Defect engineering of vanadium-based electrode materials for zinc ion battery
-
* Corresponding author.
E-mail address: wuxiang05@163.com (X. Wu).
Citation:
Ying Liu, Yi Liu, Xiang Wu. Defect engineering of vanadium-based electrode materials for zinc ion battery[J]. Chinese Chemical Letters,
;2023, 34(7): 107839.
doi:
10.1016/j.cclet.2022.107839
J.B. Goodenough, Energy Storage Mater. 1 (2015) 158–161.
doi: 10.1016/j.ensm.2015.07.001
D.P. Zhao, M.Z. Dai, Y. Zhao, et al., Nano Energy 72 (2020) 104715.
doi: 10.1016/j.nanoen.2020.104715
J.M. Tarascon, M. Armand, Nature 414 (2001) 359–367.
doi: 10.1038/35104644
S. Ni, J. Liu, D. Chao, et al., Adv. Energy Mater. 9 (2019) 1803324.
doi: 10.1002/aenm.201803324
C. Liu, X. Wu, B. Wang, Chem. Eng. J. 392 (2020) 123651.
doi: 10.1016/j.cej.2019.123651
S. Chen, C. Wu, L. Shen, et al., Adv. Mater. 29 (2017) 1700431.
doi: 10.1002/adma.201700431
Q. Zhang, Z. Wang, S. Zhang, et al., Electrochem. Energy Rev. 1 (2018) 625–658.
doi: 10.1007/s41918-018-0023-y
Y. Liu, X. Wu, J. Energy Chem. 56 (2021) 223–237.
doi: 10.1016/j.jechem.2020.08.016
J. Zhang, Z. Chang, Z. Zhang, et al., ACS Nano 15 (2021) 15594–15624.
doi: 10.1021/acsnano.1c06530
M. Jiang, C. Fu, P. Meng, et al., Adv. Mater. 34 (2022) 2102026.
doi: 10.1002/adma.202102026
S. Ye, L. Wang, F. Liu, et al., eScience 1 (2021) 75–82.
doi: 10.1016/j.esci.2021.09.003
B. Xu, S. Qi, F. Li, et al., Chin. Chem. Lett. 31 (2020) 217–222.
doi: 10.1016/j.cclet.2019.10.009
Y. Liu, Y. Liu, X. Wu, Chem. Record. (2022) e2200088.
M. Song, H. Tan, D. Chao, H.J. Fan, Adv. Funct. Mater. 28 (2018) 1802564.
doi: 10.1002/adfm.201802564
H.F. Li, L.T. Ma, C.P. Han, et al., Nano Energy 62 (2019) 550–587.
doi: 10.1016/j.nanoen.2019.05.059
Y. Liu, Y. Liu, Y. Yamauchi, et al., Batteries Supercaps 4 (2021) 1867–1873.
doi: 10.1002/batt.202100172
B.Y. Tang, L.T. Shan, S.Q. Liang, J. Zhou, Energy Environ. Sci. 12 (2019) 3288–3304.
doi: 10.1039/C9EE02526J
Y. Liu, X. Wu, Chin. Chem. Lett. 33 (2022) 1236–1244.
doi: 10.1016/j.cclet.2021.08.081
L.E. Blanc, D. Kundu, L.F. Nazar, Joule 4 (2020) 771–799.
doi: 10.1016/j.joule.2020.03.002
D. Selvakumaran, A. Pan, S. Liang, et al., J. Mater. Chem. A 7 (2019) 18209–18236.
doi: 10.1039/C9TA05053A
H. Liang, Z. Cao, F. Ming, et al., Nano Lett. 19 (2019) 3199–3206.
doi: 10.1021/acs.nanolett.9b00697
Q. Yang, F. Mo, Z. Liu, et al., Adv. Mater. 31 (2019) 1901521.
C. Luo, L. Xiao, X. Wu, CrystEngComm 24 (2022) 1387–1393.
doi: 10.1039/D1CE01658J
N. Li, G. Qu, X. Zhang, et al., Chin. Chem. Lett. 33 (2022) 3272–3276.
doi: 10.1016/j.cclet.2021.10.084
H. Cui, T. Wang, Z. Huang, et al., Angew. Chem. Int. Ed. 61 (2022) e202203453.
Z. Chen, H. Cui, Y. Hou, et al., Chem 8 (2022) 2204–2216.
doi: 10.1016/j.chempr.2022.05.001
J. Ding, H. Gao, D. Ji, et al., J. Mater. Chem. A 9 (2021) 5258–5275.
doi: 10.1039/D0TA10336E
X. Chen, L. Wang, H. Li, et al., J. Energy Chem. 38 (2019) 20–25.
doi: 10.1016/j.jechem.2018.12.023
X. Wang, Y. Li, S. Wang, et al., Adv. Energy Mater. 10 (2020) 200081.
Y. Zhang, L. Tao, C. Xie, et al., Adv. Mater. 32 (2020) 1905923.
doi: 10.1002/adma.201905923
X. Chen, H. Zhang, J.H. Liu, et al., Energy Storage Mater. 50 (2022) 21–46.
doi: 10.1016/j.ensm.2022.04.040
C. Luo, L. Xiao, X. Wu, Mater. Adv. 3 (2022) 604–610.
doi: 10.1039/D1MA00983D
P. Ruan, S. Liang, B. Lu, et al., Angew. Chem. Int. Ed. 61 (2022) 202200598.
K. Li, Y. Liu, X. Wu, CrystEngComm 24 (2022) 5421–5427.
doi: 10.1039/D2CE00741J
S. Zhang, H. Tan, X. Rui, et al., Acc. Chem. Res. 53 (2020) 1660–1671.
doi: 10.1021/acs.accounts.0c00362
D. Kundu, B.D. Adams, V. Duffort, et al., Nat. Energy 1 (2016) 16119.
doi: 10.1038/nenergy.2016.119
F.W. Ming, H.F. Liang, Y.J. Lei, et al., ACS Energy Lett. 3 (2018) 2602–2609.
doi: 10.1021/acsenergylett.8b01423
Y. Liu, Y. Liu, X. Wu, et al., ACS Appl. Mater. Interfaces 14 (2022) 11654–11662.
doi: 10.1021/acsami.2c00001
L. Shan, J. Zhou, W. Zhang, et al., Energy Technol. 7 (2019) 1900022.
doi: 10.1002/ente.201900022
P. He, Y. Quan, X. Xu, et al., Small 13 (2017) 1702551.
doi: 10.1002/smll.201702551
Q. Pang, C. Sun, Y. Yu, et al., Adv. Energy Mater. 8 (2018) 1800144.
doi: 10.1002/aenm.201800144
M. Yan, P. He, Y. Chen, et al., Adv. Mater. 30 (2018) 1703725.
doi: 10.1002/adma.201703725
Y. Yang, Y. Tang, G. Fang, et al., Energy Environ. Sci. 11 (2018) 3157–3162.
doi: 10.1039/C8EE01651H
Z. Liu, L. Qin, X. Cao, et al., Prog. Mater. Sci. 125 (2022) 100911.
doi: 10.1016/j.pmatsci.2021.100911
R.E. John, A. Chandran, M. Thomas, et al., Appl. Surf. Sci. 367 (2016) 43–51.
doi: 10.1016/j.apsusc.2016.01.153
Z. Duan, X. Tan, Y. Sun, et al., ACS Appl. Nano Mater. 4 (2021) 10791–10798.
doi: 10.1021/acsanm.1c02224
T. Xiong, Y. Zhang, W.S.V. Lee, J. Xue, Adv. Energy Mater. 10 (2020) 2001769.
doi: 10.1002/aenm.202001769
Y. Wang, X. Xiao, Q. Li, et al., Small 14 (2018) 1802193.
doi: 10.1002/smll.201802193
Z. Li, Y. Ren, L. Mo, et al., ACS Nano 14 (2020) 5581–5589.
doi: 10.1021/acsnano.9b09963
M. Liao, J. Wang, L. Ye, et al., Angew. Chem. Int. Ed. 59 (2020) 2273–2278.
doi: 10.1002/anie.201912203
G. Fang, J. Zhou, A. Pan, et al., ACS Energy Lett. 3 (2018) 2480–2501.
doi: 10.1021/acsenergylett.8b01426
J. Cao, D. Zhang, Y. Yue, et al., Mater. Today Energy 21 (2021) 100824.
doi: 10.1016/j.mtener.2021.100824
W. Yang, L. Dong, W. Yang, et al., Small Methods 4 (2019) 1900670.
R. Wei, Y. Lu, Y. Xu, Sci. China Chem. 64 (2021) 1826–1853.
doi: 10.1007/s11426-021-1103-6
G. Zhang, T. Xiong, M. Yan, et al., Nano Energy 49 (2018) 555–563.
doi: 10.1016/j.nanoen.2018.04.075
D. Bin, W. Huo, Y. Yuan, et al., Chem 6 (2020) 968–984.
doi: 10.1016/j.chempr.2020.02.001
Z. Zhang, B. Xi, X. Wang, et al., Adv. Funct. Mater. 31 (2021) 2103070.
doi: 10.1002/adfm.202103070
Y. Liu, X. Wu, Nano Energy 86 (2021) 106124.
doi: 10.1016/j.nanoen.2021.106124
S. Huang, S. He, H. Qin, et al., ACS Appl. Mater. Interfaces 13 (2021) 44379–44388.
doi: 10.1021/acsami.1c12653
Z. Chen, J. Hu, S. Liu, et al., Chem. Eng. J. 404 (2021) 126536.
doi: 10.1016/j.cej.2020.126536
J. Ma, T. Koketsu, B.J. Morgan, et al., Chem. Commun. 54 (2018) 10080–10083.
doi: 10.1039/C8CC04136A
T. Koketsu, J. Ma, B.J. Morgan, et al., Nat. Mater. 16 (2017) 1142–1148.
doi: 10.1038/nmat4976
W. Li, D. Corradini, M. Body, et al., Chem. Mater. 27 (2015) 5014–5019.
doi: 10.1021/acs.chemmater.5b01407
J. Ding, H. Zheng, H. Gao, et al., Adv. Energy Mater. 11 (2021) 2100973.
doi: 10.1002/aenm.202100973
P. Gao, P. Metz, T. Hey, et al., Nat. Commun. 8 (2017) 14559.
doi: 10.1038/ncomms14559
C. Zhu, G. Fang, S. Liang, et al., Energy Storage Mater. 24 (2020) 394–401.
doi: 10.1016/j.ensm.2019.07.030
Y. Zhang, S. Deng, M. Luo, et al., Small 15 (2019) 1905452.
doi: 10.1002/smll.201905452
N. Zhang, F. Cheng, Y. Liu, et al., J. Am. Chem. Soc. 138 (2016) 12894–12901.
doi: 10.1021/jacs.6b05958
X. Wang, B. Xi, X. Ma, et al., Nano Lett. 20 (2020) 2899–2906.
doi: 10.1021/acs.nanolett.0c00732
T. He, S. Weng, Y. Ye, et al., Energy Storage Mater. 38 (2021) 389–396.
doi: 10.1016/j.ensm.2021.03.025
K. Zhu, S. Wei, H. Shou, et al., Nat. Commun. 12 (2021) 6878.
doi: 10.1038/s41467-021-27203-w
J.H. Jo, Y.K. Sun, S.T. Myung, J. Mater. Chem. A 5 (2017) 8367–8375.
doi: 10.1039/C7TA01765K
J. Ji, H. Wan, B. Zhang, et al., Adv. Energy Mater. 11 (2020) 2003203.
P. He, G. Zhang, X. Liao, et al., Adv. Energy Mater. 8 (2018) 1702463.
doi: 10.1002/aenm.201702463
B. Tang, G. Fang, J. Zhou, et al., Nano Energy 51 (2018) 579–587.
doi: 10.1016/j.nanoen.2018.07.014
P. He, M. Yan, X. Liao, et al., Energy Storage Mater. 29 (2020) 113–120.
doi: 10.1016/j.ensm.2020.04.005
N.B. Mahadi, J.S. Park, J.H. Park, et al., J. Power Sources 326 (2016) 522–532.
doi: 10.1016/j.jpowsour.2016.07.026
Q. Li, T.Y. Wei, K.X. Ma, et al., ACS Appl. Mater. Interfaces 11 (2019) 20888–20894.
doi: 10.1021/acsami.9b05362
H. Jiang, W. Gong, Y. Zhang, et al., J. Energy Chem. 70 (2022) 52–58.
doi: 10.1016/j.jechem.2022.02.030
P. Ge, L. Zhang, W. Zhao, et al., Adv. Funct. Mater. 30 (2020) 1910599.
doi: 10.1002/adfm.201910599
G. Yoo, B.R. Koo, H.R. An, et al., J. Ind. Eng. Chem. 99 (2021) 344–351.
doi: 10.1016/j.jiec.2021.04.041
Q. Wei, Z. Jiang, S. Tan, et al., ACS Appl. Mater. Interfaces 7 (2015) 18211–18217.
doi: 10.1021/acsami.5b06154
M. Du, C. Liu, F. Zhang, et al., Adv. Sci. 7 (2020) 2000083.
doi: 10.1002/advs.202000083
K. Zhu, T. Wu, K. Huang, Adv. Energy Mater. 9 (2019) 1901968.
doi: 10.1002/aenm.201901968
Y. Tong, S. Su, X. Li, et al., J. Power Sources 528 (2022) 231226.
doi: 10.1016/j.jpowsour.2022.231226
L. Huang, Y. Xiang, M. Luo, et al., Carbon 185 (2021) 1–8.
doi: 10.1016/j.carbon.2021.09.019
X. Wang, Y. Zhang, J. Zheng, et al., Appl. Surf. Sci. 568 (2021) 150919.
doi: 10.1016/j.apsusc.2021.150919
P. Ge, S. Yuan, W. Zhao, et al., ACS Appl. Energy Mater. 4 (2021) 10783–10798.
doi: 10.1021/acsaem.1c01754
A. Eftekhari, M. Mohamedi, Mater. Today Energy 6 (2017) 211–229.
doi: 10.1016/j.mtener.2017.10.009
Tengjia Ni , Xianbiao Hou , Huanlei Wang , Lei Chu , Shuixing Dai , Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210
Ningning Zhao , Yuyan Liang , Wenjie Huo , Xinyan Zhu , Zhangxing He , Zekun Zhang , Youtuo Zhang , Xianwen Wu , Lei Dai , Jing Zhu , Ling Wang , Qiaobao Zhang . Separator functionalization enables high-performance zinc anode via ion-migration regulation and interfacial engineering. Chinese Chemical Letters, 2024, 35(9): 109332-. doi: 10.1016/j.cclet.2023.109332
Lin Peng , Xincheng Liang , Zelong Sun , Xingfa Chen , Dexin Meng , Renshu Huang , Qian Liu , Huan Wen , Shibin Yin . Microenvironment regulation of anode-electrolyte interface enables highly stable Zn anodes. Chinese Journal of Structural Chemistry, 2025, 44(4): 100542-100542. doi: 10.1016/j.cjsc.2025.100542
Shilong Li , Ming Zhao , Yefei Xu , Zhanyi Liu , Mian Li , Qing Huang , Xiang Wu . Performance optimization of aqueous Zn/MnO2 batteries through the synergistic effect of PVP intercalation and GO coating. Chinese Chemical Letters, 2025, 36(3): 110701-. doi: 10.1016/j.cclet.2024.110701
Ying Hou , Zhen Liu , Xiaoyan Liu , Zhiwei Sun , Zenan Wang , Hong Liu , Weijia Zhou . Laser constructed vacancy-rich TiO2-x/Ti microfiber via enhanced interfacial charge transfer for operando extraction-SERS sensing. Chinese Chemical Letters, 2024, 35(9): 109634-. doi: 10.1016/j.cclet.2024.109634
Hangwen Zheng , Ziqian Wang , HuiJie Zhang , Jing Lei , Rihui Li , Jian Yang , Haiyan Wang . Synthesis and applications of B, N co-doped carbons for zinc-based energy storage devices. Chinese Chemical Letters, 2025, 36(3): 110245-. doi: 10.1016/j.cclet.2024.110245
Na Li , Wenxue Wang , Peng Wang , Zhanying Sun , Xinlong Tian , Xiaodong Shi . Dual-defect engineering of catalytic cathode materials for advanced lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110731-. doi: 10.1016/j.cclet.2024.110731
Jiayu Bai , Songjie Hu , Lirong Feng , Xinhui Jin , Dong Wang , Kai Zhang , Xiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326
Lingjiang Kou , Yong Wang , Jiajia Song , Taotao Ai , Wenhu Li , Mohammad Yeganeh Ghotbi , Panya Wattanapaphawong , Koji Kajiyoshi . Mini review: Strategies for enhancing stability of high-voltage cathode materials in aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 110368-. doi: 10.1016/j.cclet.2024.110368
Xinyu Guo , Chang Li , Wenjun Deng , Yi Zhou , Yan Chen , Yushuang Xu , Rui Li . Phase engineering and heteroatom incorporation enable defect-rich MoS2 for long life aqueous iron-ion batteries. Chinese Chemical Letters, 2025, 36(3): 109715-. doi: 10.1016/j.cclet.2024.109715
Yuhan Wu , Qing Zhao , Zhijie Wang . Layered vanadium oxides: Promising cathode materials for calcium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(5): 100271-100271. doi: 10.1016/j.cjsc.2024.100271
Zhanheng Yan , Weiqing Su , Weiwei Xu , Qianhui Mao , Lisha Xue , Huanxin Li , Wuhua Liu , Xiu Li , Qiuhui Zhang . Carbon-based quantum dots/nanodots materials for potassium ion storage. Chinese Chemical Letters, 2025, 36(4): 110217-. doi: 10.1016/j.cclet.2024.110217
Yang Li , Xiaoxu Liu , Tianyi Ji , Man Zhang , Xueru Yan , Mengjie Yao , Dawei Sheng , Shaodong Li , Peipei Ren , Zexiang Shen . Potassium ion doped manganese oxide nanoscrolls enhanced the performance of aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109551-. doi: 10.1016/j.cclet.2024.109551
Xinyu Ren , Hong Liu , Jingang Wang , Jiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282
Shuaiwen Li , Zihui Chen , Feng Yang , Wanqing Yue . The age of vanadium-based nanozymes: Synthesis, catalytic mechanisms, regulation and biomedical applications. Chinese Chemical Letters, 2024, 35(4): 108793-. doi: 10.1016/j.cclet.2023.108793
Jianmei Han , Peng Wang , Hua Zhang , Ning Song , Xuguang An , Baojuan Xi , Shenglin Xiong . Performance optimization of chalcogenide catalytic materials in lithium-sulfur batteries: Structural and electronic engineering. Chinese Chemical Letters, 2024, 35(7): 109543-. doi: 10.1016/j.cclet.2024.109543
Mengjun Sun , Zhi Wang , Jvhui Jiang , Xiaobing Wang , Chuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Bingke Zhang , Dongbo Wang , Jiamu Cao , Wen He , Gang Liu , Donghao Liu , Chenchen Zhao , Jingwen Pan , Sihang Liu , Weifeng Zhang , Xuan Fang , Liancheng Zhao , Jinzhong Wang . Tuning Stark effect by defect engineering on black titanium dioxide mesoporous spheres for enhanced hydrogen evolution. Chinese Chemical Letters, 2024, 35(11): 110254-. doi: 10.1016/j.cclet.2024.110254
Xiaoxing Ji , Xiaojuan Li , Chenggang Wang , Gang Zhao , Hongxia Bu , Xijin Xu . NixB/rGO as the cathode for high-performance aqueous alkaline zinc-based battery. Chinese Chemical Letters, 2024, 35(10): 109388-. doi: 10.1016/j.cclet.2023.109388