Copper-catalyzed 1,4-protosilylation and 1,4-protoborylation of enynic orthoesters for synthesis of functionalized 2, 3-allenoates
-
* Corresponding author.
E-mail address: xyh0709@ustc.edu.cn (Y.-H. Xu).
Citation:
Qi Li, Zi-Lu Wang, Yun-He Xu. Copper-catalyzed 1,4-protosilylation and 1,4-protoborylation of enynic orthoesters for synthesis of functionalized 2, 3-allenoates[J]. Chinese Chemical Letters,
;2023, 34(9): 108150.
doi:
10.1016/j.cclet.2023.108150
A. Hoffmann-Röder, N. Krause, Angew. Chem. Int. Ed. 43 (2004) 1196–1216.
doi: 10.1002/anie.200300628
S. Ma, Chem. Rev. 105 (2005) 2829–2872.
doi: 10.1021/cr020024j
S. Ma, Acc. Chem. Res. 42 (2009) 1679–1688.
doi: 10.1021/ar900153r
S. Yu, S. Ma, Angew. Chem. Int. Ed. 51 (2012) 3074–3112.
doi: 10.1002/anie.201101460
R. Zimmer, H.U. Reissig, Chem. Soc. Rev. 43 (2014) 2888–2903.
doi: 10.1039/C3CS60429B
J.M. Alonso, P. Almendros, Chem. Rev. 121 (2021) 4193–4252.
doi: 10.1021/acs.chemrev.0c00986
K.M. Brummond, J.E. DeForrest, Synthesis 6 (2007) 795–818.
doi: 10.1055/s-2007-965963
S. Yu, S. Ma, Chem. Commun. 47 (2011) 5384–5418.
doi: 10.1039/C0CC05640E
R.K. Neff, D.E. Frantz, ACS Catal. 4 (2014) 519–528.
doi: 10.1021/cs401007m
J. Ye, S. Ma, Org. Chem. Front. 1 (2014) 1210–1224.
doi: 10.1039/C4QO00208C
W.D. Chu, Y. Zhang, J. Wang, Catal. Sci. Technol. 7 (2017) 4570–4579.
doi: 10.1039/C7CY01319A
X. Huang, S. Ma, Acc. Chem. Res. 52 (2019) 1301–1312.
doi: 10.1021/acs.accounts.9b00023
X. Bao, J. Ren, Y. Yang, et al., Org. Biomol. Chem. 18 (2020) 7977–7986.
doi: 10.1039/D0OB01614D
A. Sharma, K. Nagaraju, G.A. Rao, R. Gurubrahamam, K. Chen, Asian J. Org. Chem. 10 (2021) 1567–1579.
doi: 10.1002/ajoc.202100252
H. Cheng, X. Zhou, A. Hu, et al., RSC Adv. 8 (2018) 34088–34093.
doi: 10.1039/C8RA07834C
Z. Kuang, H. Chen, J. Qiu, et al., Chem 6 (2020) 2347–2363.
doi: 10.1016/j.chempr.2020.06.034
J.L. Li, C. Liu, J.J. He, et al., Org. Chem. Front. 7 (2020) 1495–1501.
doi: 10.1039/D0QO00445F
S. Xu, Y. Deng, J. He, et al., Org. Lett. 23 (2021) 5853–5858.
doi: 10.1021/acs.orglett.1c01988
S.J. Chen, G.S. Chen, T. Deng, et al., Org. Lett. 24 (2022) 702–707.
doi: 10.1021/acs.orglett.1c04148
X. Yu, H. Ren, Y. Xiao, J. Zhang, Chem. Eur. J. 14 (2008) 8481–8485.
doi: 10.1002/chem.200801004
Y. Xiao, J. Zhang, Chem. Commun. 46 (2010) 752–754.
doi: 10.1039/B919060K
X. Yu, J. Zhang, Adv. Synth. Catal. 353 (2011) 1265–1268.
doi: 10.1002/adsc.201100009
H. Qian, X. Yu, J. Zhang, J. Sun, J. Am. Chem. Soc. 135 (2013) 18020–18023.
doi: 10.1021/ja409080v
Q. Yao, Y. Liao, L. Lin, et al., Angew. Chem. Int. Ed. 55 (2016) 1859–1863.
doi: 10.1002/anie.201509455
P.H. Poulsen, Y. Li, V.H. Lauridsen, et al., Angew. Chem. Int. Ed. 57 (2018) 10661–10665.
doi: 10.1002/anie.201806238
Z.G. Ma, J.L. Wei, J.B. Lin, et al., Org. Lett. 21 (2019) 2468–2472.
doi: 10.1021/acs.orglett.9b00839
J. Wang, S. Zheng, S. Rajkumar, et al., Nat. Commun. 11 (2020) 5527.
doi: 10.1038/s41467-020-19294-8
C. Yang, Z.L. Liu, D.T. Dai, et al., Org. Lett. 22 (2020) 1360–1367.
doi: 10.1021/acs.orglett.9b04647
B.J. Cowen, L.B. Saunders, S.J. Miller, J. Am. Chem. Soc. 131 (2009) 6105–6107.
doi: 10.1021/ja901279m
X.Y. Guan, Y. Wei, M. Shi, J. Org. Chem. 74 (2009) 6343–6346.
doi: 10.1021/jo9008832
B.S. Santos, A.L. Cardoso, A.M. Beja, et al., Eur. J. Org. Chem. (2010) 3249–3256.
Y. Li, H. Zou, J. Gong, et al., Org. Lett. 9 (2007) 4057–4060.
doi: 10.1021/ol7018086
G. Chai, S. Wu, C. Fu, S. Ma, J. Am. Chem. Soc. 133 (2011) 3740–3743.
doi: 10.1021/ja1108694
T.J. Martin, V.G. Vakhshori, Y.S. Tran, O. Kwon, Org. Lett. 13 (2011) 2586– 2589.
doi: 10.1021/ol200697m
T.H. Lambert, D.W.C. MacMillan, J. Am. Chem. Soc. 124 (2002) 13646–13647.
doi: 10.1021/ja028090q
P. de March, J. Font, A. Gracia, Q. Zheng, J. Org. Chem. 60 (1995) 1814–1822.
doi: 10.1021/jo00111a045
H. Guo, Q. Xu, O. Kwon, J. Am. Chem. Soc. 131 (2009) 6318–6319.
doi: 10.1021/ja8097349
Q. Zhang, L. Yang, X. Tong, J. Am. Chem. Soc. 132 (2010) 2550–2551.
doi: 10.1021/ja100432m
Y. Fujiwara, G.C. Fu, J. Am. Chem. Soc. 133 (2011) 12293–12297.
doi: 10.1021/ja2049012
J. Yamazaki, T. Watanabe, K. Tanaka, Tetrahedron Asymmetry 12 (2001) 669–675.
doi: 10.1016/S0957-4166(01)00114-8
C.Y. Li, X.B. Wang, X.L. Sun, et al., J. Am. Chem. Soc. 129 (2007) 1494–1495.
doi: 10.1021/ja068642v
H. Liu, D. Leow, K.W. Huang, C.H. Tan, J. Am. Chem. Soc. 131 (2009) 7212–7213.
doi: 10.1021/ja901528b
M. Hassink, X. Liu, J.M. Fox, Org. Lett. 13 (2011) 2388–2391.
doi: 10.1021/ol2006242
I.T. Crouch, R.K. Neff, D.E. Frantz, J. Am. Chem. Soc. 135 (2013) 4970–4973.
doi: 10.1021/ja401606e
Y. Wang, W. Zhang, S. Ma, J. Am. Chem. Soc. 135 (2013) 11517–11520.
doi: 10.1021/ja406135t
D.T. Dai, J.L. Xu, Z.Y. Chen, Z.L. Wang, Y.H. Xu, Org. Lett. 23 (2021) 1898–1903.
doi: 10.1021/acs.orglett.1c00311
T. Ohmura, M. Suginome, Bull. Chem. Soc. Jpn. 82 (2009) 29–49.
doi: 10.1246/bcsj.82.29
M. Oestreich, E. Hartmann, M. Mewald, Chem. Rev. 113 (2013) 402–441.
doi: 10.1021/cr3003517
A.H. Hoveyda, H. Wu, S. Radomkit, E. Vedejs, S.E. Denmark, Activation of B–B and B–Si bonds and synthesis of organoboron and organosilicon compounds through lewis base-catalyzed transformations (n→n*), Lewis Base Catalysis in Organic Chemistry, Vol. 3, Wiley-VCH, Weinheim, Germany, 2016.
J.J. Feng, W. Mao, L. Zhang, M. Oestreich, Chem. Soc. Rev. 50 (2021) 2010–2073.
doi: 10.1039/D0CS00965B
S.K. Bose, L. Mao, L. Kuehn, et al., Chem. Rev. 121 (2021) 13238–13341.
doi: 10.1021/acs.chemrev.1c00255
J. Hu, M. Ferger, Z. Shi, T.B. Marder, Chem. Soc. Rev. 50 (2021) 13129–13188.
doi: 10.1039/D0CS00843E
H. Ito, S. Kunii, M. Sawamura, Nat. Chem. 2 (2010) 972–976.
doi: 10.1038/nchem.801
K.B. Smith, K.M. Logan, W. You, M.K. Brown, Chem. Eur. J. 20 (2014) 12032–12036.
doi: 10.1002/chem.201404310
J.Z. Zhou, At. Energy Sci. Technol. 6 (1980) 670–678.
M. Wang, Z.L. Liu, X. Zhang, et al., J. Am. Chem. Soc. 137 (2015) 14830–14833.
doi: 10.1021/jacs.5b08279
Z.L. Liu, C. Yang, Q.Y. Xue, et al., Angew. Chem. Int. Ed. 58 (2019) 16538–16542.
doi: 10.1002/anie.201908343
B. Su, T. Lee, J.F. Hartwig, J. Am. Chem. Soc. 140 (2018) 18032–18038.
doi: 10.1021/jacs.8b10428
X. Wu, J. Qu, Y. Chen, J. Am. Chem. Soc. 142 (2020) 15654–15660.
doi: 10.1021/jacs.0c07126
Y. Wang, S. Ma, Adv. Synth. Catal. 355 (2013) 741–750.
doi: 10.1002/adsc.201200910
Qi Li , Zi-Lu Wang , Yun-He Xu . Copper-catalyzed 1,4-silylcyanation of 1,3-enynes: A silyl radical-initiated approach for synthesis of difunctionalized allenes. Chinese Chemical Letters, 2025, 36(3): 109991-. doi: 10.1016/j.cclet.2024.109991
He Yao , Wenhao Ji , Yi Feng , Chunbo Qian , Chengguang Yue , Yue Wang , Shouying Huang , Mei-Yan Wang , Xinbin Ma . Copper-catalyzed and biphosphine ligand controlled 3,4-boracarboxylation of 1,3-dienes with carbon dioxide. Chinese Chemical Letters, 2025, 36(4): 110076-. doi: 10.1016/j.cclet.2024.110076
Liangfeng Yang , Liang Zeng , Yanping Zhu , Qiuan Wang , Jinheng Li . Copper-catalyzed photoredox 1,4-amidocyanation of 1,3-enynes with N-amidopyridin-1-ium salts and TMSCN: Facile access to α-amido allenyl nitriles. Chinese Chemical Letters, 2024, 35(11): 109685-. doi: 10.1016/j.cclet.2024.109685
Guang Xu , Cuiju Zhu , Xiang Li , Kexin Zhu , Hao Xu . Copper-catalyzed asymmetric [4+1] annulation of yne–allylic esters with pyrazolones. Chinese Chemical Letters, 2025, 36(4): 110114-. doi: 10.1016/j.cclet.2024.110114
Wujun Jian , Mong-Feng Chiou , Yajun Li , Hongli Bao , Song Yang . Cu-catalyzed regioselective diborylation of 1,3-enynes for the efficient synthesis of 1,4-diborylated allenes. Chinese Chemical Letters, 2024, 35(5): 108980-. doi: 10.1016/j.cclet.2023.108980
Zhiwei Chen , Heyun Sheng , Xue Li , Menghan Chen , Xin Li , Qiuling Song . Efficient capture of difluorocarbene by pyridinium 1,4-zwitterionic thiolates: A concise synthesis of difluoromethylene-containing 1,4-thiazine derivatives. Chinese Chemical Letters, 2024, 35(4): 108937-. doi: 10.1016/j.cclet.2023.108937
Yan-Li Li , Zhi-Ming Li , Kai-Kai Wang , Xiao-Long He . Beyond 1,4-addition of in-situ generated (aza-)quinone methides and indole imine methides. Chinese Chemical Letters, 2024, 35(7): 109322-. doi: 10.1016/j.cclet.2023.109322
Jing-Qi Tao , Shuai Liu , Tian-Yu Zhang , Hong Xin , Xu Yang , Xin-Hua Duan , Li-Na Guo . Photoinduced copper-catalyzed alkoxyl radical-triggered ring-expansion/aminocarbonylation cascade. Chinese Chemical Letters, 2024, 35(6): 109263-. doi: 10.1016/j.cclet.2023.109263
Peiyan Zhu , Yanyan Yang , Hui Li , Jinhua Wang , Shiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533
Junjun Huang , Ran Chen , Yajian Huang , Hang Zhang , Anran Zheng , Qing Xiao , Dan Wu , Ruxia Duan , Zhi Zhou , Fei He , Wei Yi . Discovery of an enantiopure N-[2-hydroxy-3-phenyl piperazine propyl]-aromatic carboxamide derivative as highly selective α1D/1A-adrenoceptor antagonist and homology modelling. Chinese Chemical Letters, 2024, 35(11): 109594-. doi: 10.1016/j.cclet.2024.109594
Yuanyuan Zeng , Fang Liu , Jun Wang , Bianfei Shao , Tao He , Zhongzheng Xiang , Yan Wang , Shunyao Zhu , Tian Yang , Siting Yu , Changyang Gong , Lei Liu . Fisetin micelles precisely exhibit a radiosensitization effect by inhibiting PDGFRβ/STAT1/STAT3/Bcl-2 signaling pathway in tumor. Chinese Chemical Letters, 2025, 36(2): 109734-. doi: 10.1016/j.cclet.2024.109734
Zhaodong WANG . In situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268
Chunhua Ma , Mengjiao Liu , Siyu Ouyang , Zhenwei Cui , Jingjing Bi , Yuqin Jiang , Zhiguo Zhang . Metal-free construction of diverse 1,2,4-triazolo[1,5-a]pyridines on water. Chinese Chemical Letters, 2025, 36(1): 109755-. doi: 10.1016/j.cclet.2024.109755
Xuewei BA , Cheng CHENG , Huaikang ZHANG , Deqing ZHANG , Shuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7∶xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096
Hai-Yang Song , Jun Jiang , Yu-Hang Song , Min-Hang Zhou , Chao Wu , Xiang Chen , Wei-Min He . Supporting-electrolyte-free electrochemical [2 + 2 + 1] annulation of benzo[d]isothiazole 1,1-dioxides, N-arylglycines and paraformaldehyde. Chinese Chemical Letters, 2024, 35(6): 109246-. doi: 10.1016/j.cclet.2023.109246
Jinge Zhu , Ailing Tang , Leyi Tang , Peiqing Cong , Chao Li , Qing Guo , Zongtao Wang , Xiaoru Xu , Jiang Wu , Erjun Zhou . Chlorination of benzyl group on the terminal unit of A2-A1-D-A1-A2 type nonfullerene acceptor for high-voltage organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110233-. doi: 10.1016/j.cclet.2024.110233
You Zhou , Li-Sheng Wang , Shuang-Gui Lei , Bo-Cheng Tang , Zhi-Cheng Yu , Xing Li , Yan-Dong Wu , Kai-Lu Zheng , An-Xin Wu . I2-DMSO mediated tetra-functionalization of enaminones for the construction of novel furo[2′,3′:4,5]pyrimido[1,2-b]indazole skeletons via in situ capture of ketenimine cations. Chinese Chemical Letters, 2025, 36(1): 109799-. doi: 10.1016/j.cclet.2024.109799
Zhirong Yang , Shan Wang , Ming Jiang , Gengchen Li , Long Li , Fangzhi Peng , Zhihui Shao . One stone three birds: Ni-catalyzed asymmetric allenylic substitution of allenic ethers, hydroalkylation of 1,3-enynes and double alkylation of enynyl ethers. Chinese Chemical Letters, 2024, 35(8): 109518-. doi: 10.1016/j.cclet.2024.109518
Xiaohui Fu , Yanping Zhang , Juan Liao , Zhen-Hua Wang , Yong You , Jian-Qiang Zhao , Mingqiang Zhou , Wei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688
Liyang ZHANG , Dongdong YANG , Ning LI , Yuanyu YANG , Qi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079