Pyrene-tethered bismoviologens for visible light-induced C(sp3)–P and C(sp2)–P bonds formation
-
* Corresponding authors.
E-mail addresses: robin616@mail.xjtu.edu.cn (B. Rao), ganghe@mail.xjtu.edu.cn (G. He).
Citation:
Wenqiang Ma, Sikun Zhang, Liang Xu, Bingjie Zhang, Guoping Li, Bin Rao, Mingming Zhang, Gang He. Pyrene-tethered bismoviologens for visible light-induced C(sp3)–P and C(sp2)–P bonds formation[J]. Chinese Chemical Letters,
;2023, 34(6): 107958.
doi:
10.1016/j.cclet.2022.107958
T.P. Nguyen, A.D. Easley, N. Kang, et al., Nature 593 (2021) 61–66.
doi: 10.1038/s41586-021-03399-1
L. Liu, Q. Liu, R. Li, M.S. Wang, G.C. Guo, J. Am. Chem. Soc. 143 (2021) 2232–2238.
doi: 10.1021/jacs.0c10183
J. Ding, C. Zheng, L. Wang, et al., J. Mater. Chem. A 7 (2019) 23337–23360.
doi: 10.1039/C9TA01724K
H. Chen, V. Brasiliense, J. Mo, et al., J. Am. Chem. Soc. 143 (2021) 2886–2895.
doi: 10.1021/jacs.0c12664
K. Sokolowski, J. Huang, T. Foldes, et al., Nat. Nanotechnol. 16 (2021) 1121–1129.
doi: 10.1038/s41565-021-00949-6
L. Chen, Y.C. Zhang, W.K. Wang, et al., Chin. Chem. Lett. 26 (2015) 811–816.
doi: 10.1016/j.cclet.2015.01.036
Q. Ji, L. Fan, S. Liu, et al., Chin. Chem. Lett. 32 (2021) 3998–4001.
doi: 10.1016/j.cclet.2021.05.036
A. Swartjes, P.B. White, M. Lammertink, J. Elemans, R.J.M. Nolte, Angew. Chem. Int. Ed. 60 (2021) 1254–1262.
doi: 10.1002/anie.202010335
D.G. Seo, H.C. Moon, Adv. Funct. Mater. 28 (2018) 1706948.
doi: 10.1002/adfm.201706948
H. Ling, J. Wu, F. Su, Y. Tian, Y.J. Liu, Nat. Commun. 12 (2021) 1010.
doi: 10.1038/s41467-021-21086-7
S. Jin, E.M. Fell, L. Vina-Lopez, et al., Adv. Energy Mater. 10 (2020) 2000100.
doi: 10.1002/aenm.202000100
W. Wu, J. Luo, F. Wang, B. Yuan, T.L. Liu, ACS Energy Lett. 6 (2021) 2891–2897.
doi: 10.1021/acsenergylett.1c01146
C.R. Bridges, M. Stolar, T. Baumgartner, Batteries Supercaps 3 (2020) 268–274.
doi: 10.1002/batt.201900164
H. Fan, K. Li, X. Liu, et al., ACS Appl. Mater. Interfaces 12 (2020) 28451–28460.
doi: 10.1021/acsami.0c09589
J.W. Kim, J.M. Myoung, Adv. Funct. Mater. 29 (2019) 1808911.
doi: 10.1002/adfm.201808911
B. Gelinas, D. Das, D. Rochefort, ACS Appl. Mater. Interfaces 9 (2017) 28726–28736.
doi: 10.1021/acsami.7b04427
H. Tahara, Y. Tanaka, S. Yamamoto, et al., Chem. Sci. 12 (2021) 4872–4882.
doi: 10.1039/D0SC06244H
L. Striepe, T. Baumgartner, Chem. Eur. J. 23 (2017) 16924–16940.
doi: 10.1002/chem.201703348
T. Kitazume, T. Ikeya, J. Org. Chem. 53 (1988) 2349–2350.
doi: 10.1021/jo00245a040
L. Coche, B. Ehui, D. Limosin, J.C. Moutet, J. Org. Chem. 55 (1990) 5905–5910.
doi: 10.1021/jo00310a025
J.K. Tang, S.B. Yu, C.Z. Liu, et al., Asian J. Org. Chem. 8 (2019) 1912–1918.
doi: 10.1002/ajoc.201900435
Y.N. Liu, C.C. Shen, N. Jiang, et al., ACS Catal. 7 (2017) 8228–8234.
doi: 10.1021/acscatal.7b03266
T. Noji, T. Jin, M. Nango, N. Kamiya, Y. Amao, ACS Appl. Mater. Interfaces 9 (2017) 3260–3265.
doi: 10.1021/acsami.6b12744
J.R. Herance, B. Ferrer, J.L. Bourdelande, J. Marquet, H. Garcia, Chem. Eur. J. 12 (2006) 3890–3895.
doi: 10.1002/chem.200501365
S.F. Rowe, G. Le Gall, E.V. Ainsworth, et al., ACS Catal. 7 (2017) 7558–7566.
doi: 10.1021/acscatal.7b02736
M.K. Peers, H.S. Toogood, D.J. Heyes, et al., Catal. Sci. Technol. 6 (2016) 169–177.
doi: 10.1039/C5CY01642H
J. Santamaria, R. Ouchabane, J. Rigaudy, Tetrahedron Lett. 30 (1989) 2927–2928.
doi: 10.1016/S0040-4039(00)99160-3
J. Santamaria, M.T. Kaddachi, J. Rigaudy, Tetrahedron Lett. 31 (1990) 4735–4738.
doi: 10.1016/S0040-4039(00)97719-0
G. Li, L. Xu, W. Zhang, et al., Angew. Chem. Int. Ed. 57 (2018) 4897–4901.
doi: 10.1002/anie.201711761
G. Li, R. Song, W. Ma, et al., J. Mater. Chem. A 8 (2020) 12278–12284.
doi: 10.1039/D0TA02930K
W. Ma, L. Xu, S. Zhang, et al., J. Am. Chem. Soc. 143 (2021) 1590–1597.
doi: 10.1021/jacs.0c12015
L. Weinschenk, D. Schols, J. Balzarini, C. Meier, J. Med. Chem. 58 (2015) 6114–6130.
doi: 10.1021/acs.jmedchem.5b00737
W. Feng, X.Y. Teo, W. Novera, et al., J. Med. Chem. 58 (2015) 6456–6480.
doi: 10.1021/acs.jmedchem.5b00848
F. Zhao, L. Xin, Y. Zhang, X. Jia, Chin. Chem. Lett. 29 (2018) 493–496.
doi: 10.1016/j.cclet.2017.08.004
X. Wang, Z. Han, Z. Wang, K. Ding, Acc. Chem. Res. 54 (2021) 668–684.
doi: 10.1021/acs.accounts.0c00697
D. Xiao, X. Zhao, J. Lei, M. Zhu, L. Xu, Chin. Chem. Lett. 32 (2021) 3031–3033.
doi: 10.1016/j.cclet.2021.03.068
D. Wang, Z. Song, J. Zhang, T. Xu, Org. Chem. Front. 8 (2021) 1125–1131.
doi: 10.1039/D0QO01399D
P. Kumar, M.H. Caruthers, Acc. Chem. Res. 53 (2020) 2152–2166.
doi: 10.1021/acs.accounts.0c00078
Y. Sun, L. Cui, Q. Li, et al., Chin. Chem. Lett. 33 (2022) 516–518.
doi: 10.1016/j.cclet.2021.06.050
C. Queffelec, M. Petit, P. Janvier, D.A. Knight, B. Bujoli, Chem. Rev. 112 (2012) 3777–3807.
doi: 10.1021/cr2004212
T. Baumgartner, Acc. Chem. Res. 47 (2014) 1613–1622.
doi: 10.1021/ar500084b
C.S. Demmer, N. Krogsgaard-Larsen, L. Bunch, Chem. Rev. 111 (2011) 7981–8006.
doi: 10.1021/cr2002646
Z. Yang, J.J. Wang, Angew. Chem. Int. Ed. 60 (2021) 27288–27292.
doi: 10.1002/anie.202112285
K.L. Skubi, T.R. Blum, T.P. Yoon, Chem. Rev. 116 (2016) 10035–10074.
doi: 10.1021/acs.chemrev.6b00018
N.A. Romero, D.A. Nicewicz, Chem. Rev. 116 (2016) 10075–10166.
doi: 10.1021/acs.chemrev.6b00057
D.P. Hari, T. Hering, B. Konig, Angew. Chem. Int. Ed. 53 (2014) 725–728.
doi: 10.1002/anie.201307051
H. Bartling, A. Eisenhofer, B. König, R.M. Gschwind, J. Am. Chem. Soc. 138 (2016) 11860–11871.
doi: 10.1021/jacs.6b06658
Y. Wang, B. Qiu, L. Hu, G. Lu, T. Xu, ACS Catal. 11 (2021) 9136–9142.
doi: 10.1021/acscatal.1c02480
X. Wang, F. Liu, T. Xu, Chin. Chem. Lett. (2022) 10.16/j.cclet.2022.06.047.
doi: 10.16/j.cclet.2022.06.047
B.G. Cai, J. Xuan, W.J. Xiao, Sci. Bull. 64 (2019) 337–350.
doi: 10.1016/j.scib.2019.02.002
S.P.M. Ung, V.A. Mechrouk, C.J. Li, Synthesis 53 (2021) 1003–1022.
doi: 10.1055/s-0040-1705978
M. Rueping, S. Zhu, R.M. Koenigs, Chem. Commun. 47 (2011) 8679–8681.
doi: 10.1039/c1cc12907d
W.P. To, Y. Liu, T.C. Lau, C.M. Che, Chem. Eur. J. 19 (2013) 5654–5664.
doi: 10.1002/chem.201203774
Y. He, H. Wu, F.D. Toste, Chem. Sci. 6 (2015) 1194–1198.
doi: 10.1039/C4SC03092C
T.M. Figueira-Duarte, K. Mullen, Chem. Rev. 111 (2011) 7260–7314.
doi: 10.1021/cr100428a
J. Zhao, W. Wu, J. Sun, S. Guo, Chem. Soc. Rev. 42 (2013) 5323–5351.
doi: 10.1039/c3cs35531d
C. Wang, T. Jiang, X. Ma, Chin. Chem. Lett. 31 (2020) 2921–2924.
doi: 10.1016/j.cclet.2020.03.021
S.Y. Park, J.H. Yoon, C.S. Hong, et al., J. Org. Chem. 73 (2008) 8212–8218.
doi: 10.1021/jo8012918
Z. Gong, J. Bao, K. Nagai, et al., J. Phys. Chem. B 120 (2016) 4286–4295.
doi: 10.1021/acs.jpcb.6b01844
P. Jagadesan, S.R. Valandro, K.S. Schanze, Mater. Chem. Front. 4 (2020) 3649–3659.
doi: 10.1039/D0QM00476F
D.P. Hari, B. König, Org. Lett. 13 (2011) 3852–3855.
doi: 10.1021/ol201376v
K. Luo, W.C. Yang, L. Wu, Asian J. Org. Chem. 6 (2017) 350–367.
doi: 10.1002/ajoc.201600512
J.J. Zhong, Q.Y. Meng, G.X. Wang, et al., Chem. Eur. J. 19 (2013) 6443–6450.
doi: 10.1002/chem.201204572
X.Z. Wang, Q.Y. Meng, J.J. Zhong, et al., Chem. Commun. 51 (2015) 11256–11259.
doi: 10.1039/C5CC03421C
Y. Zhi, S. Ma, H. Xia, et al., Appl. Catal. B: Environ. 244 (2019) 36–44.
doi: 10.1016/j.apcatb.2018.11.032
H.J. Zhang, W. Lin, Z. Wu, W. Ruan, T.B. Wen, Chem. Commun. 51 (2015) 3450–3453.
doi: 10.1039/C4CC10017D
L. Li, J.J. Wang, G.W. Wang, J. Org. Chem. 81 (2016) 5433–5439.
doi: 10.1021/acs.joc.6b00786
L. Chen, X.Y. Liu, Y.X. Zou, Adv. Synth. Catal. 362 (2020) 1724–1818.
doi: 10.1002/adsc.201901540
K. Luo, Y.Z. Chen, W.C. Yang, J. Zhu, L. Wu, Org. Lett. 18 (2016) 452–455.
doi: 10.1021/acs.orglett.5b03497
Z. Zhang, Z. Zhao, Y. Hou, et al., Angew. Chem. Int. Ed. 58 (2019) 8862–8866.
doi: 10.1002/anie.201904407
P. Peng, L. Peng, G. Wang, et al., Org. Chem. Front. 3 (2016) 749–752.
doi: 10.1039/C6QO00049E
Jing Wang , Zenghui Li , Xiaoyang Liu , Bochao Su , Honghong Gong , Chao Feng , Guoping Li , Gang He , Bin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473
Yanting Yang , Guorong Wang , Kangjing Li , Wen Yang , Jing Zhang , Jian Zhang , Shili Li , Xianming Zhang . Tuning up of chromism, luminescence in cadmium-viologen complexes through polymorphism strategy: Inkless erasable printing application. Chinese Chemical Letters, 2025, 36(1): 110123-. doi: 10.1016/j.cclet.2024.110123
Yanghanbin Zhang , Dongxiao Wen , Wei Sun , Jiahe Peng , Dezhong Yu , Xin Li , Yang Qu , Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469
Guixu Pan , Zhiling Xia , Ning Wang , Hejia Sun , Zhaoqi Guo , Yunfeng Li , Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463
Xuying Yu , Jiarong Mi , Yulan Han , Cai Sun , Mingsheng Wang , Guocong Guo . A stable radiochromic semiconductive viologen-based metal–organic framework for dual-mode direct X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109233-. doi: 10.1016/j.cclet.2023.109233
Zhen Shi , Wei Jin , Yuhang Sun , Xu Li , Liang Mao , Xiaoyan Cai , Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201
Qiang Zhang , Weiran Gong , Huinan Che , Bin Liu , Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Weixu Li , Yuexin Wang , Lin Li , Xinyi Huang , Mengdi Liu , Bo Gui , Xianjun Lang , Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299
Mengjun Zhao , Yuhao Guo , Na Li , Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348
Jiangqi Ning , Junhan Huang , Yuhang Liu , Yanlei Chen , Qing Niu , Qingqing Lin , Yajun He , Zheyuan Liu , Yan Yu , Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453
Jiaqi Ma , Lan Li , Yiming Zhang , Jinjie Qian , Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466
Tianhao Li , Wenguang Tu , Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195
Yue Pan , Wenping Si , Yahao Li , Haotian Tan , Ji Liang , Feng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877
Jia-Cheng Hou , Wei Cai , Hong-Tao Ji , Li-Juan Ou , Wei-Min He . Recent advances in semi-heterogenous photocatalysis in organic synthesis. Chinese Chemical Letters, 2025, 36(2): 110469-. doi: 10.1016/j.cclet.2024.110469
Chaoqun Ma , Yuebo Wang , Ning Han , Rongzhen Zhang , Hui Liu , Xiaofeng Sun , Lingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632
Yusong Bi , Rongzhen Zhang , Kaikai Niu , Shengsheng Yu , Hui Liu , Lingbao Xing . Construction of a three-step sequential energy transfer system with selective enhancement of superoxide anion radicals for photocatalysis. Chinese Chemical Letters, 2025, 36(5): 110311-. doi: 10.1016/j.cclet.2024.110311
Yan Fan , Jiao Tan , Cuijuan Zou , Xuliang Hu , Xing Feng , Xin-Long Ni . Unprecedented stepwise electron transfer and photocatalysis in supramolecular assembly derived hybrid single-layer two-dimensional nanosheets in water. Chinese Chemical Letters, 2025, 36(4): 110101-. doi: 10.1016/j.cclet.2024.110101
Ke Zhang , Yajing Wei , Linhua Xie , Sha Kang , Fei Li , Chuanyi Wang . Amorphous titanium carbide on N-defective g-C3N5 for high-efficiency photocatalytic NO removal. Chinese Chemical Letters, 2025, 36(3): 110086-. doi: 10.1016/j.cclet.2024.110086
Hui Wang , Haodong Ji , Dandan Zhang , Xudong Yang , Hanchun Chen , Chunqian Jiang , Weiliang Sun , Jun Duan , Wen Liu . Solar-light-driven photocatalytic degradation and detoxification of ciprofloxacin using sodium niobate nanocubes decorated g-C3N4 with built-in electric field. Chinese Chemical Letters, 2025, 36(5): 110200-. doi: 10.1016/j.cclet.2024.110200