12274-022-5133-5
M. Li, L. Wang, X. Zhang, et al., Chin. Chem. Lett. 34 (2023) 107775.
doi: 10.1016/j.cclet.2022.107775
Mengchen Liu , Yufei Zhang , Yi Xiao , Yang Wei , Meichen Bi , Huaide Jiang , Yan Yu , Shenghong Zhong . High stretchability and toughness of liquid metal reinforced conductive biocompatible hydrogels for flexible strain sensors. Chinese Journal of Structural Chemistry, 2025, 44(3): 100518-100518. doi: 10.1016/j.cjsc.2025.100518
Jiqing Liu , Qi Dang , Liting Wang , Dejin Wang , Liang Tang . Applications of flexible electrochemical electrodes in wastewater treatment: A review. Chinese Chemical Letters, 2024, 35(8): 109277-. doi: 10.1016/j.cclet.2023.109277
Tian Yang , Yi Liu , Lina Hua , Yaoyao Chen , Wuqian Guo , Haojie Xu , Xi Zeng , Changhao Gao , Wenjing Li , Junhua Luo , Zhihua Sun . Lead-free hybrid two-dimensional double perovskite with switchable dielectric phase transition. Chinese Chemical Letters, 2024, 35(6): 108707-. doi: 10.1016/j.cclet.2023.108707
Zhuoer Cai , Yinan Zhang , Xiu-Ni Hua , Baiwang Sun . Phase transition arising from order-disorder motion in stable layered two-dimensional perovskite. Chinese Journal of Structural Chemistry, 2024, 43(11): 100426-100426. doi: 10.1016/j.cjsc.2024.100426
Muhammad Riaz , Rakesh Kumar Gupta , Di Sun , Mohammad Azam , Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427
Shenhao QIU , Qingquan XIAO , Huazhu TANG , Quan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104
Peipei CUI , Xin LI , Yilin CHEN , Zhilin CHENG , Feiyan GAO , Xu GUO , Wenning YAN , Yuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234
Qingyan JIANG , Yanyong SHA , Chen CHEN , Xiaojuan CHEN , Wenlong LIU , Hao HUANG , Hongjiang LIU , Qi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004
Chao Liu , Chao Jia , Shi-Xian Gan , Qiao-Yan Qi , Guo-Fang Jiang , Xin Zhao . A luminescent one-dimensional covalent organic framework for organic arsenic sensing in water. Chinese Chemical Letters, 2024, 35(11): 109750-. doi: 10.1016/j.cclet.2024.109750
Tiantian Gong , Yanan Chen , Shuo Wang , Miao Wang , Junwei Zhao . Rigid-flexible-ligand-ornamented lanthanide-incorporated selenotungstates and photoluminescence properties. Chinese Journal of Structural Chemistry, 2024, 43(9): 100370-100370. doi: 10.1016/j.cjsc.2024.100370
Tengjiao Wang , Tian Cheng , Rongjun Liu , Zeyi Wang , Yuxuan Qiao , An Wang , Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094
Wenqi Gao , Xiaoyan Fan , Feixiang Wang , Zhuojun Fu , Jing Zhang , Enlai Hu , Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026
Chengyi Xiao , Xiaoli Sun , Chen Zhang , Weiwei Li . An In-Depth Analysis of the Scientific Connotations, Testing Methods, and Applications of Free Volume in Polymer Physics. University Chemistry, 2025, 40(4): 33-45. doi: 10.12461/PKU.DXHX202403069
Zhenzhu Wang , Chenglong Liu , Yunpeng Ge , Wencan Li , Chenyang Zhang , Bing Yang , Shizhong Mao , Zeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127
Xin-Tong Zhao , Jin-Zhi Guo , Wen-Liang Li , Jing-Ping Zhang , Xing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715
Jiahao Li , Guinan Chen , Chunhong Chen , Yuanyuan Lou , Zhihao Xing , Tao Zhang , Chengtao Gong , Yongwu Peng . Modulated synthesis of stoichiometric and sub-stoichiometric two-dimensional covalent organic frameworks for enhanced ethylene purification. Chinese Chemical Letters, 2025, 36(1): 109760-. doi: 10.1016/j.cclet.2024.109760
Xi Zhou , Shengyao Wang . Dynamic two-dimensional covalent organic frameworks via ‘wine rack' design. Chinese Journal of Structural Chemistry, 2025, 44(4): 100464-100464. doi: 10.1016/j.cjsc.2024.100464
Xiangshuai Li , Jian Zhao , Li Luo , Zhuohao Jiao , Ying Shi , Shengli Hou , Bin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407
Zhihong LUO , Yan SHI , Jinyu AN , Deyi ZHENG , Long LI , Quansheng OUYANG , Bin SHI , Jiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444
Lu LIU , Huijie WANG , Haitong WANG , Ying LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489