Synthesis and applications of thiosulfonates and selenosulfonates as free-radical reagents
* Corresponding authors.
E-mail addresses: wangx933@nenu.edu.cn (X. Wang), sunk468@nenu.edu.cn (K. Sun).
Citation:
Xin Wang, Jianping Meng, Dongyang Zhao, Shi Tang, Kai Sun. Synthesis and applications of thiosulfonates and selenosulfonates as free-radical reagents[J]. Chinese Chemical Letters,
;2023, 34(4): 107736.
doi:
10.1016/j.cclet.2022.08.016
T. Kondo, T. Mitsudo, Chem. Rev. 100 (2000) 3205–3220.
doi: 10.1021/cr9902749
M. Mellah, A. Voituriez, E. Schulz, Chem. Rev. 107 (2007) 5133–5209.
doi: 10.1021/cr068440h
J.E. Taylor, S.D. Bull, J.M.J. Williams, Chem. Soc. Rev. 41 (2012) 2109–2121.
doi: 10.1039/c2cs15288f
B. Mandal, B. Basu, RSC Adv. 4 (2014) 13854–13881.
doi: 10.1039/c3ra45997g
E.A. Ilardi, E. Vitaku, J.T. Njardarson, J. Med. Chem. 57 (2014) 2832–2842.
doi: 10.1021/jm401375q
C. Ni, M. Hu, J. Hu, Chem. Rev. 115 (2015) 765–825.
doi: 10.1021/cr5002386
D. Wang, P. Cao, B. Wang, et al., Org. Lett. 17 (2015) 2420–2423.
doi: 10.1021/acs.orglett.5b00934
X.X. Shao, C.F. Xu, L. Lu, Q.L. Shen, Acc. Chem. Res. 48 (2015) 1227–1236.
doi: 10.1021/acs.accounts.5b00047
M.H. Feng, B.Q. Tang, S.H. Liang, X.F. Jiang, Curr. Top. Med. Chem. 16 (2016) 1200–1216.
doi: 10.2174/1568026615666150915111741
X. Xiao, M. Feng, X. Jiang, Angew. Chem. Int. Ed. 55 (2016) 14121–14125.
doi: 10.1002/anie.201608011
Y. Li, M. Wang, X. Jiang, ACS Catal. 7 (2017) 7587–7592.
doi: 10.1021/acscatal.7b02735
C. Fortugno, G. Varchi, A. Guerrini, et al., Biomed. Anal. 95 (2014) 151–157.
doi: 10.1016/j.jpba.2014.03.002
G. Mugesh, W.W. du Mont, H. Sies, Chem. Rev. 101 (2001) 2125–2180.
doi: 10.1021/cr000426w
C.W. Nogueira, G. Zeni, J.B.T. Rocha, Chem. Rev. 104 (2004) 6255–6286.
doi: 10.1021/cr0406559
J.J. Ai, J. Li, S.J. Ji, S.Y. Wang, Chin. Chem. Lett. 32 (2021) 721–724.
doi: 10.1016/j.cclet.2020.07.007
X.Z. Li, P. Liu, J. He, et al., Green Synth. Catal. 2 (2021) 381–384.
doi: 10.1016/j.gresc.2021.08.006
O. Foss, J. Am. Chem. Soc. 69 (1947) 2236–2237.
B.M. Trost, Chem. Rev. 78 (1978) 363–382.
doi: 10.1021/cr60314a002
D.H.R. Barton, B. Lacher, B. Misterkiewics, S.Z. Zard, Tetrahedron 44 (1988) 1153–1158.
doi: 10.1016/S0040-4020(01)85895-6
K. Fujiki, E. Yoshida, Synth. Commun. 29 (1999) 3289–3294.
doi: 10.1080/00397919908085956
S. Kim, S. Kim, N. Otsuka, I. Ryu, Angew. Chem. Int. Ed. 44 (2005) 6183–6186.
doi: 10.1002/anie.200501606
F. Kopp, P. Knochel, Org. Lett. 9 (2007) 1639–1641.
doi: 10.1021/ol063136w
S.H. Wunderlich, P. Knochel, Angew. Chem. Int. Ed. 46 (2007) 7685–7688.
doi: 10.1002/anie.200701984
V. Girijavallabhan, C. Alvarez, F.G. Njoroge, J. Org. Chem. 76 (2011) 6442–6446.
doi: 10.1021/jo201016z
P. Saravanan, P. Anbarasan, Org. Lett. 16 (2014) 848–851.
doi: 10.1021/ol4036209
S. Yoshida, Y. Sugimura, Y. Hazamam, et al., Chem. Commun. 51 (2015) 16613–16616.
doi: 10.1039/C5CC07463K
P.K. Shyam, H.Y. Jang, J. Org. Chem. 82 (2017) 1761–1767.
doi: 10.1021/acs.joc.6b03016
N. Wang, P. Saidhareddy, X. Jiang, Nat. Prod. Rep. 37 (2020) 246–275.
doi: 10.1039/C8NP00093J
H. Haruki, M.G. Pedersen, K.I. Gorska, F. Pojer, K. Johnsson, Science 340 (2013) 987–991.
doi: 10.1126/science.1232972
T.J. Deming, Bioconjugate Chem. 28 (2017) 691–700.
doi: 10.1021/acs.bioconjchem.6b00696
M. Yan, J.C. Lo, J.T. Edwards, P.S. Baran, J. Am. Chem. Soc. 138 (2016) 12692–12714.
doi: 10.1021/jacs.6b08856
S. Crespi, M. Chem. Rev. 120 (2020) 9790–9833.
doi: 10.1021/acs.chemrev.0c00278
A. Studer, D.P. Curran, Angew. Chem. Int. Ed. 55 (2016) 58–102.
doi: 10.1002/anie.201505090
K. Sun, Z.D. Shi, Z.H. Liu, et al., Org. Lett. 20 (2018) 6687–6690.
doi: 10.1021/acs.orglett.8b02733
K. Sun, S.N. Wang, R.R. Feng, et al., Org. Lett. 21 (2019) 2052–2055.
doi: 10.1021/acs.orglett.9b00240
K. Sun, G.F. Li, Y.Y. Li, et al., Adv. Synth. Catal. 362 (2020) 1947–1954.
doi: 10.1002/adsc.202000040
X. Wang, Q.L. Wang, Y.R. Xue, et al., Chem. Commun. 56 (2020) 4436–4439.
doi: 10.1039/D0CC01079K
K. Sun, X. Wang, C. Li, H. Wang, L. Li, Org. Chem. Front. 7 (2020) 3100–3119.
doi: 10.1039/D0QO00849D
X. Wang, S. Guo, Y. Zhang, et al., Adv. Synth. Catal. 363 (2021) 3290–3296.
doi: 10.1002/adsc.202100208
Y. Xing, C. Li, J.P. Meng, et al., Adv. Synth. Catal. 363 (2021) 3913–3936.
doi: 10.1002/adsc.202100446
X. Wang, Y. Zhang, K. Sun, J.P. Meng, B. Zhang, Chin. J. Org. Chem. 41 (2021) 4588–4609.
doi: 10.6023/cjoc202109046
S. Guo, X. Wang, D.Y. Zhao, et al., Asian J. Org. Chem. 11 (2022) e20210081.
X. Wang, J. Lei, S. Guo, et al., Chem. Commun. 58 (2022) 1526–1529.
doi: 10.1039/D1CC06323E
C. Ghiazza, T. Billard, Eur. J. Org. Chem. 2021 (2021) 5571–5584.
doi: 10.1002/ejoc.202100944
S. Huang, Z.H. Xia, K. Lu, et al., Chin. J. Chem. 38 (2020) 1625–1628.
doi: 10.1002/cjoc.202000279
P. Mampuys, C.R. McElroy, J.H. Clark, R.V.A. Orru, B.U.W. Maes, Adv. Synth. Catal. 362 (2020) 3–64.
doi: 10.1002/adsc.201900864
M.D. Bentley, I.B. Douglass, J.A. Lacadie, J. Org. Chem. 37 (1972) 333–334.
doi: 10.1021/jo00967a040
G.G. Liang, J. Chen, J.L. Chen, et al., Tetrahedron Lett. 53 (2012) 6768–6770.
doi: 10.1016/j.tetlet.2012.09.132
N. Taniguchi, Eur. J. Org. Chem. 2014 (2014) 5691–5694.
doi: 10.1002/ejoc.201402847
P. Natarajan, Tetrahedron Lett. 56 (2015) 4131–4134.
doi: 10.1016/j.tetlet.2015.05.050
Y. Zheng, F.L. Qing, Y. Huang, X.H. Xu, Adv. Synth. Catal. 358 (2016) 3477–3481.
doi: 10.1002/adsc.201600633
X.J. Li, C. Zhou, P.H. Diao, Y.Q. Ge, C. Guo, Tetrahedron Lett. 58 (2017) 1296–1300.
doi: 10.1016/j.tetlet.2017.02.042
G.Y. Zhang, S.S. Lv, A. Shoberu, J.P. Zou, J. Org. Chem. 82 (2017) 9801–9807.
doi: 10.1021/acs.joc.7b01121
Z.Z. Yang, Y.S. Shi, Z. Zhan, et al., ChemElectroChem 5 (2018) 3619–3623.
doi: 10.1002/celc.201801058
X. Zhang, T. Cui, Y. Zhang, et al., Adv. Synth. Catal. 361 (2019) 2014–2019.
doi: 10.1002/adsc.201900047
A.K. Pandey, A. Kumar, N. Verma, S.K. Srivastava, Beilstein Arch (2021) 202115.
X.C. Wang, C.M. Zhang, Y.D. Zhang, Z.H. Ren, Z.H. Guan, Chin. J. Org. Chem. 40 (2020) 1618–1624.
doi: 10.6023/cjoc202002009
H. Li, Y.X. Han, Z. Yang, et al., Chin. Chem. Lett. 32 (2021) 1709–1712.
doi: 10.1016/j.cclet.2020.12.027
P. Zhang, W.J. Chang, H.Y. Jiao, et al., Chin. Chem. Lett. 32 (2021) 1717–1720.
doi: 10.1016/j.cclet.2021.01.024
Z. Zhang, W.X. Chang, Chin. J. Org. Chem. 41 (2021) 1835–1850.
S.P. Wu, D.K. Wang, Q.Q. Kang, et al., Chem. Commun. 57 (2021) 8288–8291.
doi: 10.1039/D1CC03252F
Y. Liu, S.Y. Xing, J. Zhang, et al., Org. Chem. Front. 9 (2022) 1375–1382.
doi: 10.1039/D1QO01873F
Y.H. Lv, J.P. Meng, C. Li, et al., Adv. Synth. Catal. 363 (2021) 5235–5265.
doi: 10.1002/adsc.202101184
K. Sun, Y. Li, Q. Zhang, Sci. China Chem. 58 (2015) 1354–1358.
doi: 10.1007/s11426-015-5385-y
K. Sun, X. Wang, L.L. Liu, et al., ACS Catal. 5 (2015) 7194–7198.
doi: 10.1021/acscatal.5b02411
D.H. Zhu, X.X. Shao, X. Hong, L. Lu, Q.L. Shen, Angew. Chem. 128 (2016) 16039–16043.
doi: 10.1002/ange.201609468
P.K. Shyam, S. Son, H.Y. Jang, Eur. J. Org. Chem. 2017 (2017) 5025–5031.
doi: 10.1002/ejoc.201700971
S. Huang, N. Thirupathi, C.H. Tung, Z.H. Xu, J. Org. Chem. 83 (2018) 9449–9455.
doi: 10.1021/acs.joc.8b01161
Q.J. Liang, P.J. Walsh, T.Z. Jia, ACS Catal. 10 (2020) 2633–2639.
doi: 10.1021/acscatal.9b04887
C.K. Prier, D.A. Rankic, D.W. MacMillan, Chem. Rev. 113 (2013) 5322–5363.
doi: 10.1021/cr300503r
M.N. Hopkinson, A. Tlahuext-Aca, F. Glorius, Acc. Chem. Res. 49 (2016) 2261–2272.
doi: 10.1021/acs.accounts.6b00351
N.A. Romero, D.A. Nicewicz, Chem. Rev. 116 (2016) 10075–10166.
doi: 10.1021/acs.chemrev.6b00057
X.Y. Yu, J.R. Chen, W.J. Xiao, Chem. Rev. 121 (2020) 506–561.
T. Rawner, E. Lutsker, C.A. Kaiser, O. Reiser, ACS Catal. 8 (2018) 3950–3956.
doi: 10.1021/acscatal.8b00847
B. Lipp, L.M. Kammer, M. Kücükdisli, et al., Chem. Eur. J. 25 (2019) 8965–8969.
doi: 10.1002/chem.201901175
L.M. Kammer, M. Krumb, B. Spitzbarth, et al., Org. Lett. 22 (2020) 3318–3322.
doi: 10.1021/acs.orglett.0c00614
J.K. Liu, H. Yao, X.N. Li, et al., Org. Chem. Front. 7 (2020) 1314–1320.
doi: 10.1039/D0QO00343C
J. Li, X.E. Yang, S.L. Wang, et al., Org. Lett. 22 (2020) 4908–4913.
doi: 10.1021/acs.orglett.0c01776
K. Gadde, P. Mampuys, A. Guidetti, et al., ACS Catal. 10 (2020) 8765–8779.
doi: 10.1021/acscatal.0c02159
C.M. Huang, J. Li, J.J. Ai, et al., Org. Lett. 22 (2020) 9128–9132.
doi: 10.1021/acs.orglett.0c03562
Y. Dong, P. Ji, Y.T. Zhang, et al., Org. Lett. 22 (2020) 9562–9567.
doi: 10.1021/acs.orglett.0c03624
H. Chen, Y.Y. Yan, N.N. Zhang, et al., Org. Lett. 23 (2021) 376–381.
doi: 10.1021/acs.orglett.0c03876
F. Wang, S.Y. Wang, Org. Chem. Front. 8 (2021) 1976–1982.
doi: 10.1039/D1QO00085C
W.Y. Li, L. Zhou, Green Chem. 23 (2021) 6652–6658.
doi: 10.1039/D1GC02036F
W.Z. Bi, W.J. Zhang, Z.J. Li, et al., Org. Biomol. Chem. 19 (2021) 8701–8705.
doi: 10.1039/D1OB01592C
X.Y. Liu, S.Y. Tian, Y.F. Jiang, W.D. Rao, S.Y. Wang, Org. Lett. 23 (2021) 8246–8251.
doi: 10.1021/acs.orglett.1c02981
Y. Liu, N.N. Zhang, Y.L. Xu, Y.Y. Chen, J. Org. Chem. 86 (2021) 16882–16891.
doi: 10.1021/acs.joc.1c02082
J. Xuan, Z. Zhang, W. Xiao, Angew. Chem. Int. Ed. 54 (2015) 15632–15641.
doi: 10.1002/anie.201505731
C.K. Prier, D.A. Rankic, D.W.C. MacMillan, Chem. Rev. 113 (2013) 5322–5363.
doi: 10.1021/cr300503r
J. Xuan, W. Xiao, Angew. Chem. Int. Ed. 51 (2012) 6828–6838.
doi: 10.1002/anie.201200223
J.M.R. Narayanam, C.R.J. Stephenson, Chem. Soc. Rev. 40 (2011) 102–113.
doi: 10.1039/B913880N
T.P. Yoon, M.A. Ischay, J. Du, Nat. Chem. 2 (2010) 527–532.
doi: 10.1038/nchem.687
T. Chatterjee, N. Iqbal, Y. You, E.J. Cho, Acc. Chem. Res. 49 (2016) 2284–2294.
doi: 10.1021/acs.accounts.6b00248
K.L. Skubi, T.R. Blum, T.P. Yoon, Chem. Rev. 116 (2016) 10035–10074.
doi: 10.1021/acs.chemrev.6b00018
D. Kalyani, K.B. McMurtrey, S.R. Neufeldt, M.S. Sanford, J. Am. Chem. Soc. 133 (2011) 18566–18569.
doi: 10.1021/ja208068w
S.R. Neufeldt, M.S. Sanford, Adv. Synth. Catal. 354 (2012) 3517–3522.
doi: 10.1002/adsc.201200738
J. Zoller, D.C. Fabry, M.A. Ronge, M. Rueping, Angew. Chem. Int. Ed. 53 (2014) 13264–13268.
doi: 10.1002/anie.201405478
J. Xuan, T. Zeng, Z. Feng, et al., Angew. Chem. Int. Ed. 54 (2015) 1625–1628.
doi: 10.1002/anie.201409999
J.A. Terrett, J.D. Cuthbertson, V.W. Shurtleff, D.W.C. MacMillan, Nature 524 (2015) 330–334.
doi: 10.1038/nature14875
Z. Zuo, H. Cong, W. Li, et al., J. Am. Chem. Soc. 138 (2016) 1832–1835.
doi: 10.1021/jacs.5b13211
Y. Ye, M.S. Sanford, J. Am. Chem. Soc. 134 (2012) 9034–9037.
doi: 10.1021/ja301553c
A.Y. Chan, I.B. Perry, N.B. Bissonnette, et al., Chem. Rev. 122 (2022) 1485–1542.
doi: 10.1021/acs.chemrev.1c00383
H.Y. Li, C.C. Shan, C.H. Tung, Z.H. Xu, Chem. Sci. 8 (2017) 2610–2615.
doi: 10.1039/C6SC05093J
T.T. Song, H.Y. Li, F. Wei, C.H. Tung, Z.H. Xu, Tetrahedron Lett. 60 (2019) 916–919.
doi: 10.1016/j.tetlet.2019.02.039
R. Zhang, P. Xu, S.Y. Wang, S.J. Ji, J. Org. Chem. 84 (2019) 12324–12333.
doi: 10.1021/acs.joc.9b01626
X. Zhou, Z.Y. Peng, P.G. Wang, Q.C. Liu, T.Z. Jia, Org. Lett. 23 (2021) 1054–1059.
doi: 10.1021/acs.orglett.0c04254
T.G. Back, S. Collins, R.G. Kerr, J. Org. Chem. 48 (1983) 3077–3084.
doi: 10.1021/jo00166a030
P. Mampuys, Y.P. Zhu, S. Sergeyev, et al., Org. Lett. 18 (2016) 2808–2811.
doi: 10.1021/acs.orglett.6b01023
N. Taniguchi, Tetrahedron 73 (2017) 2030–2035.
doi: 10.1016/j.tet.2017.02.047
S.J. Hwang, P.K. Shyam, H.Y. Jang, Bull. Korean Chem. Soc. 39 (2018) 535–539.
doi: 10.1002/bkcs.11426
S. Son, P.K. Shyam, H. Park, I. Jeong, H.Y. Jang, Eur. J. Org. Chem. 2018 (2018) 3365–3371.
doi: 10.1002/ejoc.201800778
Y. Fang, C. Liu, F. Wang, et al., Org. Chem. Front. 6 (2019) 660–663.
Y. Fang, C. Liu, W.D. Rao, S.Y. Wang, S.J. Ji, Org. Lett. 21 (2019) 7687–7691.
doi: 10.1021/acs.orglett.9b01886
L. Cao, C. Jimeno, P. Renaud, Adv. Synth. Catal. 362 (2020) 3644–3648.
doi: 10.1002/adsc.202000657
F. Wang, B.X. Liu, W.D. Rao, S.Y. Wang, Org. Lett. 22 (2020) 6600–6604.
doi: 10.1021/acs.orglett.0c02370
K.M. Mao, M.W. Bian, L. Dai, et al., Org. Lett. 23 (2021) 218–224.
doi: 10.1021/acs.orglett.0c03946
A. Shankar, M. Waheed, R.J. Reddy, SynOpen 5 (2021) 91–99.
doi: 10.1055/a-1422-9411
Hangwen Zheng , Ziqian Wang , HuiJie Zhang , Jing Lei , Rihui Li , Jian Yang , Haiyan Wang . Synthesis and applications of B, N co-doped carbons for zinc-based energy storage devices. Chinese Chemical Letters, 2025, 36(3): 110245-. doi: 10.1016/j.cclet.2024.110245
Zhengzhong Zhu , Shaojun Hu , Zhi Liu , Lipeng Zhou , Chongbin Tian , Qingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641
Hao Lv , Zhi Li , Peng Yin , Ping Wan , Mingshan Zhu . Recent progress on non-metallic carbon nitride for the photosynthesis of H2O2: Mechanism, modification and in-situ applications. Chinese Chemical Letters, 2025, 36(1): 110457-. doi: 10.1016/j.cclet.2024.110457
Xiao-Bo Liu , Ren-Ming Liu , Xiao-Di Bao , Hua-Jian Xu , Qi Zhang , Yu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783
Zhongjie Li , Xiangyue Kong , Yuhao Liu , Huayu Qiu , Lingling Zhan , Shouchun Yin . Progress of additives for morphology control in organic photovoltaics. Chinese Chemical Letters, 2024, 35(6): 109378-. doi: 10.1016/j.cclet.2023.109378
Yulong Shi , Fenbei Chen , Mengyuan Wu , Xin Zhang , Runze Meng , Kun Wang , Yan Wang , Yuheng Mei , Qionglu Duan , Yinghong Li , Rongmei Gao , Yuhuan Li , Hongbin Deng , Jiandong Jiang , Yanxiang Wang , Danqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792
Huiju Cao , Lei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466
Le Zhang , Hui-Yu Xie , Xin Li , Li-Ying Sun , Ying-Feng Han . SOMO-HOMO level conversion in triarylmethyl-cored N-heterocyclic carbene-Au(I) complexes triggered by selecting coordination halogens. Chinese Chemical Letters, 2024, 35(11): 109465-. doi: 10.1016/j.cclet.2023.109465
Wei Zhou , Xi Chen , Lin Lu , Xian-Rong Song , Mu-Jia Luo , Qiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902
Shuaiwen Li , Zihui Chen , Feng Yang , Wanqing Yue . The age of vanadium-based nanozymes: Synthesis, catalytic mechanisms, regulation and biomedical applications. Chinese Chemical Letters, 2024, 35(4): 108793-. doi: 10.1016/j.cclet.2023.108793
Yinglan Yu , Sajid Hussain , Jianping Qi , Lei Luo , Xuemei Zhang . Mechanisms and applications: Cargos transport to basolateral membranes in polarized epithelial cells. Chinese Chemical Letters, 2024, 35(12): 109673-. doi: 10.1016/j.cclet.2024.109673
Yulong Liu , Haoran Lu , Tong Yang , Peng Cheng , Xu Han , Wenyan Liang . Catalytic applications of amorphous alloys in wastewater treatment: A review on mechanisms, recent trends, challenges and future directions. Chinese Chemical Letters, 2024, 35(10): 109492-. doi: 10.1016/j.cclet.2024.109492
Peng Chen , Lijuan Liang , Yufei Zhu , Zhimin Xing , Zhenhua Jia , Teck-Peng Loh . Strategies for constructing seven-membered rings: Applications in natural product synthesis. Chinese Chemical Letters, 2024, 35(6): 109229-. doi: 10.1016/j.cclet.2023.109229
Teng-Yu Huang , Junliang Sun , De-Xian Wang , Qi-Qiang Wang . Recent progress in chiral zeolites: Structure, synthesis, characterization and applications. Chinese Chemical Letters, 2024, 35(12): 109758-. doi: 10.1016/j.cclet.2024.109758
Yiming Yang , Lichao Sun , Qingfeng Zhang . Plasmonic nanocrystals with intrinsic chirality: Biomolecule-directed synthesis and applications. Chinese Journal of Structural Chemistry, 2025, 44(1): 100467-100467. doi: 10.1016/j.cjsc.2024.100467
Xiaoling WANG , Hongwu ZHANG , Daofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214
Yuqing Liu , Yu Yang , Yuhan E , Changlong Pang , Di Cui , Ang Li . Insight into microbial synthesis of metal nanomaterials and their environmental applications: Exploration for enhanced controllable synthesis. Chinese Chemical Letters, 2024, 35(11): 109651-. doi: 10.1016/j.cclet.2024.109651
Jiaming Xu , Yu Xiang , Weisheng Lin , Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093
Qi Li , Zi-Lu Wang , Yun-He Xu . Copper-catalyzed 1,4-silylcyanation of 1,3-enynes: A silyl radical-initiated approach for synthesis of difunctionalized allenes. Chinese Chemical Letters, 2025, 36(3): 109991-. doi: 10.1016/j.cclet.2024.109991
Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018