From surface loading to precise confinement of polyoxometalates for electrochemical energy storage
-
* Corresponding authors.
E-mail addresses: wangmeiling@tyut.edu.cn (M. Wang), jdzhou@bit.edu.cn (J. Zhou).
Citation:
Chongji Wang, Yanhui Song, Wenhua Cong, Yuanyuan Yan, Meiling Wang, Jiadong Zhou. From surface loading to precise confinement of polyoxometalates for electrochemical energy storage[J]. Chinese Chemical Letters,
;2023, 34(12): 108194.
doi:
10.1016/j.cclet.2023.108194
A.D. Easley, T. Ma, J.L. Lutkenhaus, Joule 6 (2022) 1743–1749.
doi: 10.1016/j.joule.2022.06.022
S. Tang, M. Ma, X. Zhang, et al., Adv. Funct. Mater. 32 (2022) 2205417.
doi: 10.1002/adfm.202205417
W. Sun, Z. Xu, C. Qiao, et al., Adv. Sci. 9 (2022) e2201679.
doi: 10.1002/advs.202201679
Z.W. Seh, J. Kibsgaard, C.F. Dickens, et al., Science 355 (2017) eaad4998.
doi: 10.1126/science.aad4998
D.D. Zhang, Z.Y. Guo, P.F. Guo, et al., ACS Appl. Mater. Interfaces 10 (2018) 21876–21882.
doi: 10.1021/acsami.8b05334
B. Dunn, H. Kamath, J.M. Tarascon, Science 334 (2011) 928–935.
doi: 10.1126/science.1212741
Q. Chen, L. Tan, S. Wang, et al., Electrochim. Acta 385 (2021) 138385.
doi: 10.1016/j.electacta.2021.138385
C. Fang, J. Li, M. Zhang, et al., Nature 572 (2019) 511–515.
doi: 10.1038/s41586-019-1481-z
R. Liu, C. Streb, Adv. Energy Mater. 11 (2021) 2101120.
doi: 10.1002/aenm.202101120
M.R. Horn, A. Singh, S. Alomari, et al., Energ. Environ. Sci. 14 (2021) 1652–1700.
doi: 10.1039/D0EE03407J
H. Liu, L.G. Gong, C.X. Wang, et al., J. Mater. Chem. A 9 (2021) 13161–13169.
doi: 10.1039/D1TA01503F
M. Lu, M. Zhang, J. Liu, et al., J. Am. Chem. Soc. 144 (2022) 1861–1871.
doi: 10.1021/jacs.1c11987
A. Bayaguud, K. Chen, Y. Wei, Nano Res. 9 (2016) 3858–3867.
doi: 10.1007/s12274-016-1255-y
S. Kan, K. Nakajima, T. Asai, M.A. K. asaya, Adv. Sci. 9 (2022) 2104076.
doi: 10.1002/advs.202104076
M. Kourasi, R.G.A. Wills, A.A. Shah, F.C. Walsh, Electrochim. Acta 127 (2014) 454–466.
doi: 10.1016/j.electacta.2014.02.006
Y. Watanabe, K. Hyeon Deuk, T. Yamamoto, et al., Sci. Adv. 8 (2022) eabm5379.
doi: 10.1126/sciadv.abm5379
N.I. Gumerova, A. Rompel, Nat. Rev. Chem. 2 (2018) 0112.
doi: 10.1038/s41570-018-0112
H.N. Miras, L.V. Nadal, L. Cronin, Chem. Soc. Rev. 43 (2014) 5679–5699.
doi: 10.1039/C4CS00097H
V.M.T. Pope, Angew. Chem. Int. Ed. 96 (1984) 730 –730.
Y. Geng, K. Jin, J. Mei, et al., J. Hazard. Mater. 382 (2020) 121032.
doi: 10.1016/j.jhazmat.2019.121032
H. Gao, H. Wu, K. Lian, Electrochem. Commun. 17 (2012) 48–51.
doi: 10.1016/j.elecom.2012.01.025
Y. Nishimoto, D. Yokogawa, H. Yoshikawa, K. Awaga, S. Irle, J. Am. Chem. Soc. 136 (2014) 9042–9052.
doi: 10.1021/ja5032369
J.W. Jordan, G.A. Lowe, R.L. McSweeney, et al., Adv. Mater. 31 (2019) e1904182.
doi: 10.1002/adma.201904182
Y. Liu, X. Wu, Z. Li, et al., Nat. Commun. 12 (2021) 4205.
doi: 10.1038/s41467-021-24513-x
S. Chen, Y. Xiang, M.K. Banks, et al., Nanoscale 10 (2018) 20043–20052.
doi: 10.1039/C8NR05760E
H.Y. Chen, R. Al Oweini, J. Friedl, et al., Nanoscale 7 (2015) 7934–7941.
doi: 10.1039/C4NR07528E
R. Liu, G. Zhang, H. Cao, et al., Energ. Environ. Sci. 9 (2016) 1012–1023.
doi: 10.1039/C5EE03503A
S. Herrmann, C. Ritchie, C. Streb, Dalton Trans. 44 (2015) 7092–7104.
doi: 10.1039/C4DT03763D
M.H. Yang, B.G. Choi, S.C. Jung, Y.Y. Han, B.L. Sang, Adv. Funct. Mater. 24 (2015) 7301–7309.
Y.Y. Chen, M. Han, Y.J. Tang, et al., Chem. Commun. 51 (2015) 12377–12380.
doi: 10.1039/C5CC02717A
M. Genovese, K. Lian, J. Mater. Chem. A 5 (2017) 3939–3947.
doi: 10.1039/C6TA10382K
V. Prabhakaran, B.L. Mehdi, J.J. Ditto, et al., Nat. Commun. 7 (2016) 11399.
doi: 10.1038/ncomms11399
M. Wang, Y. Zhang, T. Zhang, et al., Nanoscale 12 (2020) 11887–11898.
doi: 10.1039/D0NR01070G
A. Botos, J. Biskupek, T.W. Chamberlain, et al., J. Am. Chem. Soc. 138 (2016) 8175–8183.
doi: 10.1021/jacs.6b03633
R.Y. Li, J.J. Zhang, Z.P. Wang, et al., Sensor. Actuator. B: Chem. 208 (2015) 421–428.
doi: 10.1016/j.snb.2014.11.004
G.P. Maria, G.M. Catherine, R.M. Benedikt, L.K.P. Mialane, J. Am. Chem. Soc. 140 (2018) 3613–3618.
doi: 10.1021/jacs.7b11788
H. Liu, L. Chang, C. Bai, Angew. Chem. Int. Ed. 55 (2016) 5019–5023.
doi: 10.1002/anie.201511009
V. Ortalan, A. Uzun, B.C. Gates, N.D. Browning, Nat. Nanotechnol. 5 (2010) 506–510.
doi: 10.1038/nnano.2010.92
X. Xu, S. Chen, Y. Chen, et al., Small 12 (2016) 2982–2990.
doi: 10.1002/smll.201503695
S. Yang, M. Wang, Y. Zhang, et al., Energy Environ. Mater. 6 (2023) e12396.
doi: 10.1002/eem2.12396
G. Bidan, E.M. Genies, M. Lapkowski, J. Electroanal. Chem. 251 (1988) 297–306.
doi: 10.1016/0022-0728(88)85191-X
P. Judeinstein, Chem. Mater. 4 (1992) 4–7.
doi: 10.1021/cm00019a002
B. Sulikowski, J. Haber, A. Kubacka, et al., Catal. Lett. 39 (1996) 27–31.
doi: 10.1007/BF00813725
N.I. Kovtyukhova, P.J. Ollivier, B.R. Martin, et al., Chem. Mater. 11 (1999) 771–778.
doi: 10.1021/cm981085u
G. Ferey, C.M. D. raznieks, C. Serre, et al., Science 309 (2005) 2040–2042.
doi: 10.1126/science.1116275
D. Pan, J. Chen, W. Tao, L. Nie, S. Yao, Langmuir 22 (2006) 5872–5876.
doi: 10.1021/la053171w
J. Sloan, G. Matthewman, C.D. Smith, et al., ACS Nano 2 (2008) 966–976.
doi: 10.1021/nn7002508
D. Ma, L. Liang, W. Chen, H. Liu, Y.F. Song, Adv. Funct. Mater. 23 (2013) 6100–6105.
doi: 10.1002/adfm.201301624
H. Ma, B. Liu, B. Li, et al., J. Am. Chem. Soc. 138 (2016) 5897–5903.
doi: 10.1021/jacs.5b13490
Y.F. Liu, C.W. Hu, G.P. Yang, Chin. Chem. Lett. 34 (2023) 108097.
doi: 10.1016/j.cclet.2022.108097
C. Boskovic, Acc. Chem. Res. 50 (2017) 2205–2214.
doi: 10.1021/acs.accounts.7b00197
J. Gautam, Y. Liu, J. Gu, et al., Adv. Funct. Mater. 31 (2021) 2106147.
doi: 10.1002/adfm.202106147
J.A. Monge, B.E. Bakkali, G. Trautwein, S. Reinoso, Appl. Catal. B: Environ. 224 (2018) 194–203.
doi: 10.1016/j.apcatb.2017.10.066
Q. Liu, P. He, H. Yu, et al., Sci. Adv. 5 (2019) eaax1081.
doi: 10.1126/sciadv.aax1081
L. Yang, J. Lei, J.M. Fan, et al., Adv. Mater. 33 (2021) e2005019.
doi: 10.1002/adma.202005019
N.V. Izarova, M.T. Pope, U. Kortz, Angew. Chem. Int. Ed. 51 (2012) 9492–9510.
doi: 10.1002/anie.201202750
L. Chen, X.J. Sang, J.S. Li, et al., Inorg. Chem. Commun. 47 (2014) 138–143.
doi: 10.1016/j.inoche.2014.07.019
N. Mizuno, M. Misono, Chem. Rev. 98 (1998) 199–218.
doi: 10.1021/cr960401q
K. Yonesato, S. Yamazoe, D. Yokogawa, K. Yamaguchi, K. Suzuki, Angew. Chem. Int. Ed. 60 (2021) 16994–16998.
doi: 10.1002/anie.202106786
Y. Liu, S. Lu, H. Wang, et al., Adv. Energy Mater. 7 (2017) 1601224.
doi: 10.1002/aenm.201601224
H.S. Yang, Y.C. Bai, D.H. Ouyang, et al., J. Energy Chem. 58 (2021) 133–146.
doi: 10.1016/j.jechem.2020.09.009
L. Ni, G. Yang, Y. Liu, et al., ACS Nano 15 (2021) 12222–12236.
doi: 10.1021/acsnano.1c03852
H. Wang, S. Hamanaka, Y. Nishimoto, et al., J. Am. Chem. Soc. 134 (2012) 4918–4924.
doi: 10.1021/ja2117206
Y. Zhou, J. Yang, H. Su, et al., J. Am. Chem. Soc. 136 (2014) 4954–4964.
doi: 10.1021/ja411268q
J. Li, R. Guttinger, R. More, et al., Chem. Soc. Rev. 46 (2017) 6124–6147.
doi: 10.1039/C7CS00306D
S.W. Li, R.M. Gao, W. Zhang, Y. Zhang, J. Zhao, Fuel 221 (2018) 1–11.
doi: 10.1016/j.fuel.2017.12.093
Z. Tong, M. Xu, Q. Li, et al., Talanta 220 (2020) 121373.
doi: 10.1016/j.talanta.2020.121373
N.V. Maksimchuk, O.A. Kholdeeva, K.A. Kovalenko, V.P. Fedin, Isr. J. Chem. 51 (2011) 281–289.
doi: 10.1002/ijch.201000082
I. Ullah, A. Munir, A. Haider, N. Ullah, I. Hussain, Nanophotonics 10 (2021) 1595–1620.
doi: 10.1515/nanoph-2020-0542
H. Shirakawa, E.J. L. ouis, A.G. M. acdiarmid, C.K. C. hiang, A.J. Heeger, Chem. Commun. (1977) 578–580.
J. Lutkenhaus, Science 359 (2018) 1334–1335.
doi: 10.1126/science.aat1298
B. Liu, W. Zhao, Z. Ding, et al., Adv. Mater. 28 (2016) 6457–6464.
doi: 10.1002/adma.201504876
W. Qi, L. Wu, Polym. Int. 58 (2009) 1217–1225.
doi: 10.1002/pi.2654
D.P. Dubal, B. Ballesteros, A.A. Mohite, P.G. Romero, ChemSusChem 10 (2017) 731–737.
doi: 10.1002/cssc.201601610
V. Singh, A.K. Padhan, S.D. Adhikary, et al., J. Mater. Chem. A 7 (2019) 3018–3023.
doi: 10.1039/C8TA12192C
S. Herrmann, N. Aydemir, F. Nägele, et al., Adv. Funct. Mater. 27 (2017) 1700881.
doi: 10.1002/adfm.201700881
L. Zhai, H. Li, Molecules 24 (2019) 3425.
doi: 10.3390/molecules24193425
D. Wang, J. Jiang, M.Y. C. ao, et al., Nano Res. 15 (2021) 3628–3637.
A. Cao, Z. Chen, Y. Wang, et al., Synth. Met. 252 (2019) 135–141.
doi: 10.1016/j.synthmet.2019.04.019
L. Borchardt, Q.L. Z. hu, M.E. Casco, et al., Mater. Today 20 (2017) 592–610.
doi: 10.1016/j.mattod.2017.06.002
V. Pavlenko, S. Khosravi H, S. Żółtowska, et al., Adv. Mater. Sci. Eng. 149 (2022) 100682.
K.S.W. Sing, D.H. Everett, R.A.W. Haul, et al., Pure Appl. Chem. 57 (1985) 603–619.
doi: 10.1351/pac198557040603
K.P. Lakshmi, K.J. Janas, M.M. Shaijumon, Carbon 131 (2018) 86–93.
doi: 10.1016/j.carbon.2018.01.095
Z. Kang, Y. Liu, C.H. Tsang, et al., Chem. Commun. (2009) 413–415.
Y. Izumi, K. Urabe, Chem. Lett. 5 (1981) 663–666.
J.S. G. uevara, V. Ruiz, P.G. Romero, J. Mater. Chem. A 2 (2014) 1014–1021.
doi: 10.1039/C3TA14455K
J.A. M. onge, G. Trautwein, S.P. E. sclapez, J.A. Maciá-Agulló, Micropor. Mesopor. Mat. 115 (2008) 440–446.
doi: 10.1016/j.micromeso.2008.02.017
P. Palomino, J.S. G. uevara, M. Olivares-Marín, et al., Carbon 111 (2017) 74–82.
doi: 10.1016/j.carbon.2016.09.054
K.S. Novoselov, A.K. Geim, S.V. Morozov, et al., Science 306 (2004) 666–669.
doi: 10.1126/science.1102896
M.J. Allen, V.C. Tung, R.B. Kaner, Chem. Rev. 110 (2010) 132–145.
doi: 10.1021/cr900070d
V.P. Pham, H.S. Jang, D. Whang, J.Y. Choi, Chem. Soc. Rev. 46 (2017) 6276–6300.
doi: 10.1039/C7CS00224F
K. Kume, N. Kawasaki, H. Wang, et al., J. Mater. Chem. A 2 (2014) 3801–3807.
doi: 10.1039/C3TA14569G
D. Zhou, B.H. Han, Adv. Funct. Mater. 20 (2010) 2717–2722.
doi: 10.1002/adfm.200902323
D. Martel, M. Gross, J. Solid State Electrochem. 11 (2006) 421–429.
doi: 10.1007/s10008-006-0164-5
Y. Chen, M. Han, Y. Tang, et al., Chem. Commun. 51 (2015) 12377–12380.
doi: 10.1039/C5CC02717A
J. Gao, M. Tong, Z. Xing, et al., Chem. Commun. 56 (2020) 7305–7308.
doi: 10.1039/D0CC02464C
M. Yang, B.G. Choi, S.C. Jung, et al., Adv. Funct. Mater. 24 (2014) 7301–7309.
doi: 10.1002/adfm.201401798
D. Pakulski, A. Gorczyński, W. Czepa, et al., Energy Storage Mater 17 (2019) 186–193.
doi: 10.1016/j.ensm.2018.11.012
J. Lei, X.X. Fan, T. Liu, et al., Nat. Commun. 13 (2022) 202.
doi: 10.1038/s41467-021-27866-5
F. Peng, Y. Liu, R. Cui, et al., Chin. Sci. Bull. 57 (2011) 225–233.
M.S. Ahmed, B. Choi, Y.B. Kim, Sci. Rep. 8 (2018) 2543.
doi: 10.1038/s41598-018-20974-1
O.A. Oyetade, R.J. Kriek, Electrocatalysis 11 (2019) 35–45.
N. Kawasaki, H. Wang, R. Nakanishi, et al., Angew. Chem. Int. Ed. 50 (2011) 3471–3474.
doi: 10.1002/anie.201007264
A. Giusti, G. Charron, S. Mazerat, et al., Angew. Chem. Int. Ed. 48 (2009) 4949–4952.
doi: 10.1002/anie.200901806
T. Akter, K. Hu, K. Lian, Electrochim. Acta 56 (2011) 4966–4971.
doi: 10.1016/j.electacta.2011.03.127
J. N'Diaye, S. Siddiqui, K.L. Pak, K. Lian, J. Mater. Chem. A 8 (2020) 23463–23472.
doi: 10.1039/D0TA04954A
D.V. Jawale, F. Fossard, F. Miserque, et al., Carbon 188 (2022) 523–532.
doi: 10.1016/j.carbon.2021.11.046
G. Bajwa, M. Genovese, K. Lian, ECS J. Solid State Soc. 2 (2013) M3046.
M. Genovese, K. Lian, ACS Appl. Mater. Interfaces 8 (2016) 19100–19109.
doi: 10.1021/acsami.6b03261
J. Hu, F. Jia, Y. Song, Chem. Eng. J. 326 (2017) 273–280.
doi: 10.1016/j.cej.2017.05.153
M. Naguib, M. Kurtoglu, V. Presser, et al., Adv. Mater. 23 (2011) 4248–4253.
doi: 10.1002/adma.201102306
M.R. Lukatskaya, O. Mashtalir, C.E. Ren, et al., Science (2013) 1502–1505.
J. Jiang, S. Bai, J. Zou, et al., Nano Res. 15 (2022) 6551–6567.
doi: 10.1007/s12274-022-4312-8
X. Guan, Z. Yang, M. Zhou, et al., Small Struct. 3 (2022) 2200102.
doi: 10.1002/sstr.202200102
H. Chao, H. Qin, M. Zhang, et al., Adv. Funct. Mater. 31 (2021) 2007636.
doi: 10.1002/adfm.202007636
L. Zong, H. Wu, H. Lin, Y. Chen, Nano Res. 11 (2018) 4149–4168.
doi: 10.1007/s12274-018-2002-3
S. Zhou, C. Gu, Z. Li, et al., Appl. Surf. Sci. 498 (2019) 143889.
doi: 10.1016/j.apsusc.2019.143889
J.J. Z. hu, A. Hemesh, J.J. Biendicho, et al., J. Colloid Interface Sci. 623 (2022) 947–961.
doi: 10.1016/j.jcis.2022.04.170
G. Wang, S. Guo, Y. Wu, et al., Small 18 (2022) e2202087.
doi: 10.1002/smll.202202087
H. Chao, Y. Li, Y. Lu, et al., Sci. China Mater. 65 (2022) 2958–2966.
doi: 10.1007/s40843-022-2099-9
G.J. Leigh, J. Organomet. Chem. 689 (2004) 2733–2742.
doi: 10.1016/j.jorganchem.2004.05.003
S. Yang, J. Huo, H. Song, X. Chen, Electrochim. Acta 53 (2008) 2238–2244.
doi: 10.1016/j.electacta.2007.09.040
M. Lu, B. Xie, J. Kang, et al., Chem. Mater. 17 (2004) 402–408.
C.R. Mayer, R. Thouvenot, T. Lalot, Chem. Mater. 12 (2000) 257–260.
doi: 10.1021/cm991078l
S.A. Alshehri, A. Al Yasari, F. Marken, J. Fielden, Macromolecules 53 (2020) 11120–11129.
doi: 10.1021/acs.macromol.0c02354
X. Zhang, Y. Li, Y. Li, S. Wang, X. Wang, ACS Appl. Nano Mater. 2 (2019) 6971–6981.
doi: 10.1021/acsanm.9b01438
J.N. Chang, M. Zhang, G.K. Gao, et al., Energ. Fuel. 34 (2020) 16968–16977.
doi: 10.1021/acs.energyfuels.0c03482
S.K. H. wang, S.J. Patil, N.R. Chodankar, Y.S. Huh, Y.K. Han, Chem. Eng. J. 427 (2022) 131854.
doi: 10.1016/j.cej.2021.131854
W. Chen, L. Huang, J. Hu, et al., Phys. Chem. Chem. Phys. 16 (2014) 19668–19673.
doi: 10.1039/C4CP03202K
Y. Ji, J. Hu, L. Huang, et al., Chem. Eur. J. 21 (2015) 6469–6474.
doi: 10.1002/chem.201500218
E. Yucelen, I. Lazic, E.G.T. Bosch, Sci. Rep. 8 (2018) 2676.
doi: 10.1038/s41598-018-20377-2
H.J. Lee, W. Ho, Science 286 (1999) 1719–1722.
doi: 10.1126/science.286.5445.1719
X.Y. Yang, W.J. Li, Z.L. Tan, et al., J. Mater. Chem. A 8 (2020) 25316–25322.
doi: 10.1039/D0TA08976A
W. Niu, Y. Zhu, R. Wang, et al., ACS Appl. Mater. Interfaces 12 (2020) 30805–30814.
doi: 10.1021/acsami.0c06995
N. Hanikel, X. Pei, S. Chheda, et al., Science 374 (2021) 454–459.
doi: 10.1126/science.abj0890
L. Chen, W. Wang, J. Tian, et al., Nat. Commun. 12 (2021) 4556.
doi: 10.1038/s41467-021-24838-7
X. Xiong, B.Y. Huang, J.H. Li, H.J. Xu, Carbon 44 (2006) 463–467.
doi: 10.1016/j.carbon.2005.08.022
P.J. Bereciartua, A. Cantin, A. Corma, et al., Science 358 (2017) 1068–1071.
doi: 10.1126/science.aao0092
S.V. Aradhya, M. Frei, M.S. Hybertsen, L. Venkataraman, Nat. Mater. 11 (2012) 872–876.
doi: 10.1038/nmat3403
N. Wang, Q. Sun, J. Yu, Adv. Mater. 31 (2019) e1803966.
doi: 10.1002/adma.201803966
D. Kumar, A. Joshi, G. Singh, R.K. Sharma, Chem. Eng. J. 431 (2022) 134085.
doi: 10.1016/j.cej.2021.134085
Y. Chai, W. Dai, G. Wu, N. Guan, L. Li, Acc. Chem. Res. 54 (2021) 2894–2904.
doi: 10.1021/acs.accounts.1c00274
M. Gutierrez, Y. Zhang, J.C. Tan, Chem. Rev. 122 (2022) 10438–10483.
doi: 10.1021/acs.chemrev.1c00980
B. Ni, H. Gao, Matter 4 (2021) 763–765.
doi: 10.1016/j.matt.2021.02.008
V.K.A. Fernández, D.M. Fernandes, S.S. Balula, L.C. Silva, C. Freire, J. Mater. Chem. A 8 (2020) 13509–13521.
doi: 10.1039/D0TA03898A
S.W. Li, R.M. Gao, R.L. Zhang, J.S. Zhao, Fuel 184 (2016) 18–27.
doi: 10.1016/j.fuel.2016.06.132
H.B. Wu, X.W.D. Lou, Sci. Adv. 3 (2017) 16.
A.M. Mohamed, M. Ramadan, N. Ahmed, et al., J. Energy Storage 28 (2020) 101292.
doi: 10.1016/j.est.2020.101292
T. Wei, M. Zhang, P. Wu, et al., Nano Energy 34 (2017) 205–214.
doi: 10.1016/j.nanoen.2017.02.028
M. Zhang, A.M. Zhang, X.X. Wang, et al., J. Mater. Chem. A 6 (2018) 8735–8741.
doi: 10.1039/C8TA01062E
J.Q. Sha, X.Y. Yang, Y. Chen, et al., ACS Appl. Mater. Interfaces 10 (2018) 16660–16665.
doi: 10.1021/acsami.8b04009
D. Cao, Q. Sha, J. Wang, et al., ACS Appl. Mater. Interfaces 14 (2022) 22186–22196.
doi: 10.1021/acsami.2c04077
S. Mukhopadhyay, J. Debgupta, C. Singh, A. Kar, S.K. Das, Angew. Chem. Int. Ed. 57 (2018) 1918–1923.
doi: 10.1002/anie.201711920
Z. Xie, X. Li, R. Li, et al., Nanoscale 12 (2020) 17113–17120.
doi: 10.1039/D0NR04741D
M. Varela, A.R. Lupini, K.V. Benthem, et al., Annu. Rev. Mater. Res. 35 (2005) 539–569.
doi: 10.1146/annurev.matsci.35.102103.090513
Y. Wang, Y. Shi, L. Pan, et al., Nano Lett. 15 (2015) 7736–7741.
doi: 10.1021/acs.nanolett.5b03891
L. Voorhaar, R. Hoogenboom, Chem. Soc. Rev. 45 (2016) 4013–4031.
doi: 10.1039/C6CS00130K
L. Pan, G. Yu, D. Zhai, et al., Proc. Natl. Acad. Sci. U. S. A. 109 (2012) 9287–9292.
doi: 10.1073/pnas.1202636109
Y. Shi, L. Peng, G. Yu, Nanoscale 7 (2015) 12796–12806.
doi: 10.1039/C5NR03403E
M. Wang, Y. Yu, M. Cui, et al., Electrochim. Acta 329 (2020) 135181.
doi: 10.1016/j.electacta.2019.135181
M. Haider, S. Uhlemann, E. Schwan, et al., Nature 392 (1998) 768–769.
doi: 10.1038/33823
Y. Liu, J. Li, Q. Shen, et al., eScience 2 (2022) 10–31.
doi: 10.1016/j.esci.2021.12.008
Q. Shen, Y. Liu, L. Jiao, X. Qu, J. Chen, Energy Storage Mater 35 (2021) 400–430.
doi: 10.1016/j.ensm.2020.11.002
A.S. Cherevan, S.P. Nandan, I. Roger, et al., Adv. Sci. 7 (2020) 1903511.
doi: 10.1002/advs.201903511
C.C. Lin, C.T. Hsu, W. Liu, et al., ACS Appl. Mater. Interfaces 12 (2020) 40296–40309.
doi: 10.1021/acsami.0c09344
M.Y. Zhao, Z.Y. Ji, Y.G. Zhang, et al., Electrochim. Acta 252 (2017) 350–361.
doi: 10.1016/j.electacta.2017.08.178
L. Liu, J. Han, L. Xu, et al., Science 368 (2020) 850–856.
doi: 10.1126/science.aba5980
D.A. Britz, A.N. Khlobystov, Chem. Soc. Rev. 35 (2006) 637–659.
doi: 10.1039/b507451g
J.W. Jordan, J.M. Cameron, G.A. Lowe, et al., Angew. Chem. Int. Ed. 61 (2022) e202115619.
doi: 10.1002/anie.202115619
Q. Sha, D. Cao, J. Wang, et al., Chem 28 (2022) e202201899.
doi: 10.1002/chem.202201899
O. Dyck, S. Kim, S.V. Kalinin, S. Jesse, Appl. Phys. Lett. 111 (2017) 113104.
doi: 10.1063/1.4998599
Z. Dong, B. Li, H. Shang, et al., Aiche J. 67 (2021) e17281.
doi: 10.1002/aic.17281
W. Cong, P. Song, Y. Zhang, et al., J. Hazard. Mater. 437 (2022) 129327.
doi: 10.1016/j.jhazmat.2022.129327
M.J. Hulsey, V. Fung, X. Hou, J. Wu, N. Yan, Angew. Chem. Int. Ed. 61 (2022) e202208237.
doi: 10.1002/anie.202208237
Tiantian Gong , Yanan Chen , Shuo Wang , Miao Wang , Junwei Zhao . Rigid-flexible-ligand-ornamented lanthanide-incorporated selenotungstates and photoluminescence properties. Chinese Journal of Structural Chemistry, 2024, 43(9): 100370-100370. doi: 10.1016/j.cjsc.2024.100370
Yuchen Wang , Yaoyu Liu , Xiongfei Huang , Guanjie He , Kai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301
Wenhao Feng , Chunli Liu , Zheng Liu , Huan Pang . In-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552
Jiale Zheng , Mei Chen , Huadong Yuan , Jianmin Luo , Yao Wang , Jianwei Nai , Xinyong Tao , Yujing Liu . Electron-microscopical visualization on the interfacial and crystallographic structures of lithium metal anode. Chinese Chemical Letters, 2024, 35(6): 108812-. doi: 10.1016/j.cclet.2023.108812
Conghui Wang , Lei Xu , Zhenhua Jia , Teck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075
Boyuan Hu , Jian Zhang , Yulin Yang , Yayu Dong , Jiaqi Wang , Wei Wang , Kaifeng Lin , Debin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933
Chen Lian , Si-Han Zhao , Hai-Lou Li , Xinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343
Guoping Yang , Zhoufu Lin , Xize Zhang , Jiawei Cao , Xuejiao Chen , Yufeng Liu , Xiaoling Lin , Ke Li . Assembly of Y(Ⅲ)-containing antimonotungstates induced by malic acid with catalytic activity for the synthesis of imidazoles. Chinese Chemical Letters, 2024, 35(12): 110274-. doi: 10.1016/j.cclet.2024.110274
Zixuan Guo , Xiaoshuai Han , Chunmei Zhang , Shuijian He , Kunming Liu , Jiapeng Hu , Weisen Yang , Shaoju Jian , Shaohua Jiang , Gaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007
Siwei Wang , Wei-Lei Zhou , Yong Chen . Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior. Chinese Chemical Letters, 2024, 35(12): 110261-. doi: 10.1016/j.cclet.2024.110261
Jun Dong , Senyuan Tan , Sunbin Yang , Yalong Jiang , Ruxing Wang , Jian Ao , Zilun Chen , Chaohai Zhang , Qinyou An , Xiaoxing Zhang . Spatial confinement of free-standing graphene sponge enables excellent stability of conversion-type Fe2O3 anode for sodium storage. Chinese Chemical Letters, 2025, 36(3): 110010-. doi: 10.1016/j.cclet.2024.110010
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094
Min Huang , Ru Cheng , Shuai Wen , Liangtong Li , Jie Gao , Xiaohui Zhao , Chunmei Li , Hongyan Zou , Jian Wang . Ultrasensitive detection of microRNA-21 in human serum based on the confinement effect enhanced chemical etching of gold nanorods. Chinese Chemical Letters, 2024, 35(9): 109379-. doi: 10.1016/j.cclet.2023.109379
Xuanyu Wang , Zhao Gao , Wei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757
Xingxing Jiang , Yuxin Zhao , Yan Kong , Jianju Sun , Shangzhao Feng , Xin Lu , Qi Hu , Hengpan Yang , Chuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555
Xianchen Hu , Junli Yang , Fang Gao , Zhiyong Zhao , Simin Liu . Highly selective [4+4] cross-photodimerization of (4a-azonia)anthracenes driven by confinement of D-A hetero-guest pair in cucurbit[10]uril host. Chinese Chemical Letters, 2025, 36(3): 109967-. doi: 10.1016/j.cclet.2024.109967
Kuaibing Wang , Honglin Zhang , Wenjie Lu , Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084
Qiqi Li , Su Zhang , Yuting Jiang , Linna Zhu , Nannan Guo , Jing Zhang , Yutong Li , Tong Wei , Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009
Huayan Liu , Yifei Chen , Mengzhao Yang , Jiajun Gu . 二维材料基超级电容器的容量与倍率性能提升策略. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-. doi: 10.1016/j.actphy.2025.100063
Shunshun Jiang , Ji Zhang , Jing Wang , Shan-Tao Zhang . Excellent energy storage properties in non-stoichiometric Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chinese Chemical Letters, 2024, 35(7): 108955-. doi: 10.1016/j.cclet.2023.108955