Bubble transfer on wettability-heterogeneous surfaces
-
* Corresponding author.
E-mail address: ycmbhs@iccas.ac.cn.
Citation:
Chunhui Zhang, Xiao Xiao, Ziwei Guo, Lei Jiang, Cunming Yu. Bubble transfer on wettability-heterogeneous surfaces[J]. Chinese Chemical Letters,
;2023, 34(7): 107941.
doi:
10.1016/j.cclet.2022.107941
M.R. Flynn, J.W.M. Bush, J. Fluid Mech. 608 (2008) 275–296.
doi: 10.1017/s0022112008002048
S. Kehl, K. Dettner, J. Morphol. 270 (2009) 1348–1355.
doi: 10.1002/jmor.10762
R.S. Seymour, S.K. Hetz, J. Exp. Biol. 214 (2011) 2175–2181.
doi: 10.1242/jeb.056093
C. Yu, M. Liu, C. Zhang, et al., Giant 2 (2020) 100017.
doi: 10.1016/j.giant.2020.100017
D. Saranadhi, D.Y. Chen, J.A. Kleingartner, et al., Sci. Adv. 2 (2016) 9.
doi: 10.1126/sciadv.1600686
K. Fukagata, N. Kasagi, P. Koumoutsakos, Phys. Fluids 18 (2006) 4.
doi: 10.1063/1.2205307
L. Zhang, H.Z. Liu, X.J. Liu, D.Q. Chen, Int. J. Heat Mass Transf. 196 (2022).
J. Zou, H. Zhang, Z. Guo, et al., Langmuir 34 (2018) 14096–14101.
doi: 10.1021/acs.langmuir.8b03290
R.F. Wen, Q. Li, W. Wang, et al., Nano Energy 38 (2017) 59–65.
doi: 10.1016/j.nanoen.2017.05.028
J. Cao, J. Zhou, M. Li, et al., Chin. Chem. Lett. 33 (2022) 3745–3751.
doi: 10.1016/j.cclet.2021.11.007
Y.L. Yang, Y. Tang, H.M. Jiang, et al., Chin. Chem. Lett. 30 (2019) 2089–2109.
doi: 10.1016/j.cclet.2019.10.041
Y.X. Wang, F.T. He, L. Chen, et al., Chin. Chem. Lett. 31 (2020) 2668–2672.
doi: 10.1016/j.cclet.2020.08.003
Y.M. Liu, H.L. Yang, X.F. Fan, B. Shan, T.J. Meyer, Chin. Chem. Lett. 33 (2022) 4691–4694.
doi: 10.1016/j.cclet.2021.12.063
C.A. Fairfield, Wear 317 (2014) 92–103.
doi: 10.1016/j.wear.2014.05.010
A. Philipp, W. Lauterborn, J. Fluid Mech. 361 (1998) 75–116.
doi: 10.1017/S0022112098008738
S. Fontanesi, M. Giacopini, G. Cicalese, S. Sissa, S. Fantoni, Eng. Fail. Anal. 44 (2014) 408–423.
doi: 10.1016/j.engfailanal.2014.05.025
J. Dukovic, C.W. Tobias, J. Electrochem. Soc. 134 (1987) 331–343.
doi: 10.1149/1.2100456
J. Eigeldinger, H. Vogt, Electrochim. Acta 45 (2000) 4449–4456.
doi: 10.1016/S0013-4686(00)00513-2
C. Gabrielli, F. Huet, R.P. Nogueira, Electrochim. Acta 50 (2005) 3726–3736.
doi: 10.1016/j.electacta.2005.01.019
J. Wang, Y. Zheng, F. Nie, J. Zhai, L. Jiang, Langmuir 25 (2009) 14129–14134.
doi: 10.1021/la9010828
C. Yu, P. Zhang, J. Wang, L. Jiang, Adv. Mater. 29 (2017) 1703053.
doi: 10.1002/adma.201703053
P. Zhang, S. Wang, S. Wang, L. Jiang, Small 11 (2015) 1939–1946.
doi: 10.1002/smll.201401869
M. Liu, S. Wang, L. Jiang, Nat. Rev. Mater. 2 (2017) 17036.
doi: 10.1038/natrevmats.2017.36
J. Song, Z. Liu, X. Wang, et al., J. Mater. Chem. A 7 (2019) 13567–13576.
doi: 10.1039/c9ta02095k
H. Ma, M. Cao, C. Zhang, et al., Adv. Funct. Mater. (2017) 1705091.
doi: 10.1002/adfm.201705091
C. Yu, X. Zhu, M. Cao, et al., J. Mater. Chem. A 4 (2016) 16865–16870.
doi: 10.1039/C6TA07318B
C. Yu, M. Cao, Z. Dong, et al., Adv. Funct. Mater. 26 (2016) 6830–6835.
doi: 10.1002/adfm.201601960
R. Ma, J. Wang, Z. Yang, et al., Adv. Mater. 27 (2015) 2384.
doi: 10.1002/adma.201405087
X. Chen, Y. Wu, B. Su, et al., Adv. Mater. 24 (2012) 5884–5889.
doi: 10.1002/adma.201202061
M. Jiang, H. Wang, Y. Li, et al., Small 13 (2017) 1602240.
doi: 10.1002/smll.201602240
Z. Lu, M. Sun, T. Xu, et al., Adv. Mater. 27 (2015) 2361–2366.
doi: 10.1002/adma.201500064
C. Zhang, X. Xiao, Y. Zhang, et al., ACS Nano 16 (2022) 9348–9358.
doi: 10.1021/acsnano.2c02093
C. Zhang, B. Zhang, H. Ma, et al., ACS Nano 12 (2018) 2048–2055.
doi: 10.1021/acsnano.8b00192
Y. Jiao, X. Lv, Y. Zhang, et al., Nanoscale 11 (2019) 1370–1378.
doi: 10.1039/c8nr09348b
X. Tang, H. Xiong, T. Kong, et al., ACS Appl. Mater. Interfaces 10 (2018) 3029–3038.
doi: 10.1021/acsami.7b14453
H. de Maleprade, C. Clanet, D. Quere, Phys. Rev. Lett. 117 (2016) 094501.
doi: 10.1103/PhysRevLett.117.094501
M. Jafari Gukeh, T. Roy, U. Sen, R. Ganguly, C.M. Megaridis, Langmuir 36 (2020) 11829–11835.
doi: 10.1021/acs.langmuir.0c01719
Y. Gurumukhi, S. Chavan, S. Sett, et al., Matter 3 (2020) 1178–1195.
doi: 10.1016/j.matt.2020.06.029
C.W. Lo, Y.C. Chu, M.H. Yen, M.C. Lu, Joule 3 (2019) 2806–2823.
doi: 10.1016/j.joule.2019.08.005
B.E. Pinchasik, J. Steinkühler, P. Wuytens, et al., Langmuir 31 (2015) 13734–13742.
doi: 10.1021/acs.langmuir.5b03821
C. Yu, M. Cao, Z. Dong, et al., Adv. Funct. Mater. 26 (2016) 3236–3243.
doi: 10.1002/adfm.201505234
V. Leon, A. Tusa, Y.C. Araujo, Colloid Surface A 155 (1999) 131–136.
doi: 10.1016/S0927-7757(99)00020-5
A. Zdziennicka, A. Zdziennicka, B. Janczuk, B. Janczuk, Int. J. Adhes. Adhes. 84 (2018) 275–282.
doi: 10.1016/j.ijadhadh.2018.04.005
D.A. Lopez, T. Perez, S.N. Simison, Mater. Des. 24 (2003) 561–575.
doi: 10.1016/S0261-3069(03)00158-4
Z. Liu, X. Gao, L. Du, et al., Appl. Surf. Sci. 351 (2015) 610–623.
doi: 10.1016/j.apsusc.2015.06.006
Wenhao Chen , Jian Du , Hanbin Zhang , Hancheng Wang , Kaicheng Xu , Zhujun Gao , Jiaming Tong , Jin Wang , Junjun Xue , Ting Zhi , Longlu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168
Tianli Hui , Tao Zheng , Xiaoluo Cheng , Tonghui Li , Rui Zhang , Xianghai Meng , Haiyan Liu , Zhichang Liu , Chunming Xu . A review of plasma treatment on nano-microstructure of electrochemical water splitting catalysts. Chinese Journal of Structural Chemistry, 2025, 44(3): 100520-100520. doi: 10.1016/j.cjsc.2025.100520
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Kai Han , Guohui Dong , Ishaaq Saeed , Tingting Dong , Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207
Hongye Bai , Lihao Yu , Jinfu Xu , Xuliang Pang , Yajie Bai , Jianguo Cui , Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096
Lina Wang , Hairu Wang , Qian Bu , Qiong Mei , Junbo Zhong , Bo Bai , Qizhao Wang . Al-O bridged NiFeOx/BiVO4 photoanode for exceptional photoelectrochemical water splitting. Chinese Chemical Letters, 2025, 36(4): 110139-. doi: 10.1016/j.cclet.2024.110139
Entian Cui , Yulian Lu , Zhaoxia Li , Zhilei Chen , Chengyan Ge , Jizhou Jiang . Interfacial B-O bonding modulated S-scheme B-doped N-deficient C3N4/O-doped-C3N5 for efficient photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(1): 110288-. doi: 10.1016/j.cclet.2024.110288
Hualin Jiang , Wenxi Ye , Huitao Zhen , Xubiao Luo , Vyacheslav Fominski , Long Ye , Pinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984
Yan Zou , Yin-Shuang Hu , Deng-Hui Tian , Hong Wu , Xiaoshu Lv , Guangming Jiang , Yu-Xi Huang . Tuning the membrane rejection behavior by surface wettability engineering for an effective water-in-oil emulsion separation. Chinese Chemical Letters, 2024, 35(6): 109090-. doi: 10.1016/j.cclet.2023.109090
Zhao Lu , Hu Lv , Qinzhuang Liu , Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005
Dongpu Wu , Zheng Yang , Yuchen Xia , Lulu Wu , Yingxia Zhou , Caoyuan Niu , Puhui Xie , Xin Zheng , Zhanqi Cao . Surface controllable wettability using amphiphilic rotaxane molecular shuttles. Chinese Chemical Letters, 2025, 36(2): 110353-. doi: 10.1016/j.cclet.2024.110353
Er-Meng Wang , Ziyi Wang , Xu Ban , Xiaowei Zhao , Yanli Yin , Zhiyong Jiang . Chemoselective photocatalytic sulfenylamination of alkenes with sulfenamides via energy transfer. Chinese Chemical Letters, 2024, 35(12): 109843-. doi: 10.1016/j.cclet.2024.109843
Shuyuan Pan , Zehui Yang , Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373
Kun Wang , Jiaxuan Qiu , Zefei Wu , Yang Liu , Yongqi Liu , Xiangpeng Chen , Bao Zang , Jianmei Chen , Yunchao Lei , Longlu Wang , Qiang Zhao . Wafer-level GaN-based nanowires photocatalyst for water splitting. Chinese Chemical Letters, 2025, 36(3): 109993-. doi: 10.1016/j.cclet.2024.109993
Chenghao Ge , Peng Wang , Pei Yuan , Tai Wu , Rongjun Zhao , Rong Huang , Lin Xie , Yong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352
Zhao-Xia Lian , Xue-Zhi Wang , Chuang-Wei Zhou , Jiayu Li , Ming-De Li , Xiao-Ping Zhou , Dan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063
Chaoqun Ma , Yuebo Wang , Ning Han , Rongzhen Zhang , Hui Liu , Xiaofeng Sun , Lingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632
Siwei Wang , Wei-Lei Zhou , Yong Chen . Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior. Chinese Chemical Letters, 2024, 35(12): 110261-. doi: 10.1016/j.cclet.2024.110261
Huanyu Liu , Gang Yu , Ruoyao Guo , Hao Qi , Jiayin Zheng , Tong Jin , Zifeng Zhao , Zuqiang Bian , Zhiwei Liu . Direct identification of energy transfer mechanism in CeⅢ-MnⅡ system by constructing molecular heteronuclear complexes. Chinese Chemical Letters, 2025, 36(2): 110296-. doi: 10.1016/j.cclet.2024.110296
Shuai Qiu , Jia He , Xiao Hu , Hongxia Yan , Zhao Gao , Wei Tian . Cation-π enhanced triplet-to-singlet Förster resonance energy transfer for fluorescence afterglow. Chinese Chemical Letters, 2025, 36(4): 110057-. doi: 10.1016/j.cclet.2024.110057