Ligand enabled none-oxidative decarbonylation of aliphatic aldehydes
-
* Corresponding author.
E-mail address: lisuhua5@mail.sysu.edu.cn (S. Li).
Citation:
Bo Li, Shihao Liu, Wu Fan, Xiaotong Shen, Jing Xu, Suhua Li. Ligand enabled none-oxidative decarbonylation of aliphatic aldehydes[J]. Chinese Chemical Letters,
;2023, 34(7): 108027.
doi:
10.1016/j.cclet.2022.108027
H. Lu, T.Y. Yu, P.F. Xu, H. Wei, Chem. Rev. 121 (2020) 365–411.
D.H. Doughty, M.P. Anderson, A.L. Casalnuovo, et al., The effect of chelating diphosphine ligands on homogeneous catalytic decarbonylation reactions using cationic rhodium catalysts, in: E.C. Alyea, D.W. Meek (Eds.), Catalytic Aspects of Metal Phosphine Complexes, American Chemical Society, 1982, pp. 65–83.
D.H. Doughty, L.H. Pignolet, Decarbonylation reactions using transition metal complexesin in: L.H. Pignolet (Eds.), Homogeneous Catalysis with Metal Phosphine Complexes, Springer, 1983, pp. 343–375.
J. Tsuji, K. Ohno, Synthesis (1969) 157–169.
F.L. Zhang, K. Hong, T.J. Li, H. Park, J.Q. Yu, Science 351 (2016) 252–256.
doi: 10.1126/science.aad7893
X.H. Liu, H. Park, J.H. Hu, et al., J. Am. Chem. Soc. 139 (2017) 888–896.
doi: 10.1021/jacs.6b11188
Y.H. Li, Y. Ouyang, N. Chekshin, J.Q. Yu, J. Am. Chem. Soc. 144 (2022) 4727–4733.
doi: 10.1021/jacs.1c13586
G. Li, Q. Liu, L. Vasamsetty, W. Guo, J. Wang, Angew. Chem. Int. Ed. 59 (2020) 3475–3479.
doi: 10.1002/anie.201913733
B. Li, B. Lawrence, G. Li, H. Ge, Angew. Chem. Int. Ed. 59 (2020) 3078–3082.
doi: 10.1002/anie.201913126
P. Gandeepan, L. Ackermann, Chem 4 (2018) 199–222.
doi: 10.1016/j.chempr.2017.11.002
J.I. Higham, J.A. Bull, Org. Biomol. Chem. 18 (2020) 7291–7315.
doi: 10.1039/d0ob01587c
L.J. Oxtoby, Z.Q. Li, V.T. Tran, et al., Angew. Chem. Int. Ed. 132 (2020) 8970–8975.
doi: 10.1002/ange.202001069
Z. Liu, L.J. Oxtoby, M. Liu, et al., J. Am. Chem. Soc. 143 (2021) 8962–8969.
doi: 10.1021/jacs.1c03178
M. Liu, J. Sun, T.G. Erbay, et al., Angew. Chem. Int. Ed. 61 (2022) e202203624.
K.A. Ahrendt, C.J. Borths, D.W.C. MacMillan, J. Am. Chem. Soc. 122 (2000) 4243–4244.
doi: 10.1021/ja000092s
E. Taarning, R. Madsen, Chem. Eur. J. 14 (2008) 5638–5644.
doi: 10.1002/chem.200800003
A.B. Northrup, D.W.C. MacMillan, J. Am. Chem. Soc. 124 (2002) 6798–6799.
doi: 10.1021/ja0262378
W.S. Jen, J.J.M. Wiener, D.W.C. MacMillan, J. Am. Chem. Soc. 122 (2000) 9874–9875.
doi: 10.1021/ja005517p
N.A. Paras, D.W.C. MacMillan, J. Am. Chem. Soc. 123 (2001) 4370–4371.
doi: 10.1021/ja015717g
B. List, J. Am. Chem. Soc. 124 (2002) 5656–5657.
doi: 10.1021/ja0261325
J.F. Austin, D.W.C. MacMillan, J. Am. Chem. Soc. 124 (2002) 1172–1173.
doi: 10.1021/ja017255c
T.D. Beeson, A. Mastracchio, J.B. Hong, K. Ashton, D.W.C. MacMillan, Science 316 (2007) 582–585.
doi: 10.1126/science.1142696
L. Caruana, F. Kniep, T.K. Johansen, P.H. Poulsen, K.A. Jørgensen, J. Am. Chem. Soc. 136 (2014) 15929–15932.
doi: 10.1021/ja510475n
E. Arceo, I.D. Jurberg, A. Alvarez-Fernández, P. Melchiorre, Nat. Chem. 5 (2013) 750–756.
doi: 10.1038/nchem.1727
D.A. Nicewicz, D.W. MacMillan, Science 322 (2008) 77–80.
doi: 10.1126/science.1161976
N. Vignola, B. List, J. Am. Chem. Soc. 126 (2004) 450–451.
doi: 10.1021/ja0392566
J. García-Fortanet, S.L. Buchwald, Angew. Chem. Int. Ed. 47 (2008) 8108–8111.
doi: 10.1002/anie.200803809
G.D. Vo, J.F. Hartwig, Angew. Chem. Int. Ed. 47 (2008) 2127–2130.
doi: 10.1002/anie.200705357
Y. Terao, Y. Fukuoka, T. Satoh, M. Miura, M. Nomura, Tetrahedron Lett. 43 (2002) 101–104.
doi: 10.1016/S0040-4039(01)02077-9
R. Martín, S.L. Buchwald, Angew. Chem. Int. Ed. 46 (2007) 7236–7239.
doi: 10.1002/anie.200703009
Z. Pan, W. Li, S. Zhu, et al., Angew. Chem. Int. Ed. 60 (2021) 18542–18546.
doi: 10.1002/anie.202106109
L. Yang, X. Guo, C.J. Li, Adv. Synth. Catal. 352 (2010) 2899–2904.
doi: 10.1002/adsc.201000476
L. Yang, C.A. Correia, X. Guo, C.J. Li, Tetrahedron Lett. 51 (2010) 5486–5489.
doi: 10.1016/j.tetlet.2010.08.040
J. Wang, X. Guo, C.J. Li, J. Organomet. Chem. 696 (2011) 211–215.
doi: 10.1016/j.jorganchem.2010.08.051
X. Guo, J. Wang, C.J. Li, J. Am. Chem. Soc. 131 (2009) 15092–15093.
doi: 10.1021/ja906265a
X. Guo, J. Wang, C.J. Li, Org. Lett. 12 (2010) 3176–3178.
doi: 10.1021/ol101107w
C.L. Allen, J.M. Williams, Angew. Chem. Int. Ed. 49 (2010) 1724–1725.
doi: 10.1002/anie.200906896
L. Kang, F. Zhang, L.T. Ding, L. Yang, RSC Adv. 5 (2015) 100452–100456.
doi: 10.1039/C5RA21610A
X.H. Ouyang, R.J. Song, B. Liu, J.H. Li, Adv. Synth. Catal. 358 (2016) 1903–1909.
doi: 10.1002/adsc.201501113
Y. Li, J.H. Li, Org. Lett. 20 (2018) 5323–5326.
doi: 10.1021/acs.orglett.8b02243
X.J. Liu, S.Y. Zhou, Y. Xiao, et al., Org. Lett. 23 (2021) 7839–7844.
doi: 10.1021/acs.orglett.1c02858
L. Guo, W. Srimontree, C. Zhu, et al., Nat. Commun. 10 (2019) 1957.
doi: 10.1038/s41467-019-09766-x
W. Srimontree, L. Guo, M. Rueping, Chem. Eur. J. 26 (2020) 423–427.
doi: 10.1002/chem.201904842
X. Fan, R. Liu, Y. Wei, M. Shi, Org. Chem. Front. 6 (2019) 2667–2671.
doi: 10.1039/c9qo00614a
H. Eschinazi, H. Pines, J. Org. Chem. 24 (1959) 1369-1369.
J.A. Osborn, F.H. Jardine, J.F. Young, G. Wilkinson, J. Chem. Soc. A (1966) 1711–1732.
J. Tsuji, K. Ohno, Tetrahedron Lett. 6 (1965) 3969–3971.
doi: 10.1016/S0040-4039(01)89127-9
K. Ohno, J. Tsuji, J. Am. Chem. Soc. 90 (1968) 99–107.
doi: 10.1021/ja01003a018
K. Ding, S. Xu, R. Alotaibi, et al., J. Org. Chem. 82 (2017) 4924–4929.
doi: 10.1021/acs.joc.7b00284
T. Matsuyama, T. Yatabe, T. Yabe, K. Yamaguchi, ACS Catal. 11 (2021) 13745–13751.
doi: 10.1021/acscatal.1c03375
T. Hattori, R. Takakura, T. Ichikawa, et al., J. Org. Chem. 81 (2016) 2737–2743.
doi: 10.1021/acs.joc.5b02632
D. Ainembabazi, C. Reid, A. Chen, et al., J. Am. Chem. Soc. 142 (2020) 696–699.
doi: 10.1021/jacs.9b12354
Akanksha, D.M., Green Chem. 14 (2012) 2314–2320.
doi: 10.1039/c2gc35622h
A. Modak, A. Deb, T. Patra, et al., Chem. Commun. 48 (2012) 4253–4255.
doi: 10.1039/c2cc31144e
V. Ajdačić, A. Nikolić, S. Simić, et al., Synthesis 50 (2018) 119–126.
doi: 10.1055/s-0036-1590892
A. Modak, S. Rana, A.K. Phukan, D. Maiti, Eur. J. Org. Chem. 2017 (2017) 4168–4174.
doi: 10.1002/ejoc.201700451
B. Gutmann, P. Elsner, T. Glasnov, D.M. Roberge, C.O. Kappe, Angew. Chem. Int. Ed. 53 (2014) 11557–11561.
doi: 10.1002/anie.201407219
C. Chapuis, B. Winter, K.H. Schulte-Elte, Tetrahedron Lett. 33 (1992) 6135–6138.
doi: 10.1016/S0040-4039(00)60025-4
X.T. Min, Y.K. Mei, B.Z. Chen, et al., J. Am. Chem. Soc. 144 (2022) 11081–11087.
doi: 10.1021/jacs.2c04422
D. Doughty, L. Pignolet, J. Am. Chem. Soc. 100 (1978) 7083–7085.
doi: 10.1021/ja00490a061
T.C. Fessard, S.P. Andrews, H. Motoyoshi, E.M. Carreira, Angew. Chem. Int. Ed. 46 (2007) 9331–9334.
doi: 10.1002/anie.200702995
B. Morandi, E.M. Carreira, Synlett 2009 (2009) 2076–2078.
R.N. Monrad, R. Madsen, J. Org. Chem. 72 (2007) 9782–9785.
doi: 10.1021/jo7017729
M. Kreis, A. Palmelund, L. Bunch, R. Madsen, Adv. Synth. Catal. 348 (2006) 2148–2154.
doi: 10.1002/adsc.200600228
P. Fristrup, M. Kreis, A. Palmelund, P.O. Norrby, R. Madsen, J. Am. Chem. Soc. 130 (2008) 5206–5215.
doi: 10.1021/ja710270j
C.M. Beck, S.E. Rathmill, Y.J. Park, et al., Organometallics 18 (1999) 5311–5317.
doi: 10.1021/om9905106
M.A. Aubart, L.H. Pignolet, Bis[1,3-bis(diphenylphosphino)propane]rhodium tetrafluoroborate, Encyclopedia of Reagents for Organic Synthesis, John Wiley & Sons, 2001, 1–2.
F. Abu-Hasanayn, M.E. Goldman, A.S. Goldman, J. Am. Chem. Soc. 114 (1992) 2520–2524.
doi: 10.1021/ja00033a028
V. Ajdačić, A. Nikolić, M. Kerner, P. Wipf, I.M. Opsenica, Synlett 29 (2018) 1781–1785.
doi: 10.1055/s-0037-1610433
G. Domazetis, B. Tarpey, D. Dolphin, B.R. James, J. Chem. Soc. Chem. Commun. (1980) 939–940.
T. Iwai, T. Fujihara, Y. Tsuji, Chem. Commun. (2008) 6215–6217.
doi: 10.1039/b813171f
T. Shirai, K. Sugimoto, M. Iwasaki, et al., Synlett 30 (2019) 972–976.
doi: 10.1055/s-0037-1611802
A.E. Roa, V. Salazar, J. López-Serrano, et al., Organometallics 31 (2012) 716–721.
doi: 10.1021/om201094q
H. Zhang, A. Padwa, Tetrahedron Lett. 47 (2006) 3905–3908.
doi: 10.1016/j.tetlet.2006.03.163
Y. Wang, Y.C. Luo, H.B. Zhang, P.F. Xu, Org. Biomol. Chem. 10 (2012) 8211–8215.
doi: 10.1039/c2ob26422f
T. Kato, M. Hoshikawa, Y. Yaguchi, et al., Tetrahedron 58 (2002) 9213–9222.
doi: 10.1016/S0040-4020(02)01192-4
M. Harmata, S. Wacharasindhu, Org. Lett. 7 (2005) 2563–2565.
doi: 10.1021/ol050598l
S. Ikeda, M. Shibuya, Y. Iwabuchi, Chem. Commun. (2007) 504–506.
J.P. Malerich, T.J. Maimone, G.I. Elliott, D. Trauner, J. Am. Chem. Soc. 127 (2005) 6276–6283.
doi: 10.1021/ja050092y
P. Hu, S.A. Snyder, J. Am. Chem. Soc. 139 (2017) 5007–5010.
doi: 10.1021/jacs.7b01454
F.E. Ziegler, M. Belema, J. Org. Chem. 62 (1997) 1083–1094.
doi: 10.1021/jo961992n
A. Padwa, H. Zhang, J. Org. Chem. 72 (2007) 2570-2582.
doi: 10.1021/jo0626111
Ž. Selaković, A.M. Nikolić, V. Ajdačić, I.M. Opsenica, Eur. J. Org. Chem. 2022 (2022) e202101265.
M. Tanaka, T. Ohshima, H. Mitsuhashi, M. Maruno, T. Wakamatsu, Tetrahedron 51 (1995) 11693–11702.
doi: 10.1016/0040-4020(95)00701-9
C.M. Zeng, M. Han, D.F. Covey, J. Org. Chem. 65 (2000) 2264–2266.
doi: 10.1021/jo991953m
L. Furst, J.M. Narayanam, C.R. Stephenson, Angew. Chem. Int. Ed. 50 (2011) 9655–9659.
doi: 10.1002/anie.201103145
R.K. Boeckman, J. Zhang, M.R. Reeder, Org. Lett. 4 (2002) 3891–3894.
doi: 10.1021/ol0267174
M.G. Banwell, M.J. Coster, A.J. Edwards, O.P. Karunaratne, J.A. Smith, L.L. Welling, A.C. Willis, Aust. J. Chem. 56 (2003) 585–595.
doi: 10.1071/CH02242
D.W. MacMillan, L.E. Overman, J. Am. Chem. Soc. 117 (1995) 10391–10392.
doi: 10.1021/ja00146a028
X. Wu, F.A. Cruz, A. Lu, V.M. Dong, J. Am. Chem. Soc. 140 (2018) 10126–10130.
doi: 10.1021/jacs.8b06069
H.M. Walborsky, L.E. Allen, Tetrahedron Lett. 11 (1970) 823–824.
doi: 10.1016/S0040-4039(01)97841-4
H.M. Walborsky, L.E. Allen, J. Am. Chem. Soc. 93 (1971) 5465–5468.
doi: 10.1021/ja00750a026
R.H. Crabtree, Insertion and elimination, in: R.H. Crabtree (Ed.), The Organometallic Chemistry of the Transition Metals, John Wiley & Sons, 2014, pp. 185–203.
S.K. Murphy, J.W. Park, F.A. Cruz, V.M. Dong, Science 347 (2015) 56–60.
doi: 10.1126/science.1261232
G. Tan, Y. Wu, Y. Shi, J. You, Angew. Chem. Int. Ed. 58 (2019) 7440–7444.
doi: 10.1002/anie.201902553
S. Kusumoto, T. Tatsuki, K. Nozaki, Angew. Chem. Int. Ed. 54 (2015) 8458–8461.
doi: 10.1002/anie.201503620
R. Prince, K. Raspin, Chem. Commun. (1966) 156–157.
R. Schmid, M. Scalone, V. Michelet, et al., (R)- and (S)-2,2 -Bis(diphenylphosphino)-6,6-dimethoxy-1,1-biphenyl, Encyclopedia of Reagents for Organic Synthesis, John Wiley & Sons, 2001, 1–24.
M.L. Ma, Z.H. Peng, L. Chen, et al., Chin. J. Chem. 24 (2006) 1391–1396.
doi: 10.1002/cjoc.200690260
M.L. Ma, Z.H. Peng, Y. Guo, et al., Chin. Chem. Lett. 21 (2010) 576–579.
doi: 10.1016/j.cclet.2010.01.030
T. Qin, L.R. Malins, J.T. Edwards, et al., Angew. Chem. Int. Ed. 56 (2017) 260–265.
doi: 10.1002/anie.201609662
J.D. Griffin, M.A. Zeller, D.A. Nicewicz, J. Am. Chem. Soc. 137 (2015) 11340–11348.
doi: 10.1021/jacs.5b07770
E.P. Olsen, R. Madsen, Chem. Eur. J. 18 (2012) 16023–16029.
doi: 10.1002/chem.201202631
E.P.K. Olsen, T. Singh, P. Harris, P.G. Andersson, R. Madsen, J. Am. Chem. Soc. 137 (2015) 834–842.
doi: 10.1021/ja5106943
M.J. Pedersen, R. Madsen, M.H. Clausen, Chem. Commun. 54 (2018) 952–955.
doi: 10.1039/c7cc09260a
Kongchuan Wu , Dandan Lu , Jianbin Lin , Ting-Bin Wen , Wei Hao , Kai Tan , Hui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906
Yi-Fan Wang , Hao-Yun Yu , Hao Xu , Ya-Jie Wang , Xiaodi Yang , Yu-Hui Wang , Ping Tian , Guo-Qiang Lin . Rhodium(Ⅲ)-catalyzed diastereo- and enantioselective hydrosilylation/cyclization reaction of cyclohexadienone-tethered α, β-unsaturated aldehydes. Chinese Chemical Letters, 2024, 35(9): 109520-. doi: 10.1016/j.cclet.2024.109520
Hong Yin , Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382
Ying-Di Hao , Zhi-Qian Lin , Xiao-Yu Guo , Jiao Liang , Can-Kun Luo , Qian-Tao Wang , Li Guo , Yong Wu . Rhodium-catalyzed Doyle-Kirmse rearrangement reactions of sulfoxoniun ylides. Chinese Chemical Letters, 2024, 35(4): 108834-. doi: 10.1016/j.cclet.2023.108834
Yujia Shi , Yan Qiao , Pengfei Xie , Miaomiao Tian , Xingwei Li , Junbiao Chang , Bingxian Liu . Rhodium-catalyzed enantioselective in situ C(sp3)−H heteroarylation by a desymmetrization approach. Chinese Chemical Letters, 2024, 35(10): 109544-. doi: 10.1016/j.cclet.2024.109544
Jinyu Guo , Yandai Lin , Shaohua He , Yueqing Chen , Fenglu Li , Renjie Ruan , Gaoxing Pan , Hexin Nan , Jibin Song , Jin Zhang . Utilizing dual-responsive iridium(Ⅲ) complex for hepatocellular carcinoma: Integrating photoacoustic imaging with chemotherapy and photodynamic therapy. Chinese Chemical Letters, 2024, 35(9): 109537-. doi: 10.1016/j.cclet.2024.109537
Chun-Yun Ding , Ru-Yuan Zhang , Yu-Wu Zhong , Jiannian Yao . Binary and heterostructured microplates of iridium and ruthenium complexes: Preparation, characterization, and thermo-responsive emission. Chinese Journal of Structural Chemistry, 2024, 43(10): 100393-100393. doi: 10.1016/j.cjsc.2024.100393
Yuanjin Chen , Xianghui Shi , Dajiang Huang , Junnian Wei , Zhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292
Luyao Lu , Chen Zhu , Fei Li , Pu Wang , Xi Kang , Yong Pei , Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411
Fuzheng Zhang , Chao Shi , Jiale Li , Fulin Jia , Xinyu Liu , Feiyang Li , Xinyu Bai , Qiuxia Li , Aihua Yuan , Guohua Xie . B-embedded narrowband pure near-infrared (NIR) phosphorescent iridium(Ⅲ) complexes and solution-processed OLED application. Chinese Chemical Letters, 2025, 36(1): 109596-. doi: 10.1016/j.cclet.2024.109596
Tao Yu , Vadim A. Soloshonok , Zhekai Xiao , Hong Liu , Jiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901
Tiantian Gong , Yanan Chen , Shuo Wang , Miao Wang , Junwei Zhao . Rigid-flexible-ligand-ornamented lanthanide-incorporated selenotungstates and photoluminescence properties. Chinese Journal of Structural Chemistry, 2024, 43(9): 100370-100370. doi: 10.1016/j.cjsc.2024.100370
Ziyi Liu , Xunying Liu , Lubing Qin , Haozheng Chen , Ruikai Li , Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405
Junxin Li , Chao Chen , Yuzhen Dong , Jian Lv , Jun-Mei Peng , Yuan-Ye Jiang , Daoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732
Zhibin Ren , Shan Li , Xiaoying Liu , Guanghao Lv , Lei Chen , Jingli Wang , Xingyi Li , Jiaqing Wang . Penetrating efficiency of supramolecular hydrogel eye drops: Electrostatic interaction surpasses ligand-receptor interaction. Chinese Chemical Letters, 2024, 35(11): 109629-. doi: 10.1016/j.cclet.2024.109629
Peipei CUI , Xin LI , Yilin CHEN , Zhilin CHENG , Feiyan GAO , Xu GUO , Wenning YAN , Yuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234
Xiaofen GUAN , Yating LIU , Jia LI , Yiwen HU , Haiyuan DING , Yuanjing SHI , Zhiqiang WANG , Wenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122
Jumei Zhang , Ziheng Zhang , Gang Li , Hongjin Qiao , Hua Xie , Ling Jiang . Ligand-mediated reactivity in CO oxidation of yttrium-nickel monoxide carbonyl complexes. Chinese Chemical Letters, 2025, 36(2): 110278-. doi: 10.1016/j.cclet.2024.110278
Yongsheng Xu , Lisha Yao , Jian Li , Yanzhao Dong , Dongyang Xie , Miaomiao Zhang , Feng Li , Yunsheng Dai , Jinli Zhang , Haiyang Zhang . Dual-ligand engineering over Au-based catalyst for efficient acetylene hydrochlorination. Chinese Chemical Letters, 2025, 36(3): 110318-. doi: 10.1016/j.cclet.2024.110318
He Yao , Wenhao Ji , Yi Feng , Chunbo Qian , Chengguang Yue , Yue Wang , Shouying Huang , Mei-Yan Wang , Xinbin Ma . Copper-catalyzed and biphosphine ligand controlled 3,4-boracarboxylation of 1,3-dienes with carbon dioxide. Chinese Chemical Letters, 2025, 36(4): 110076-. doi: 10.1016/j.cclet.2024.110076