Chemical tools for E3 ubiquitin ligase study
-
* Corresponding author.
E-mail address: quqian22@sjtu.edu.cn (Q. Qu).
Citation:
Yangwode Jing, Chong Zuo, Yun-Xiang Du, Junxiong Mao, Ruichao Ding, Jiachen Zhang, Lu-Jun Liang, Qian Qu. Chemical tools for E3 ubiquitin ligase study[J]. Chinese Chemical Letters,
;2023, 34(4): 107781.
doi:
10.1016/j.cclet.2022.107781
D. Komander, M. Rape, Annu. Rev. Biochem. 81 (2012) 203–229.
doi: 10.1146/annurev-biochem-060310-170328
A. Hershko, A. Ciechanover, Annu. Rev. Biochem. 67 (1998) 425–479.
doi: 10.1146/annurev.biochem.67.1.425
L. Buetow, D.T. Huang, Nat. Rev. Mol. Cell Biol. 17 (2016) 626–642.
doi: 10.1038/nrm.2016.91
C.E. Berndsen, C. Wolberger, Nat. Rev. Mol. Cell Biol. 21 (2014) 301–307.
R.J. Deshaies, C.A. Joazeiro, Annu. Rev. Biochem. 78 (2009) 399–434.
doi: 10.1146/annurev.biochem.78.101807.093809
D. Rotin, S. Kumar, Nat. Rev. Mol. Cell Biol. 10 (2009) 398–409.
doi: 10.1038/nrm2690
H. Walden, K. Rittinger, Nat. Struct. Mol. Biol. 25 (2018) 440–445.
doi: 10.1038/s41594-018-0063-3
H.D. Ulrich, H. Walden, Nat. Rev. Mol. Cell Biol. 11 (2010) 479–489.
doi: 10.1038/nrm2921
K.S. McNaught, C.W. Olanow, B. Halliwell, O. Isacson, P. Jenner, Nat. Rev. Neurosci. 2 (2001) 589–594.
doi: 10.1038/35086067
B. Dale, M. Cheng, K.S. Park, et al., Nat. Rev. Cancer 21 (2021) 638–654.
doi: 10.1038/s41568-021-00365-x
Z.J. Chen, Nat. Cell Biol. 7 (2005) 758–765.
doi: 10.1038/ncb0805-758
H. Ashida, M. Kim, C. Sasakawa, Nat. Rev. Microbiol. 12 (2014) 399–413.
doi: 10.1038/nrmicro3259
A. Craney, M. Rape, Curr. Opin. Cell Biol. 25 (2013) 704–710.
doi: 10.1016/j.ceb.2013.07.004
D.S. Hewings, J.A. Flygare, M. Bogyo, I.E. Wertz, FEBS J. 284 (2017) 1555–1576.
doi: 10.1111/febs.14039
K.F. Witting, M. Mulder, H. Ovaa, J. Mol. Biol. 429 (2017) 3388–3394.
doi: 10.1016/j.jmb.2017.04.002
K.C. Pao, N.T. Wood, A. Knebel, et al., Nature 556 (2018) 381–385.
doi: 10.1038/s41586-018-0026-1
L.J. Liang, G.C. Chu, Q. Qu, et al., Angew. Chem. Int. Ed. 60 (2021) 2–9.
doi: 10.1002/anie.202014556
L.A. Carpino, J. Am. Chem. Soc. 92 (1970) 5748.
doi: 10.1021/ja00722a043
C.D. Chang, J. Meienhofer, Int. J. Pept. Protein Res. 11 (1978) 246–249.
P.E. Dawson, T.W. Muir, I. Clark-Lewis, S.B.H. Kent, Science 266 (1994) 776.
doi: 10.1126/science.7973629
Q. Wan, S.J. Danishefsky, Angew. Chem. Int. Ed. 46 (2007) 9248–9252.
doi: 10.1002/anie.200704195
G.M. Fang, Y.M. Li, F. Shen, et al., Angew. Chem. Int. Ed. 50 (2011) 7645–7649.
doi: 10.1002/anie.201100996
G.M. Fang, J.X. Wang, L. Liu, Angew. Chem. Int. Ed. 51 (2012) 10347–10350.
doi: 10.1002/anie.201203843
S. Tang, Y.Y. Si, Z.P. Wang, et al., Angew. Chem. Int. Ed. 54 (2015) 5713–5717.
doi: 10.1002/anie.201500051
Y. Zhang, C. Xu, H.Y. Lam, C.L. Lee, X. Li, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 6657–6662.
doi: 10.1073/pnas.1221012110
J.W. Bode, R.M. Fox, K.D. Baucom, Angew. Chem. Int. Ed. 45 (2006) 1248–1252.
doi: 10.1002/anie.200503991
J. Shi, T.W. Muir, J. Am. Chem. Soc. 127 (2005) 6198–6206.
doi: 10.1021/ja042287w
Y.M. Li, Y.T. Li, M. Pan, et al., Angew. Chem. Int. Ed. 53 (2014) 2198–2202.
doi: 10.1002/anie.201310010
G.C. Chu, M. Pan, J. Li, et al., J. Am. Chem. Soc. 141 (2019) 3654–3663.
doi: 10.1021/jacs.8b13213
Y. Gao, A. Koppen, M. Rakhshandehroo, et al., Nat. Commun. 4 (2013) 2656.
doi: 10.1038/ncomms3656
E. Kummari, N. Alugubelly, C.Y. Hsu, et al., Plos One 10 (2015) e0135531.
doi: 10.1371/journal.pone.0135531
X. Sui, Y. Wang, Y.X. Du, et al., Chem. Sci. 11 (2020) 12633–12646.
doi: 10.1039/D0SC03295F
A.M. Sadaghiani, S.H. Verhelst, M. Bogyo, Curr. Opin. Chem. Biol. 11 (2007) 20–28.
doi: 10.1016/j.cbpa.2006.11.030
A. Borodovsky, H. Ovaa, W.J. Meester, et al., Chembiochem 6 (2005) 287–291.
doi: 10.1002/cbic.200400236
K.D. Wilkinson, T. Gan-Erdene, N. Kolli, Methods Enzymol. 399 (2005) 37–51.
K.R. Love, R.K. Pandya, E. Spooner, H.L. Ploegh, ACS Chem. Biol. 4 (2009) 275–287.
doi: 10.1021/cb9000348
H.B. Kamadurai, J. Souphron, D.C. Scott, et al., Mol. Cell 36 (2009) 1095–1102.
doi: 10.1016/j.molcel.2009.11.010
M.P. Mulder, K. Witting, I. Berlin, et al., Nat. Chem. Biol. 12 (2016) 523–530.
doi: 10.1038/nchembio.2084
F. El Oualid, R. Merkx, R. Ekkebus, et al., Angew. Chem. Int. Ed. 49 (2010) 10149–10153.
doi: 10.1002/anie.201005995
G.J. Bernardes, J.M. Chalker, J.C. Errey, B.G. Davis, J. Am. Chem. Soc. 130 (2008) 5052–5053.
doi: 10.1021/ja800800p
J.M. Chalker, S.B. Gunnoo, O. Boutureira, et al., Chem. Sci. 2 (2011) 1666.
doi: 10.1039/c1sc00185j
C. Gladkova, S.L. Maslen, J.M. Skehel, D. Komander, Nature 559 (2018) 410–414.
doi: 10.1038/s41586-018-0224-x
D.L. Vaux, J. Silke, Nat. Rev. Mol. Cell Biol. 6 (2005) 287–297.
doi: 10.1038/nrm1621
K.C. Pao, M. Stanley, C. Han, et al., Nat. Chem. Biol. 12 (2016) 324–331.
doi: 10.1038/nchembio.2045
L. Xu, J. Fan, Y. Wang, et al., Chem. Commun. 55 (2019) 7109–7112.
doi: 10.1039/C9CC03739J
J. Ahel, A. Fletcher, D.B. Grabarczyk, et al., bioRxiv (2021), doi:
P.D. Mabbitt, A. Loreto, M.A. Déry, et al., Nat. Chem. Biol. 16 (2020) 1227–1236.
doi: 10.1038/s41589-020-0598-6
D. Horn-Ghetko, D.T. Krist, J.R. Prabu, et al., Nature 590 (2021) 671–676.
doi: 10.1038/s41586-021-03197-9
H.B. Kamadurai, Y. Qiu, A. Deng, et al., eLife 2 (2013) e00828.
doi: 10.7554/eLife.00828
S. Mathur, A.J. Fletcher, E. Branigan, R.T. Hay, S. Virdee, Cell Chem. Biol. 27 (2020) 74–82.
doi: 10.1016/j.chembiol.2019.11.013
L. Buetow, G. Tria, S.F. Ahmed, et al., BMC Biol. 14 (2016) 76.
doi: 10.1186/s12915-016-0298-6
H. Dou, L. Buetow, G.J. Sibbet, K. Cameron, D.T. Huang, Nat. Struct. Mol. Biol. 20 (2013) 982–986.
doi: 10.1038/nsmb.2621
Y. Zhang, T. Hirota, K. Kuwata, et al., J. Am. Chem. Soc. 141 (2019) 14742–14751.
doi: 10.1021/jacs.9b06820
A. Plechanovová, E.G. Jaffray, M.H. Tatham, J.H. Naismith, R.T. Hay, Nature 489 (2012) 115–120.
doi: 10.1038/nature11376
E. Branigan, A. Plechanovová, E.G. Jaffray, J.H. Naismith, R.T. Hay, Nat. Struct. Mol. Biol. 22 (2015) 597–602.
doi: 10.1038/nsmb.3052
H. Dou, L. Buetow, G.J. Sibbet, K. Cameron, D.T. Huang, Nat. Struct. Mol. Biol. 19 (2012) 876–883.
doi: 10.1038/nsmb.2379
N.G. Brown, R. VanderLinden, E.R. Watson, et al., Cell 165 (2016) 1440–1453.
doi: 10.1016/j.cell.2016.05.037
K. Baek, D.T. Krist, J.R. Prabu, et al., Nature 578 (2020) 461–466.
doi: 10.1038/s41586-020-2000-y
G.L. Ellman, Arch. Biochem. Biophys. 82 (1959) 70–77.
doi: 10.1016/0003-9861(59)90090-6
M. Pan, Q. Zheng, T. Wang, et al., Nature 600 (2021) 334–338.
doi: 10.1038/s41586-021-04097-8
F.C. Jr. Streich, C.D. Lima, Methods Mol. Biol. 1844 (2018) 169–196.
L. Cappadocia, C.D. Lima, Chem. Rev. 118 (2018) 889–918.
doi: 10.1021/acs.chemrev.6b00737
J. Liwocha, D.T. Krist, G.J. van der Heden van Noort, et al., Nat. Chem. Biol. 17 (2021) 272–279.
doi: 10.1038/s41589-020-00696-0
W. Gui, S. Shen, Z. Zhuang, J. Am. Chem. Soc. 142 (2020) 19493–19501.
doi: 10.1021/jacs.9b12426
Y. Wang, J. Chen, X. Hua, et al., Angew. Chem. Int. Ed. 61 (2022) e202203792.
C. Grabbe, K. Husnjak, I. Dikic, Nat. Rev. Mol. Cell Biol. 12 (2011) 295–307.
doi: 10.1038/nrm3099
L. Huang, E. Kinnucan, G. Wang, et al., Science 286 (1999) 1321–1326.
doi: 10.1126/science.286.5443.1321
Ying Li , Long-Jie Wang , Yong-Kang Zhou , Jun Liang , Bin Xiao , Ji-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033
Xu-Hui Yue , Xiang-Wen Zhang , Hui-Min He , Lei Qiao , Zhong-Ming Sun . Synthesis, chemical bonding and reactivity of new medium-sized polyarsenides. Chinese Chemical Letters, 2024, 35(7): 108907-. doi: 10.1016/j.cclet.2023.108907
Lian Sun , Honglei Wang , Ming Ma , Tingting Cao , Leilei Zhang , Xingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188
Kebo Xie , Qian Zhang , Fei Ye , Jungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028
Liliang Chu , Xiaoyan Zhang , Jianing Li , Xuelei Deng , Miao Wu , Ya Cheng , Weiping Zhu , Xuhong Qian , Yunpeng Bai . Continuous-flow synthesis of polysubstituted γ-butyrolactones via enzymatic cascade catalysis. Chinese Chemical Letters, 2024, 35(4): 108896-. doi: 10.1016/j.cclet.2023.108896
Xueling Yu , Lixing Fu , Tong Wang , Zhixin Liu , Na Niu , Ligang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167
Tiantian Long , Hongmei Luo , Jingbo Sun , Fengniu Lu , Yi Chen , Dong Xu , Zhiqin Yuan . Carbonization-engineered ultrafast chemical reaction on nanointerface. Chinese Chemical Letters, 2025, 36(3): 109728-. doi: 10.1016/j.cclet.2024.109728
Guangchang Yang , Shenglong Yang , Jinlian Yu , Yishun Xie , Chunlei Tan , Feiyan Lai , Qianqian Jin , Hongqiang Wang , Xiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722
Yixin Zhang , Ting Wang , Jixiang Zhang , Pengyu Lu , Neng Shi , Liqiang Zhang , Weiran Zhu , Nongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619
Min Fu , Pan He , Sen Zhou , Wenqiang Liu , Bo Ma , Shiying Shang , Yaohao Li , Ruihan Wang , Zhongping Tan . An unexpected stereochemical effect of thio-substituted Asp in native chemical ligation. Chinese Chemical Letters, 2024, 35(8): 109434-. doi: 10.1016/j.cclet.2023.109434
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105
Ali Dai , Zhiguo Zheng , Liusheng Duan , Jian Wu , Weiming Tan . Small molecule chemical scaffolds in plant growth regulators for the development of agrochemicals. Chinese Chemical Letters, 2025, 36(4): 110462-. doi: 10.1016/j.cclet.2024.110462
Min Huang , Ru Cheng , Shuai Wen , Liangtong Li , Jie Gao , Xiaohui Zhao , Chunmei Li , Hongyan Zou , Jian Wang . Ultrasensitive detection of microRNA-21 in human serum based on the confinement effect enhanced chemical etching of gold nanorods. Chinese Chemical Letters, 2024, 35(9): 109379-. doi: 10.1016/j.cclet.2023.109379
Yongjian Li , Xinyu Zhu , Chenxi Wei , Youyou Fang , Xinyu Wang , Yizhi Zhai , Wenlong Kang , Lai Chen , Duanyun Cao , Meng Wang , Yun Lu , Qing Huang , Yuefeng Su , Hong Yuan , Ning Li , Feng Wu . Unraveling the chemical and structural evolution of novel Li-rich layered/rocksalt intergrown cathode for Li-ion batteries. Chinese Chemical Letters, 2024, 35(12): 109536-. doi: 10.1016/j.cclet.2024.109536
Xue Zheng , Jizhen Xie , Xing Zhang , Weiting Sun , Heyang Zhao , Yantuan Li , Cheng Wang . Corrigendum to "An overview of polymeric nanomicelles in clinical trials and on the market" [Chinese Chemical Letters 32 (2021) 243-257]. Chinese Chemical Letters, 2025, 36(2): 110545-. doi: 10.1016/j.cclet.2024.110545
Yan Wang , Huixin Chen , Fuda Yu , Shanyue Wei , Jinhui Song , Qianfeng He , Yiming Xie , Miaoliang Huang , Canzhong Lu . Oxygen self-doping pyrolyzed polyacrylic acid as sulfur host with physical/chemical adsorption dual function for lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(7): 109001-. doi: 10.1016/j.cclet.2023.109001
Feng-Qing Huang , Yu Wang , Ji-Wen Wang , Dai Yang , Shi-Lei Wang , Yuan-Ming Fan , Raphael N. Alolga , Lian-Wen Qi . Chemical isotope labeling-assisted liquid chromatography-mass spectrometry enables sensitive and accurate determination of dipeptides and tripeptides in complex biological samples. Chinese Chemical Letters, 2024, 35(11): 109670-. doi: 10.1016/j.cclet.2024.109670
Jia-Qi Feng , Xiang Tian , Rui-Ge Cao , Yong-Xiu Li , Wen-Long Liu , Rong Huang , Si-Yong Qin , Ai-Qing Zhang , Yin-Jia Cheng . An AIE-based theranostic nanoplatform for enhanced colorectal cancer therapy: Real-time tumor-tracking and chemical-enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109657-. doi: 10.1016/j.cclet.2024.109657
Hui Liu , Xi Xiang , Jian-Bo Huang , Bi-Hui Zhu , Li-Yun Wang , Yuan-Jiao Tang , Fang-Xue Du , Ling Li , Feng Yan , Lang Ma , Li Qiu . Corrigendum to "Ultrasound augmenting injectable chemotaxis hydrogel for articular cartilage repair in osteoarthritis" [Chinese Chemical Letters 32 (2021) 1759-1764]. Chinese Chemical Letters, 2025, 36(2): 110562-. doi: 10.1016/j.cclet.2024.110562
Wenzhong Zhang , Zirui Yan , Lingcheng Chen , Yi Xiao . Sn-fused perylene diimides: Synthesis, mechanism, and properties. Chinese Chemical Letters, 2024, 35(10): 109582-. doi: 10.1016/j.cclet.2024.109582