Self-swelling derived frameworks with rigidity and flexibility enabling high-reversible silicon anodes
-
* Corresponding authors.
E-mail addresses: suzhongjs@163.com (Z. Su), laichao@jsnu.edu.cn (C. Lai).
Citation:
Peng Liu, Bingqing Li, Jianli Zhang, Hongfu Jiang, Zhong Su, Chao Lai. Self-swelling derived frameworks with rigidity and flexibility enabling high-reversible silicon anodes[J]. Chinese Chemical Letters,
;2023, 34(8): 107946.
doi:
10.1016/j.cclet.2022.107946
K. Liu, Y. Liu, D. Lin, A. Pei, Y. Cui. Sci. Adv. 4 (2018) 9820.
doi: 10.1126/sciadv.aas9820
R. Zhan, X. Wang, Z. Chen, et al., Adv. Energy Mater. 11 (2021) 2101565.
doi: 10.1002/aenm.202101565
L. Zhang, X. Qin, S. Zhao, et al., Adv. Mater. 32 (2020) 1908445.
doi: 10.1002/adma.201908445
Y. Liu, W. Li, Y. Xia. Electrochem. Energy Rev. 4 (2021) 447–472.
doi: 10.1007/s41918-021-00095-6
S. Chae, M. Ko, K. Kim, K. Ahn, J. Cho, Joule 1 (2017) 47–60.
doi: 10.1016/j.joule.2017.07.006
S.A. Freunberger, Nat. Energy 2 (2017) 1–4.
A. Kwade, W. Haselrieder, R. Leithoff, et al., Nat. Energy 3 (2018) 290–300.
doi: 10.1038/s41560-018-0130-3
B.L. Ellis, W.R.M. Makahnouk, Y. Makimura, K. Toghill, L.F. Nazar, Nat. Mater. 6 (2007) 749–753.
doi: 10.1038/nmat2007
M.S. Dresselhaus, I.L. Thomas, Nature 414 (2001) 332–337.
doi: 10.1038/35104599
A. Huang, Y. Ma, J. Peng, et al., J. Energy Chem. 1 (2021) 141–162.
T. Kennedy, M. Brandon, K.M. Ryan, Adv. Mater. 28 (2016) 5696–5704.
doi: 10.1002/adma.201503978
C.M. Park, J.H. Kim, H. Kim, H.J. Sohn, Chem. Soc. Rev. 39 (2010) 3115–3141.
doi: 10.1039/b919877f
Y. Son, J. Ma, N. Kim, et al., Adv. Energy Mater. 9 (2019) 1803480.
doi: 10.1002/aenm.201803480
X. Wang, G. Tan, Y. Bai, F. Wu, C. Wu, Electrochem. Energy Rev. 4 (2021) 35–66.
doi: 10.1007/s41918-020-00073-4
S. Chae, S.H. Choi, N. Kim, J. Sung, J. Cho, Angew. Chem. Int. Ed. 59 (2020) 110–135.
doi: 10.1002/anie.201902085
P. Li, G. Zhao, X. Zheng, et al., Energy Stor. Mater. 15 (2018) 422–446.
A.N. Preman, H. Lee, J. Yoo, et al., J. Mater. Chem. A 8 (2020) 25548–25570.
doi: 10.1039/D0TA07713E
W. Luo, X. Chen, Y. Xia, et al., Adv. Energy Mater. 7 (2017) 1701083.
doi: 10.1002/aenm.201701083
L. Wei, Z. Hou, J. Mater. Chem. A 5 (2017) 22156–22162.
doi: 10.1039/C7TA05195F
G. Huang, J. Han, Z. Lu, et al., ACS Nano 14 (2020) 4374–4382.
doi: 10.1021/acsnano.9b09928
X.R. Wu, C.H. Yu, C.C. Li, Carbon 160 (2020) 255–264.
doi: 10.1016/j.carbon.2020.01.021
S. Ye, L. Wang, F. Liu, P. Shi, Y. Yu, J. Energy Chem. 1 (2021) 75–82.
C. Wei, H. Fei, Y. Tian, et al., Chin. Chem. Lett. 31 (2020) 980–983.
doi: 10.1016/j.cclet.2019.12.033
J. Lee, J. Moon, S.A. Han, et al., ACS Nano 13 (2019) 9607–9619.
doi: 10.1021/acsnano.9b04725
C. Stetson, T. Yoon, J. Coyle, et al., Nano Energy 55 (2019) 477–485.
doi: 10.1016/j.nanoen.2018.11.007
J. Chang, X. Huang, G. Zhou, et al., Nano Energy 15 (2015) 679–687.
doi: 10.1016/j.nanoen.2015.05.020
H. Jiang, S. Wang, D. Shi, et al., J. Mater. Chem. A 9 (2021) 1134–1142.
doi: 10.1039/D0TA09676H
Y. Yan, X. Zhao, H. Dou, et al., Chin. Chem. Lett. 32 (2021) 910–913.
doi: 10.1016/j.cclet.2020.07.021
B. Li, S. Yang, S. Li, B. Wang, J. Liu, Adv. Energy Mater. 5 (2015) 1500289.
doi: 10.1002/aenm.201500289
S. Jing, H. Jiang, Y. Hu, J. Shen, C. Li, Adv. Funct. Mater. 25 (2015) 5395–5401.
doi: 10.1002/adfm.201502330
N. Li, Y. Liu, X. Ji, et al., Chin. Chem. . Lett. 32 (2021) 3787–3792.
doi: 10.1016/j.cclet.2021.04.029
Y. Zhang, C. Zhu, Y. Ye, F. Cheng, Energy Fuels 35 (2021) 18798–18804.
doi: 10.1021/acs.energyfuels.1c02834
P. Post, L. Wurlitzer, W. Maus-Friedrichs, A.P. Weber, Nanomaterials 8 (2018) 530.
doi: 10.3390/nano8070530
G. Zeng, Y. Liu, D. Chen, et al., Adv. Energy Mater. 11 (2021) 2102058.
doi: 10.1002/aenm.202102058
J. Labanda, J. Sabate, J. Llorens, Colloids Surf. A: Physicochem. Eng. Asp. 301 (2007) 8–15.
doi: 10.1016/j.colsurfa.2007.01.011
S. Chae, Y. Xu, R. Yi, et al., Adv. Mater. 33 (2021) 2103095.
doi: 10.1002/adma.202103095
L. Lin, Y. Ma, Q. Xie, et al., ACS Nano 11 (2017) 6893–6903.
doi: 10.1021/acsnano.7b02030
S. Yin, D. Zhao, Q. Ji, et al., ACS Nano 12 (2018) 861–875.
doi: 10.1021/acsnano.7b08560
Z. Liu, Q. Yu, Y. Zhao, et al., Chem. Soc. Rev. 48 (2019) 285–309.
doi: 10.1039/C8CS00441B
J. Ji, H. Ji, L.L. Zhang, et al., Adv. Mater. 25 (2013) 4673–4677.
doi: 10.1002/adma.201301530
F. Zhang, G. Zhu, K. Wang, et al., J. Mater. Chem. A 7 (2019) 17426–17434.
doi: 10.1039/C9TA05340A
Z. Li, Y. Zhang, T. Liu, et al., Adv. Energy Mater. 10 (2020) 1903110.
doi: 10.1002/aenm.201903110
Z. Li, Y. Zhang, T. Liu, et al., Adv. Energy Mater. 10 (2020) 2000563.
doi: 10.1002/aenm.202000563
F.S. Li, Y.S. Wu, J. Chou, M. Winter, N.L. Wu, Adv. Mater. 27 (2015) 130–137.
doi: 10.1002/adma.201403880
S.H. Park, P.J. King, R. Tian, et al., Nat. Energy 4 (2019) 560–567.
doi: 10.1038/s41560-019-0398-y
Yunfei Shen , Long Chen . Gradient imprinted Zn metal anodes assist dendrites-free at high current density/capacity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100321-100321. doi: 10.1016/j.cjsc.2024.100321
Xianping Du , Ying Huang , Chen Chen , Zhenhe Feng , Meng Zong . Encapsulating Si particles in multiple carbon shells with pore-rich for constructing free-standing anodes of lithium storage. Chinese Chemical Letters, 2024, 35(12): 109990-. doi: 10.1016/j.cclet.2024.109990
Tao Wei , Jiahao Lu , Pan Zhang , Qi Zhang , Guang Yang , Ruizhi Yang , Daifen Chen , Qian Wang , Yongfu Tang . An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity. Chinese Chemical Letters, 2024, 35(8): 109122-. doi: 10.1016/j.cclet.2023.109122
Jingqi Xin , Shupeng Han , Meichen Zheng , Chenfeng Xu , Zhongxi Huang , Bin Wang , Changmin Yu , Feifei An , Yu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165
Xin Li , Ling Zhang , Yunyan Fan , Shaojing Lin , Yong Lin , Yongsheng Ying , Meijiao Hu , Haiying Gao , Xianri Xu , Zhongbiao Xia , Xinchuan Lin , Junjie Lu , Xiang Han . Carbon interconnected microsized Si film toward high energy room temperature solid-state lithium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109776-. doi: 10.1016/j.cclet.2024.109776
Huixin Chen , Chen Zhao , Hongjun Yue , Guiming Zhong , Xiang Han , Liang Yin , Ding Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650
Tong Su , Yue Wang , Qizhen Zhu , Mengyao Xu , Ning Qiao , Bin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191
Qiangwei Wang , Huijiao Liu , Mengjie Wang , Haojie Zhang , Jianda Xie , Xuanwei Hu , Shiming Zhou , Weitai Wu . Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions. Chinese Chemical Letters, 2024, 35(4): 108743-. doi: 10.1016/j.cclet.2023.108743
Benjian Xin , Rui Wang , Lili Liu , Zhiqiang Niu . Metal-organic framework derived MnO@C/CNTs composite for high-rate lithium-based semi-solid flow batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100116-100116. doi: 10.1016/j.cjsc.2023.100116
Jianjun Fang , Kunchen Xie , Yongli Song , Kangyi Zhang , Fei Xu , Xiaoze Shi , Ming Ren , Minzhi Zhan , Hai Lin , Luyi Yang , Shunning Li , Feng Pan . Break the capacity limit of Li4Ti5O12 anodes through oxygen vacancy engineering. Chinese Journal of Structural Chemistry, 2025, 44(2): 100504-100504. doi: 10.1016/j.cjsc.2024.100504
Changzhu Huang , Wei Dai , Shimao Deng , Yixin Tian , Xiaolin Liu , Jia Lin , Hong Chen . A self-cleaning window for high-efficiency photodegradation of indoor formaldehyde. Chinese Chemical Letters, 2024, 35(9): 109429-. doi: 10.1016/j.cclet.2023.109429
Xinxiu Yan , Xizhe Huang , Yangyang Liu , Weishang Jia , Hualin Chen , Qi Yao , Tao Chen . Hyperbranched polyamidoamine protective layer with phosphate and carboxyl groups for dendrite-free Zn metal anodes. Chinese Chemical Letters, 2024, 35(10): 109426-. doi: 10.1016/j.cclet.2023.109426
Haobo Wang , Fei Wang , Yong Liu , Zhongxiu Liu , Yingjie Miao , Wanhong Zhang , Guangxin Wang , Jiangtao Ji , Qiaobao Zhang . Emerging natural clay-based materials for stable and dendrite-free lithium metal anodes: A review. Chinese Chemical Letters, 2025, 36(2): 109589-. doi: 10.1016/j.cclet.2024.109589
Yuchen Wang , Yaoyu Liu , Xiongfei Huang , Guanjie He , Kai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301
Bing Shen , Tongwei Yuan , Wenshuang Zhang , Yang Chen , Jiaqiang Xu . Complex shell Fe-ZnO derived from ZIF-8 as high-quality acetone MEMS sensor. Chinese Chemical Letters, 2024, 35(11): 109490-. doi: 10.1016/j.cclet.2024.109490
Shuangliang Xie , Yuyue Chen , Qing He , Liang Chen , Jikun Yang , Shiqing Deng , Yimei Zhu , He Qi . Relaxor antiferroelectric-relaxor ferroelectric crossover in NaNbO3-based lead-free ceramics for high-efficiency large-capacitive energy storage. Chinese Chemical Letters, 2024, 35(7): 108871-. doi: 10.1016/j.cclet.2023.108871
Xinpin Pan , Yongjian Cui , Zhe Wang , Bowen Li , Hailong Wang , Jian Hao , Feng Li , Jing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567
Yuxin Wang , Zhengxuan Song , Yutao Liu , Yang Chen , Jinping Li , Libo Li , Jia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779
Tao LIU , Yuting TIAN , Ke GAO , Xuwei HAN , Ru'nan MIN , Wenjing ZHAO , Xueyi SUN , Caixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107
Hengying Xiang , Nanping Deng , Lu Gao , Wen Yu , Bowen Cheng , Weimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182