Transition metal phosphides: A wonder catalyst for electrocatalytic hydrogen production
-
* Corresponding authors.
E-mail addresses: dengli@snnu.edu.cn (D. Li), junqingyan@snnu.edu.cn (J. Yan).
Citation:
Mingxuan Du, Deng Li, Shengzhong (Frank) Liu, Junqing Yan. Transition metal phosphides: A wonder catalyst for electrocatalytic hydrogen production[J]. Chinese Chemical Letters,
;2023, 34(9): 108156.
doi:
10.1016/j.cclet.2023.108156
C. Yang, R. Zhao, H. Xiang, et al., Adv. Eng. Mater. 10 (2020) 2002260.
doi: 10.1002/aenm.202002260
L. Zheng, W. Zhang, B. Gao, et al., Mater. Today Energy 19 (2021) 100600.
doi: 10.1016/j.mtener.2020.100600
H. Jin, Q. Gu, B. Chen, et al., Chem 6 (2020) 2382–2394.
doi: 10.1016/j.chempr.2020.06.037
M. Kim, B. Lee, H. Ju, S.W. Lee, J. Kim, Adv. Mater. 31 (2019) 1901977.
doi: 10.1002/adma.201901977
X. Zhao, Z. Xue, W. Chen, Y. Wang, T. Mu, ChemSusChem 13 (2020) 2038–2042.
doi: 10.1002/cssc.202000173
Y. Shi, B. Zhang, Chem. Soc. Rev. 45 (2016) 1529–1541.
doi: 10.1039/C5CS00434A
H. Zhang, D.H. Ha, R. Hovden, L.F. Kourkoutis, R.D. Robinson, Nano Lett. 11 (2011) 188–197.
doi: 10.1021/nl103400a
B. Du, Z. Cao, Z. Li, et al., Langmuir 25 (2009) 12367–12373.
doi: 10.1021/la902531p
X. Zheng, S. Yuan, Z. Tian, et al., Chem. Mater. 21 (2009) 4839–4845.
doi: 10.1021/cm901322x
Y. Pan, W. Hu, D. Liu, Y. Liu, C. Liu, J. Mater. Chem. 3 (2015) 13087–13094.
doi: 10.1039/C5TA02128F
E.J. Popczun, C.G. Read, C.W. Roske, N.S. Lewis, R.E. Schaak, Angew. Chem. Int. Ed. 53 (2014) 5427–5430.
doi: 10.1002/anie.201402646
Y. Xu, R. Wu, J. Zhang, Y. Shi, B. Zhang, Chem. Commun. 49 (2013) 6656–6658.
doi: 10.1039/c3cc43107j
J. Duan, S. Chen, C. Zhao, ACS Appl. Mater. Interfaces 10 (2018) 30029–30034.
doi: 10.1021/acsami.8b09147
Y. Men, P. Li, J. Zhou, et al., ACS Catal. 9 (2019) 3744–3752.
doi: 10.1021/acscatal.9b00407
Y. Pei, H. Zhang, L. Han, et al., Nanotechnology 32 (2021) 024001.
doi: 10.1088/1361-6528/abb8a7
J. Wu, X. Ge, Z. Li, D. Cao, J. Xiao, Electrochim. Acta 252 (2017) 101–108.
doi: 10.3390/su9010101
C.H. Choi, M. Kim, H.C. Kwon, et al., Nat. Commun. 7 (2016) 10922.
doi: 10.1038/ncomms10922
N. Bai, Q. Li, D. Mao, D. Li, H. Dong, ACS Appl. Mater. Interfaces 8 (2016) 29400–29407.
doi: 10.1021/acsami.6b07785
Y.Y. Ma, C.X. Wu, X.J. Feng, et al., Energy Environ. Sci. 10 (2017) 788–798.
doi: 10.1039/C6EE03768B
X.F. Lu, L. Yu, X.W. Lou, Sci. Adv. 5 (2019) eaav6009.
doi: 10.1126/sciadv.aav6009
X. Wang, Z. Na, D. Yin, et al., ACS Nano 12 (2018) 12238–12246.
doi: 10.1021/acsnano.8b06039
Y. Ge, J. Chen, H. Chu, et al., ACS Sustain. Chem. Eng. 6 (2018) 15162–15169.
doi: 10.1021/acssuschemeng.8b03638
W. Hua, H. Sun, L. Ren, D. Nan, Front. Chem. 8 (2020).
M. Ma, G. Zhu, F. Xie, et al., ChemSusChem 10 (2017) 3188–3192.
doi: 10.1002/cssc.201700693
X. Wang, Y. Chen, B. Yu, et al., Small 15 (2019) 1902613.
doi: 10.1002/smll.201902613
D. Wang, T. Liu, J. Wang, Z. Wu, Carbon 139 (2018) 845–852.
doi: 10.1016/j.carbon.2018.07.043
H. Sun, X. Xu, Z. Yan, et al., J. Mater. Chem. A 6 (2018) 22062–22069.
doi: 10.1039/c8ta02999g
Q. Liu, J. Tian, W. Cui, et al., Angew. Chem. Int. Ed. 53 (2014) 6710–6714.
doi: 10.1002/anie.201404161
C. Huang, J. Zhou, D. Duan, et al., Chin. J. Catal. 43 (2022) 2091–2110.
doi: 10.1016/S1872-2067(21)64052-4
F. Ye, Y. Yang, P. Liu, et al., Electrochim. Acta 423 (2022) 140578.
doi: 10.1016/j.electacta.2022.140578
Y. Du, Z. Wang, H. Li, et al., Int. J. Hydrogen Energy 44 (2019) 19978–19985.
doi: 10.1016/j.ijhydene.2019.06.036
X. Yang, A.Y. Lu, Y. Zhu, et al., Nano Energy 15 (2015) 634–641.
doi: 10.1016/j.nanoen.2015.05.026
A. Sumboja, T. An, H.Y. Goh, et al., ACS Appl. Mater. Interfaces 10 (2018) 15673–15680.
doi: 10.1021/acsami.8b01491
H. Yang, Y. Zhang, F. Hu, Q. Wang, Nano Lett. 15 (2015) 7616–7620.
doi: 10.1021/acs.nanolett.5b03446
X. Chen, M. Cheng, D. Chen, R. Wang, ACS Appl. Mater. Interfaces 8 (2016) 3892–3900.
doi: 10.1021/acsami.5b10785
M. Liu, J. Li, ACS Appl. Mater. Interfaces 8 (2016) 2158–2165.
doi: 10.1021/acsami.5b10727
L. Su, X. Cui, T. He, et al., Chem. Sci. 10 (2019) 2019–2024.
doi: 10.1039/c8sc04589e
C. Tan, X. Cao, X.J. W.u, et al., Chem. Rev. 117 (2017) 6225–6331.
doi: 10.1021/acs.chemrev.6b00558
K.H. Liu, H.X. Zhong, S.J. Li, et al., Prog. Mater Sci. 92 (2018) 64–111.
doi: 10.1016/j.pmatsci.2017.09.001
C. Wu, X. Wang, W. Pei, et al., Nanoscale 11 (2019) 15023–15028.
doi: 10.1039/c9nr04565a
J. Chang, K. Li, Z. Wu, et al., ACS Appl. Mater. Interfaces 10 (2018) 26303–26311.
doi: 10.1021/acsami.8b08068
W. Wei, H. Li, W. Sun, et al., J. Mater. Sci.: Mater. Electron. 31 (2020) 13521–13530.
doi: 10.1007/s10854-020-03908-4
S. Yang, L. Chen, W. Wei, X. Lv, J. Xie, Appl. Surf. Sci. 476 (2019) 749–756.
doi: 10.1016/j.apsusc.2019.01.131
C. Liu, T. Gong, J. Zhang, et al., Appl. Catal. B 262 (2020) 118245.
doi: 10.1016/j.apcatb.2019.118245
R. Boppella, J. Tan, W. Yang, J. Moon, Adv. Funct. Mater. 29 (2019) 1807976.
doi: 10.1002/adfm.201807976
Y. Ge, H. Chu, J. Chen, et al., ACS Sustain. Chem. Eng. 7 (2019) 10105–10111.
doi: 10.1021/acssuschemeng.9b01575
Y. Pan, Y. Lin, Y. Liu, C. Liu, Catal. Sci. Technol. 6 (2016) 1611–1615.
doi: 10.1039/C5CY02299A
Y.Q. W.ang, L. Zhao, X.L. S.ui, D.M. G.u, Z.B. W.ang, Ceram. Int. 45 (2019) 17128–17136.
doi: 10.1016/j.ceramint.2019.05.266
L. Wu, L. Yu, F. Zhang, et al., Adv. Funct. Mater. 31 (2021) 2006484.
doi: 10.1002/adfm.202006484
W. Mai, Q. Cui, Z. Zhang, et al., ACS Appl. Energy Mater. 3 (2020) 8075–8085.
doi: 10.1021/acsaem.0c01538
L. Yu, Y. Xiao, C. Luan, et al., ACS Appl. Mater. Interfaces 11 (2019) 6890–6899.
doi: 10.1021/acsami.8b15653
Y. Wang, B. Kong, D. Zhao, H. Wang, C. Selomulya, Nano Today 15 (2017) 26–55.
doi: 10.1016/j.nantod.2017.06.006
X. Huang, Z. Liu, M.M. M.illet, et al., ACS Nano 12 (2018) 7197–7205.
doi: 10.1021/acsnano.8b03106
J. Guo, S. Zhang, M. Zheng, et al., Int. J. Hydrogen Energy 45 (2020) 32402–32412.
doi: 10.1016/j.ijhydene.2020.08.210
W. Xie, Z. Li, M. Shao, M. Wei, Front. Chem. Sci. Eng. 12 (2018) 537–554.
doi: 10.1007/s11705-018-1719-6
W.Z. Zhang, G.Y. Chen, J. Zhao, et al., J. Colloid Interface Sci. 561 (2020) 638–646.
doi: 10.1016/j.jcis.2019.11.039
W.L. Kwong, E. Gracia-Espino, C.C. Lee, et al., ChemSusChem 10 (2017) 4544–4551.
doi: 10.1002/cssc.201701565
J. Duan, S. Chen, C.A. Ortíz-Ledón, M. Jaroniec, S.Z. Q.iao, Angew. Chem. Int. Ed. 59 (2020) 8181–8186.
doi: 10.1002/anie.201914967
X. Zhang, Z. Wu, D. Wang, Electrochim. Acta 281 (2018) 540–548.
doi: 10.1038/s41557-018-0006-y
Z. Wang, S. Wang, L. Ma, et al., Small 17 (2021) 2006770.
doi: 10.1002/smll.202006770
J. Lin, Y. Yan, T. Liu, et al., Int. J. Hydrogen Energy 45 (2020) 16161–16168.
doi: 10.1016/j.ijhydene.2020.04.069
Z. Ran, C. Shu, Z. Hou, et al., Chem. Eng. J. 413 (2021) 127404.
doi: 10.1016/j.cej.2020.127404
Y. Wang, J. Zhang, Front. Chem. Sci. Eng. 12 (2018) 838–854.
doi: 10.1007/s11705-018-1746-3
W. Liu, J. Shen, Q. Liu, X. Yang, H. Tang, Appl. Surf. Sci. 462 (2018) 822–830.
doi: 10.1016/j.apsusc.2018.08.189
W. Li, X. Gao, D. Xiong, et al., Chem. Sci. 8 (2017) 2952–2958.
doi: 10.1039/C6SC05167G
W. Zhang, Y. Zou, H. Liu, et al., Nano Energy 56 (2019) 813–822.
doi: 10.1016/j.nanoen.2018.11.090
C. Zhang, Y. Huang, Y. Yu, et al., Chem. Sci. 8 (2017) 2769–2775.
doi: 10.1039/C6SC05687C
X. Yan, Y. Zhao, J. Biemolt, et al., J. Mater. Chem. A 8 (2020) 7626–7632.
doi: 10.1039/d0ta00870b
C. Sun, H. Wang, J. Ren, X. Wang, R. Wang, Nanoscale 13 (2021) 13703–13708.
doi: 10.1039/d1nr03567c
S.A. Grigoriev, V.N. Fateev, D.G. Bessarabov, P. Millet, Int. J. Hydrogen Energy 45 (2020) 26036–26058.
doi: 10.1016/j.ijhydene.2020.03.109
N. Mahmood, Y. Yao, J.W. Zhang, et al., Adv. Sci. 5 (2018) 1700464.
doi: 10.1002/advs.201700464
J.F. Callejas, J.M. McEnaney, C.G. Read, et al., ACS Nano 8 (2014) 11101–11107.
doi: 10.1021/nn5048553
Ping Wang , Ting Wang , Ming Xu , Ze Gao , Hongyu Li , Bowen Li , Yuqi Wang , Chaoqun Qu , Ming Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930
Renshu Huang , Jinli Chen , Xingfa Chen , Tianqi Yu , Huyi Yu , Kaien Li , Bin Li , Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171
Xiangyuan Zhao , Jinjin Wang , Jinzhao Kang , Xiaomei Wang , Hong Yu , Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159
Haibin Yang , Duowen Ma , Yang Li , Qinghe Zhao , Feng Pan , Shisheng Zheng , Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031
Rui Deng , Wenjie Jiang , Tianqi Yu , Jiali Lu , Boyao Feng , Panagiotis Tsiakaras , Shibin Yin . Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(7): 100290-100290. doi: 10.1016/j.cjsc.2024.100290
Wenjie Jiang , Zhixiang Zhai , Xiaoyan Zhuo , Jia Wu , Boyao Feng , Tianqi Yu , Huan Wen , Shibin Yin . Revealing the reactant adsorption role of high-valence WO3 for boosting urea-assisted water splitting. Chinese Journal of Structural Chemistry, 2025, 44(3): 100519-100519. doi: 10.1016/j.cjsc.2025.100519
Guoliang Gao , Guangzhen Zhao , Guang Zhu , Bowen Sun , Zixu Sun , Shunli Li , Ya-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Hongrui Zhang , Miaoying Cui , Yongjie Lv , Yongfang Rao , Yu Huang . A short review on research progress of ZnIn2S4-based S-scheme heterojunction: Improvement strategies. Chinese Chemical Letters, 2025, 36(4): 110108-. doi: 10.1016/j.cclet.2024.110108
Qinyu Zhao , Yunchao Zhao , Songjing Zhong , Zhaoyang Yue , Zhuoheng Jiang , Shaobo Wang , Quanhong Hu , Shuncheng Yao , Kaikai Wen , Linlin Li . Urchin-like piezoelectric ZnSnO3/Cu3P p-n heterojunction for enhanced cancer sonodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109644-. doi: 10.1016/j.cclet.2024.109644
Weiping Xiao , Yuhang Chen , Qin Zhao , Danil Bukhvalov , Caiqin Wang , Xiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176
Xiao Li , Wanqiang Yu , Yujie Wang , Ruiying Liu , Qingquan Yu , Riming Hu , Xuchuan Jiang , Qingsheng Gao , Hong Liu , Jiayuan Yu , Weijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166
Xin Jiang , Han Jiang , Yimin Tang , Huizhu Zhang , Libin Yang , Xiuwen Wang , Bing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415
Ziyang Yin , Lingbin Xie , Weinan Yin , Ting Zhi , Kang Chen , Junan Pan , Yingbo Zhang , Jingwen Li , Longlu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628
Bin Dong , Ning Yu , Qiu-Yue Wang , Jing-Ke Ren , Xin-Yu Zhang , Zhi-Jie Zhang , Ruo-Yao Fan , Da-Peng Liu , Yong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221
Yanan Zhou , Li Sheng , Lanlan Chen , Wenhua Zhang , Jinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588
Xinyu Hou , Xuelian Yu , Meng Liu , Hengxing Peng , Lijuan Wu , Libing Liao , Guocheng Lv . Ultrafast synthesis of Mo2N with highly dispersed Ru for efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2025, 36(4): 109845-. doi: 10.1016/j.cclet.2024.109845
Lanfang Wang , Jiangnan Lv , Yujia Li , Yanqing Hao , Wenjiao Liu , Hui Zhang , Xiaohong Xu . One-step synthesis of nanowoven ball-like NiS-WS2 for high-efficiency hydrogen evolution. Chinese Chemical Letters, 2025, 36(1): 109597-. doi: 10.1016/j.cclet.2024.109597
Fanjun Kong , Yixin Ge , Shi Tao , Zhengqiu Yuan , Chen Lu , Zhida Han , Lianghao Yu , Bin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552
Zhuo Li , Peng Yu , Di Shen , Xinxin Zhang , Zhijian Liang , Baoluo Wang , Lei Wang . Low-loading Pt anchored on molybdenum carbide-based polyhedral carbon skeleton for enhancing pH-universal hydrogen production. Chinese Chemical Letters, 2025, 36(4): 109713-. doi: 10.1016/j.cclet.2024.109713