Recent advances in organic electrosynthesis using heterogeneous catalysts modified electrodes
-
* Corresponding authors.
E-mail addresses: li_ma@qlu.edu.cn (L. Ma), jchen@qlu.edu.cn (J. Chen).
Citation:
Li Ma, Xianang Gao, Xin Liu, Xiaojun Gu, Baoying Li, Beibei Mao, Zeyuan Sun, Wei Gao, Xiaofei Jia, Jianbin Chen. Recent advances in organic electrosynthesis using heterogeneous catalysts modified electrodes[J]. Chinese Chemical Letters,
;2023, 34(4): 107735.
doi:
10.1016/j.cclet.2022.08.015
R. Francke, R.D. Little, Chem. Soc. Rev. 43 (2014) 2492–2521.
doi: 10.1039/c3cs60464k
E.J. Horn, B.R. Rosen, P.S. Baran, ACS Cent. Sci. 2 (2016) 302–308.
doi: 10.1021/acscentsci.6b00091
Y. Jiang, K. Xu, C. Zeng, Chem. Rev. 118 (2018) 4485–4540.
doi: 10.1021/acs.chemrev.7b00271
P. Xiong, H.C. Xu, Acc. Chem. Res. 52 (2019) 3339–3350.
doi: 10.1021/acs.accounts.9b00472
Y. Yuan, A. Lei, Acc. Chem. Res. 52 (2019) 3309–3324.
doi: 10.1021/acs.accounts.9b00512
L.F.T. Novaes, J. Liu, Y. Shen, et al., Chem. Soc. Rev. 50 (2021) 7941–8002.
doi: 10.1039/D1CS00223F
Z. Du, Q. Qi, W. Gao, et al., Chem. Rec. 22 (2022) e202100178.
M. Yan, Y. Kawamata, P.S. Baran, Chem. Rev. 117 (2017) 13230–13319.
doi: 10.1021/acs.chemrev.7b00397
J. Li, S. Zhang, K. Xu, Chin. Chem. Lett. 32 (2021) 2729–2735.
doi: 10.1016/j.cclet.2021.03.027
Q. Tian, J. Zhang, L. Xu, Y. Wei, Mol. Catal. 500 (2021) 111345.
doi: 10.1016/j.mcat.2020.111345
S. Lv, X. Han, J.Y. Wang, et al., Angew. Chem. Int. Ed. 59 (2020) 11583–11590.
doi: 10.1002/anie.202001510
L. Ackermann, Acc. Chem. Res. 53 (2020) 84–104.
doi: 10.1021/acs.accounts.9b00510
K.J. Jiao, Y.K. Xing, Q.L. Yang, H. Qiu, T.S. Mei, Acc. Chem. Res. 53 (2020) 300–310.
doi: 10.1021/acs.accounts.9b00603
J. Zhong, Y. Yu, D. Zhang, K. Ye, Chin. Chem. Lett. 32 (2021) 963–972.
doi: 10.1016/j.cclet.2020.08.011
J.E. Nutting, M. Rafiee, S.S. Stahl, Chem. Rev. 118 (2018) 4834–4885.
doi: 10.1021/acs.chemrev.7b00763
F. Lian, K. Xu, C. Zeng, Chem. Rec. 21 (2021) 2290–2305.
doi: 10.1002/tcr.202100036
F. Wang, S.S. Stahl, Acc. Chem. Res. 53 (2020) 561–574.
doi: 10.1021/acs.accounts.9b00544
A. Das, S.S. Stahl, Angew. Chem. Int. Ed. 56 (2017) 8892–8897.
doi: 10.1002/anie.201704921
L. Yang, L. Cao, R. Huang, et al., ACS Appl. Mater. Interfaces 10 (2018) 36290–36296.
doi: 10.1021/acsami.8b13356
B. You, X. Liu, X. Liu, Y. Sun, ACS Catal. 7 (2017) 4564–4570.
doi: 10.1021/acscatal.7b00876
J. Zheng, X. Chen, X. Zhong, et al., Adv. Funct. Mater. 27 (2017) 1704169.
doi: 10.1002/adfm.201704169
D. Si, B. Xiong, L. Chen, J. Shi, Chem. Catal. 1 (2021) 941–955.
doi: 10.1016/j.checat.2021.08.001
Z. Zhang, K. Deng, ACS Catal. 5 (2015) 6529–6544.
doi: 10.1021/acscatal.5b01491
M. Sajid, X. Zhao, D. Liu, Green Chem. 20 (2018) 5427–5453.
doi: 10.1039/C8GC02680G
H. Luo, J. Barrio, N. Sunny, et al., Adv. Energy Mater. 11 (2021) 2101180.
doi: 10.1002/aenm.202101180
Y. Zhao, M. Cai, J. Xian, Y. Sun, G. Li, J. Mater. Chem. A 9 (2021) 20164–20183.
doi: 10.1039/D1TA04981J
G. Grabowski, J. Lewkowski, R. Skowrońsk, Electrochim. Acta 36 (1991) 1995.
doi: 10.1016/0013-4686(91)85084-K
D.J. Chadderdon, L. Xin, J. Qi, et al., Green Chem. 16 (2014) 3778–3786.
doi: 10.1039/C4GC00401A
M. Park, M. Gu, B.S. Kim, ACS Nano 14 (2020) 6812–6822.
doi: 10.1021/acsnano.0c00581
N. Jiang, B. You, R. Boonstra, I.M. Terrero Rodriguez, Y. Sun, ACS Energy Lett. 1 (2016) 386–390.
doi: 10.1021/acsenergylett.6b00214
B. You, N. Jiang, X. Liu, Y. Sun, Angew. Chem. Int. Ed. 55 (2016) 9913–9917.
doi: 10.1002/anie.201603798
N. Jiang, X. Liu, J. Dong, et al., ChemNanoMat 3 (2017) 491–495.
doi: 10.1002/cnma.201700076
B. You, X. Liu, N. Jiang, Y. Sun, J. Am. Chem. Soc. 138 (2016) 13639–13646.
doi: 10.1021/jacs.6b07127
S. Barwe, J. Weidner, S. Cychy, et al., Angew. Chem. Int. Ed. 57 (2018) 11460–11464.
doi: 10.1002/anie.201806298
J. Weidner, S. Barwe, K. Sliozberg, et al., Beilstein J. Org. Chem. 14 (2018) 1436–1445.
doi: 10.3762/bjoc.14.121
P. Zhang, X. Sheng, X. Chen, et al., Angew. Chem. Int. Ed. 58 (2019) 9155–9159.
doi: 10.1002/anie.201903936
S. Li, X. Sun, Z. Yao, et al., Adv. Funct. Mater. 29 (2019) 1904780.
doi: 10.1002/adfm.201904780
N. Zhang, Y. Zou, L. Tao, et al., Angew. Chem. Int. Ed. 58 (2019) 15895–15903.
doi: 10.1002/anie.201908722
L. Gao, Y. Bao, S. Gan, et al., ChemSusChem 11 (2018) 2547–2553.
doi: 10.1002/cssc.201800695
M.J. Kang, H. Park, J. Jegal, et al., Appl. Catal. B: Environ. 242 (2019) 85–91.
doi: 10.1016/j.apcatb.2018.09.087
Z. Zhou, C. Chen, M. Gao, B. Xia, J. Zhang, Green Chem. 21 (2019) 6699–6706.
doi: 10.1039/C9GC02880C
C. Wang, H.J. Bongard, M. Yu, F. Schuth, ChemSusChem 14 (2021) 5199–5206.
doi: 10.1002/cssc.202002762
X. Huang, J. Song, M. Hua, et al., Green Chem. 22 (2020) 843–849.
doi: 10.1039/C9GC03698A
S. Choi, M. Balamurugan, K.G. Lee, et al., J. Phys. Chem. Lett. 11 (2020) 2941–2948.
doi: 10.1021/acs.jpclett.0c00425
F.J. Holzhäuser, T. Janke, F. Öztas, C. Broicher, R. Palkovits, Adv. Sustain. Syst. 4 (2020) 1900151.
doi: 10.1002/adsu.201900151
L. Wang, J. Cao, C. Lei, et al., ACS Appl. Mater. Interfaces 11 (2019) 27743–27750.
doi: 10.1021/acsami.9b06502
G. Yang, Y. Jiao, H. Yan, et al., Adv. Mater. 32 (2020) e2000455.
doi: 10.1002/adma.202000455
K. Gu, D. Wang, C. Xie, et al., Angew. Chem. Int. Ed. 60 (2021) 20253–20258.
doi: 10.1002/anie.202107390
L. Gao, S. Gan, J. Ma, et al., ChemElectroChem 7 (2020) 4251–4258.
doi: 10.1002/celc.202001117
L. Gao, Z. Liu, J. Ma, et al., Appl. Catal. B: Environ. 261 (2020) 118235.
doi: 10.1016/j.apcatb.2019.118235
S.R. Kubota, K.S. Choi, ChemSusChem 11 (2018) 2138–2145.
doi: 10.1002/cssc.201800532
M. Sun, Y. Wang, C. Sun, et al., Chin. Chem. Lett. 33 (2022) 385–389.
doi: 10.1016/j.cclet.2021.05.009
W.J. Liu, L. Dang, Z. Xu, et al., ACS Catal. 8 (2018) 5533–5541.
doi: 10.1021/acscatal.8b01017
M. Zhang, Y. Liu, B. Liu, et al., ACS Catal. 10 (2020) 5179–5189.
doi: 10.1021/acscatal.0c00007
H. Chen, J. Wang, Y. Yao, et al., ChemElectroChem 6 (2019) 5797–5801.
doi: 10.1002/celc.201901366
B. Zhou, Y. Li, Y. Zou, et al., Angew. Chem. Int. Ed. 60 (2021) 22908–22914.
doi: 10.1002/anie.202109211
B.J. Taitt, D.H. Nam, K.S. Choi, ACS Catal. 9 (2019) 660–670.
doi: 10.1021/acscatal.8b04003
N. Heidary, N. Kornienko, Chem. Sci. 11 (2020) 1798–1806.
doi: 10.1039/D0SC00136H
Y. Zhang, Z. Xue, X. Zhao, B. Zhang, T. Mu, Green Chem. 24 (2022) 1721–1731.
doi: 10.1039/D1GC04499K
B. Zhou, C.L. Dong, Y.C. Huang, et al., J. Energy Chem. 61 (2021) 179–185.
doi: 10.1016/j.jechem.2021.02.026
Y. Lu, C.L. Dong, Y.C. Huang, et al., Angew. Chem. Int. Ed. 59 (2020) 19215–19221.
doi: 10.1002/anie.202007767
Y. Lu, C.L. Dong, Y.C. Huang, et al., Sci. China Chem. 63 (2020) 980–986.
doi: 10.1007/s11426-020-9749-8
X. Deng, G.Y. Xu, Y.J. Zhang, et al., Angew. Chem. Int. Ed. 60 (2021) 20535–20542.
doi: 10.1002/anie.202108955
O.M. Yaghi, M. O'Keeffe, N.W. Ockwig, et al., Nature 423 (2003) 705–714.
doi: 10.1038/nature01650
A.P. Cote, A.I. Benin, N.W. Ockwig, et al., Science 310 (2005) 1166–1170.
doi: 10.1126/science.1120411
H.M. El-Kaderi, J.R. Hunt, J.L. Mendoza-Cortes, et al., Science 316 (2007) 268–272.
doi: 10.1126/science.1139915
A. Dhakshinamoorthy, Z. Li, H. Garcia, Chem. Soc. Rev. 47 (2018) 8134–8172.
doi: 10.1039/C8CS00256H
L. Jiao, Y. Wang, H.L. Jiang, Q. Xu, Adv. Mater. 30 (2018) 1703663.
doi: 10.1002/adma.201703663
Y. Wen, J. Zhang, Q. Xu, X.T. Wu, Q.L. Zhu, Coord. Chem. Rev. 376 (2018) 248–276.
doi: 10.1016/j.ccr.2018.08.012
X. Zhao, P. Pachfule, A. Thomas, Chem. Soc. Rev. 50 (2021) 6871–6913.
doi: 10.1039/D0CS01569E
H.Y. Cheng, T. Wang, Adv. Synth. Catal. 363 (2021) 144–193.
doi: 10.1002/adsc.202001086
L. Ma, S. Wang, X. Feng, B. Wang, Chin. Chem. Lett. 27 (2016) 1383–1394.
doi: 10.1016/j.cclet.2016.06.046
L. Hu, C. Dai, L. Chen, et al., Angew. Chem. Int. Ed. 60 (2021) 27324–27329.
doi: 10.1002/anie.202113895
S. Yuan, J. Zhang, L. Hu, et al., Angew. Chem. Int. Ed. 60 (2021) 21685–21690.
doi: 10.1002/anie.202107053
Y.R. Wang, H.M. Ding, X.Y. Ma, et al., Angew. Chem. Int. Ed. 61 (2022) e202114648.
Y.L. Yang, Y.R. Wang, G.K. Gao, et al., Chin. Chem. Lett. 33 (2022) 1439–1444.
doi: 10.1016/j.cclet.2021.08.063
M. Cai, Y. Zhang, Y. Zhao, et al., J. Mater. Chem. A 8 (2020) 20386–20392.
doi: 10.1039/D0TA07793C
X.J. Bai, W.X. He, X.Y. Lu, Y. Fu, W. Qi, J. Mater. Chem. A 9 (2021) 14270–14275.
doi: 10.1039/D1TA02464G
M. Cai, S. Ding, B. Gibbons, et al., Chem. Commun. 56 (2020) 14361–14364.
doi: 10.1039/D0CC02206C
H. Wu, J. Song, H. Liu, et al., Chem. Sci. 10 (2019) 4692–4698.
doi: 10.1039/C9SC00322C
X. Zhang, M. Han, G. Liu, et al., Appl. Catal. B: Environ. 244 (2019) 899–908.
doi: 10.1016/j.apcatb.2018.12.025
D. Kaiser, I. Klose, R. Oost, J. Neuhaus, N. Maulide, Chem. Rev. 119 (2019) 8701–8780.
doi: 10.1021/acs.chemrev.9b00111
N. Wang, P. Saidhareddy, X. Jiang, Nat. Prod. Rep. 37 (2020) 246–275.
doi: 10.1039/C8NP00093J
L. Zhang, Y.M. Lee, M. Guo, S. Fukuzumi, W. Nam, J. Am. Chem. Soc. 142 (2020) 19879–19884.
doi: 10.1021/jacs.0c10159
K. Kaczorowska, Z. Kolarska, K. Mitka, P. Kowalski, Tetrahedron 61 (2005) 8315–8327.
doi: 10.1016/j.tet.2005.05.044
S. Liu, B. Chen, Y. Yang, et al., Electrochem. Commun. 109 (2019) 106583.
doi: 10.1016/j.elecom.2019.106583
Y. Liang, S.H. Shi, R. Jin, et al., Nat. Catal. 4 (2021) 116–123.
doi: 10.1038/s41929-020-00559-w
S. Han, C. Wang, Y. Shi, et al., Cell Rep. Phys. Sci. 2 (2021) 100462.
doi: 10.1016/j.xcrp.2021.100462
F.F. Fleming, L. Yao, P.C. Ravikumar, L. Funk, B.C. Shook, J. Med. Chem. 53 (2010) 7902–7917.
doi: 10.1021/jm100762r
R.V. Jagadeesh, H. Junge, M. Beller, Nat. Commun. 5 (2014) 4123.
doi: 10.1038/ncomms5123
R.Y. Liu, M. Bae, S.L. Buchwald, J. Am. Chem. Soc. 140 (2018) 1627–1631.
doi: 10.1021/jacs.8b00643
P. Anbarasan, T. Schareina, M. Beller, Chem. Soc. Rev. 40 (2011) 5049–5067.
doi: 10.1039/c1cs15004a
M.F. Semmelhack, C.R. Schmid, J. Am. Chem. Soc. 105 (1983) 6732–6734.
doi: 10.1021/ja00360a042
J. Kim, S.S. Stahl, ACS Catal. 3 (2013) 1652–1656.
doi: 10.1021/cs400360e
K.N. Tseng, A.M. Rizzi, N.K. Szymczak, J. Am. Chem. Soc. 135 (2013) 16352–16355.
doi: 10.1021/ja409223a
Y. Huang, X. Chong, C. Liu, Y. Liang, B. Zhang, Angew. Chem. Int. Ed. 57 (2018) 13163–13166.
doi: 10.1002/anie.201807717
I. Mondal, J.N. Hausmann, G. Vijaykumar, et al., Adv. Energy Mater. 12 (2022) 2200269.
doi: 10.1002/aenm.202200269
S. Torii, K. Uneyama, H. Tanaka, et al., J. Org. Chem. 46 (1981) 3312–3315.
doi: 10.1021/jo00329a032
S. Torii, K. Uneyama, M. Ono, H. Tazawa, S. Matsunami, Tetrahedron Lett. 20 (1979) 4661–4662.
doi: 10.1016/S0040-4039(01)86676-4
K. Rossen, R.P. Volante, P.J. Reider, Tetrahedron Lett. 38 (1997) 777–778.
doi: 10.1016/S0040-4039(96)02445-8
Y. Zhang, A. Iqbal, J. Zai, et al., Org. Chem. Front. 9 (2022) 436–444.
doi: 10.1039/D1QO01588E
K. Jin, J.H. Maalouf, N. Lazouski, et al., J. Am. Chem. Soc. 141 (2019) 6413–6418.
doi: 10.1021/jacs.9b02345
K. Kamata, J. Kasai, K. Yamaguchi, N. Mizuno, Org. Lett. 6 (2004) 3577–3580.
doi: 10.1021/ol0485363
C. Gunanathan, D. Milstein, Science 341 (2013) 1229712.
doi: 10.1126/science.1229712
C. Huang, Y. Huang, C. Liu, Y. Yu, B. Zhang, Angew. Chem. Int. Ed. 58 (2019) 12014–12017.
doi: 10.1002/anie.201903327
M. Li, C. Liu, B. Zhang, Sci. Bull. 66 (2021) 1047–1049.
doi: 10.1016/j.scib.2021.01.024
Y. Wang, C. Liu, B. Zhang, Y. Yu, Sci. China Mater. 63 (2020) 2530–2538.
doi: 10.1007/s40843-020-1365-0
L. Yang, F.X. Ma, F. Xu, et al., Chem. Asian J. 14 (2019) 3557–3560.
doi: 10.1002/asia.201900391
L. Kesavan, R. Tiruvalam, M.H. Ab Rahim, et al., Science 331 (2011) 195–199.
doi: 10.1126/science.1198458
X. Cao, Z. Chen, R. Lin, et al., Nat. Catal. 1 (2018) 704–710.
doi: 10.1038/s41929-018-0128-z
B.G. Hashiguchi, S.M. Bischof, M.M. Konnick, R.A. Periana, Acc. Chem. Res. 45 (2012) 885–898.
doi: 10.1021/ar200250r
M. Ravi, M. Ranocchiari, J.A. van Bokhoven, Angew. Chem. Int. Ed. 56 (2017) 16464–16483.
doi: 10.1002/anie.201702550
A. Dhakshinamoorthy, A.M. Asiri, H. Garcia, ACS Catal. 9 (2018) 1081–1102.
X. Lin, S.N. Zhang, D. Xu, et al., Nat. Commun. 12 (2021) 3882.
doi: 10.1038/s41467-021-24203-8
X. Chong, C. Liu, C. Wang, R. Yang, B. Zhang, Angew. Chem. Int. Ed. 60 (2021) 22010–22016.
doi: 10.1002/anie.202108666
Y. Wu, C. Liu, C. Wang, S. Lu, B. Zhang, Angew. Chem. Int. Ed. 59 (2020) 21170–21175.
doi: 10.1002/anie.202009757
Y. Wu, C. Liu, C. Wang, et al., Nat. Commun. 12 (2021) 3881.
doi: 10.1038/s41467-021-24059-y
S. Wang, K. Uwakwe, L. Yu, et al., Nat. Commun. 12 (2021) 7072.
doi: 10.1038/s41467-021-27372-8
Y. Ling, Y. Wu, C. Wang, et al., ACS Catal. 11 (2021) 9471–9478.
doi: 10.1021/acscatal.1c02316
R. Yamaguchi, C. Ikeda, Y. Takahashi, K. Fujita, J. Am. Chem. Soc. 131 (2009) 8410–8412.
doi: 10.1021/ja9022623
T. Wang, L.G. Zhuo, Z. Li, et al., J. Am. Chem. Soc. 133 (2011) 9878–9891.
doi: 10.1021/ja2023042
M. Li, C. Liu, Y. Huang, S. Han, B. Zhang, Chin. J. Catal. 42 (2021) 1983–1991.
doi: 10.1016/S1872-2067(21)63834-2
X. Huang, L. Zhang, C. Li, L. Tan, Z. Wei, ACS Catal. 9 (2019) 11307–11316.
doi: 10.1021/acscatal.9b03500
S. Han, Y. Shi, C. Wang, C. Liu, B. Zhang, Cell Rep. Phys. Sci. 2 (2021) 100337.
doi: 10.1016/j.xcrp.2021.100337
X.H. Chadderdon, D.J. Chadderdon, T. Pfennig, B.H. Shanks, W. Li, Green Chem. 21 (2019) 6210–6219.
doi: 10.1039/C9GC02264C
H.P. Yang, Q. Fen, H. Wang, J.X. Lu, Electrochem. Commun. 71 (2016) 38–42.
doi: 10.1016/j.elecom.2016.08.004
H. Wu, J. Song, C. Xie, et al., Chem. Sci. 10 (2019) 1754–1759.
doi: 10.1039/C8SC03161D
D.B. Bagal, B.M. Bhanage, Adv. Synth. Catal. 357 (2015) 883–900.
doi: 10.1002/adsc.201400940
D. Zhang, J. Chen, Z. Hao, et al., Chem. Catal. 1 (2021) 393–406.
doi: 10.1016/j.checat.2021.03.012
R. Xia, D. Tian, S. Kattel, et al., Nat. Commun. 12 (2021) 1949.
doi: 10.1038/s41467-021-22291-0
H.U. Blaser, Science 313 (2006) 312–313.
doi: 10.1126/science.1131574
A. Corma, P. Concepcion, P. Serna, Angew. Chem. Int. Ed. 46 (2007) 7266–7269.
doi: 10.1002/anie.200700823
A. Corma, P. Serna, P. Concepcion, J.J. Calvino, J. Am. Chem. Soc. 130 (2008) 8748–8753.
doi: 10.1021/ja800959g
J. Song, Z.F. Huang, L. Pan, et al., Appl. Catal. B: Environ. 227 (2018) 386–408.
doi: 10.1016/j.apcatb.2018.01.052
D. Formenti, F. Ferretti, F.K. Scharnagl, M. Beller, Chem. Rev. 119 (2019) 2611–2680.
doi: 10.1021/acs.chemrev.8b00547
T. Wirtanen, E. Rodrigo, S.R. Waldvogel, Adv. Synth. Catal. 362 (2020) 2088–2101.
doi: 10.1002/adsc.202000349
X.Z. Yuan, Z.F. Ma, Q.Z. Jiang, W.S. Wu, Electrochem. Commun. 3 (2001) 599–602.
doi: 10.1016/S1388-2481(01)00226-0
J. Jiang, R. Zhai, X. Bao, J. Alloy. Compd. 354 (2003) 248–258.
doi: 10.1016/S0925-8388(02)01359-2
Z. Chen, Z. Wang, D. Wu, L. Ma, J. Hazard. Mater. 197 (2011) 424–429.
doi: 10.1016/j.jhazmat.2011.09.054
X. Sheng, B. Wouters, T. Breugelmans, et al., ChemElectroChem 1 (2014) 1198–1210.
doi: 10.1002/celc.201402015
B. Wouters, X. Sheng, A. Boschin, et al., Electrochim. Acta 111 (2013) 405–410.
doi: 10.1016/j.electacta.2013.07.210
X. Sheng, B. Wouters, T. Breugelmans, et al., Appl. Catal. B: Environ. 147 (2014) 330–339.
doi: 10.1016/j.apcatb.2013.09.006
N. Daems, J. Wouters, C. Van Goethem, et al., Appl. Catal. B: Environ. 226 (2018) 509–522.
doi: 10.1016/j.apcatb.2017.12.079
M. Jin, Y. Liu, X. Zhang, et al., Appl. Catal. B: Environ. 298 (2021) 120545.
doi: 10.1016/j.apcatb.2021.120545
C. Liu, A.Y. Zhang, D.N. Pei, H.Q. Yu, Environ. Sci. Technol. 50 (2016) 5234–5242.
doi: 10.1021/acs.est.6b00730
L.Z. Huang, H.C.B. Hansen, M.J. Bjerrum, J. Hazard. Mater. 306 (2016) 175–183.
doi: 10.1016/j.jhazmat.2015.12.009
X. Chong, C. Liu, Y. Huang, C. Huang, B. Zhang, Natl. Sci. Rev. 7 (2020) 285–295.
doi: 10.1093/nsr/nwz146
Y. Zhao, C. Liu, C. Wang, X. Chong, B. Zhang, CCS Chem. 3 (2021) 507–515.
doi: 10.31635/ccschem.020.202000218
S. Wu, X. Huang, H. Zhang, Z. Wei, M. Wang, ACS Catal. 12 (2022) 58–65.
doi: 10.1021/acscatal.1c03763
K. Mitsudo, T. Okada, S. Shimohara, H. Mandai, S. Suga, Electrochemistry 81 (2013) 362–364.
doi: 10.5796/electrochemistry.81.362
C. Liu, S. Han, M. Li, X. Chong, B. Zhang, Angew. Chem. Int. Ed. 59 (2020) 18527–18531.
doi: 10.1002/anie.202009155
Y.L. Lai, J.M. Huang, Org. Lett. 19 (2017) 2022–2025.
doi: 10.1021/acs.orglett.7b00473
J.M. Huang, X.X. Wang, Y. Dong, Angew. Chem. Int. Ed. 50 (2011) 924–927.
doi: 10.1002/anie.201004852
J.M. Huang, H.R. Ren, Chem. Commun. 46 (2010) 2286–2288.
doi: 10.1039/b922897g
Z. Yin, H. Pang, X. Guo, et al., Angew. Chem. Int. Ed. 59 (2020) 15933–15936.
doi: 10.1002/anie.202006293
N. Chen, X. Lai, H. Xu, Chin. J. Org. Chem. 40 (2020) 2592–2593.
doi: 10.6023/cjoc202000050
K. Geng, T. He, R. Liu, et al., Chem. Rev. 120 (2020) 8814–8933.
doi: 10.1021/acs.chemrev.9b00550
J. Li, X. Jing, Q. Li, et al., Chem. Soc. Rev. 49 (2020) 3565–3604.
doi: 10.1039/D0CS00017E
X.F. Lu, B.Y. Xia, S.Q. Zang, X.W.D. Lou, Angew. Chem. Int. Ed. 59 (2020) 4634–4650.
doi: 10.1002/anie.201910309
X. Liu, T. Yue, K. Qi, et al., Chin. Chem. Lett. 31 (2020) 2189–2201.
doi: 10.1016/j.cclet.2019.12.009
S. Zhao, Y. Wang, J. Dong, et al., Nat. Energy 1 (2016) 16184.
doi: 10.1038/nenergy.2016.184
E.C.R. McKenzie, S. Hosseini, A.G.C. Petro, et al., Chem. Rev. 122 (2022) 3292–3335.
doi: 10.1021/acs.chemrev.1c00471
J.P. Barham, B. Konig, Angew. Chem. Int. Ed. 59 (2020) 11732–11747.
doi: 10.1002/anie.201913767
S. Wu, J. Kaur, T.A. Karl, X. Tian, J.P. Barham, Angew. Chem. Int. Ed. 61 (2022) e202107811.
W. Qiao, I. Waseem, G. Shang, et al., ACS Catal. 11 (2021) 13510–13518.
doi: 10.1021/acscatal.1c03938
Sadia Rani , Najoua Sbei , Seyfeddine Rahali , Samina Aslam , Tomas Hardwick , Nisar Ahmed . Electrochemical synthesis: A green & powerful approach to modern organic synthesis and future directions. Chinese Chemical Letters, 2025, 36(11): 111216-. doi: 10.1016/j.cclet.2025.111216
Pingfan Zhang , Shihuan Hong , Ning Song , Zhonghui Han , Fei Ge , Gang Dai , Hongjun Dong , Chunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073
Ming Yue , Yi-Rong Wang , Jia-Yong Weng , Jia-Li Zhang , Da-Yu Chi , Mingjin Shi , Xiao-Gang Hu , Yifa Chen , Shun-Li Li , Ya-Qian Lan . Multi-metal porous crystalline materials for electrocatalysis applications. Chinese Chemical Letters, 2025, 36(6): 110049-. doi: 10.1016/j.cclet.2024.110049
Ruiying Liu , Li Zhao , Baishan Liu , Jiayuan Yu , Yujie Wang , Wanqiang Yu , Di Xin , Chaoqiong Fang , Xuchuan Jiang , Riming Hu , Hong Liu , Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2024.100332
Yue Zhang , Xiaoya Fan , Xun He , Tingyu Yan , Yongchao Yao , Dongdong Zheng , Jingxiang Zhao , Qinghai Cai , Qian Liu , Luming Li , Wei Chu , Shengjun Sun , Xuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806
Xuyun Lu , Yanan Chang , Shasha Wang , Xiaoxuan Li , Jianchun Bao , Ying Liu . Hydrogen peroxide electrosynthesis via two-electron oxygen reduction: From pH effect to device engineering. Chinese Chemical Letters, 2025, 36(5): 110277-. doi: 10.1016/j.cclet.2024.110277
Mingxing Chen , Xue Li , Nian Liu , Zihe Du , Zhitao Wang , Jing Qi . A zinc-nitrate battery for efficient ammonia electrosynthesis and energy output by a high entropy hydroxide catalyst. Chinese Chemical Letters, 2025, 36(10): 111294-. doi: 10.1016/j.cclet.2025.111294
Xinyu Wu , Jianfeng Lu , Zihao Zhu , Suijun Liu , Herui Wen . Recent advances of metal-organic frameworks and MOF-derived materials based on p-block metal for the electrochemical reduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(7): 110151-. doi: 10.1016/j.cclet.2024.110151
Shuangyu Wu , Jian Peng , Yue Jiang , Sijie Lin . The overlooked promotional effects of alcohols to BiOBr catalysts in photocatalytic degradation of organic pollutants. Chinese Chemical Letters, 2025, 36(11): 110819-. doi: 10.1016/j.cclet.2025.110819
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Shaojie Ding , Henan Wang , Xiaojing Dai , Yuru Lv , Xinxin Niu , Ruilian Yin , Fangfang Wu , Wenhui Shi , Wenxian Liu , Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302
Heng Yang , Zhijie Zhou , Conghui Tang , Feng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257
Shuai Tang , Zian Wang , Mengyi Zhu , Xinyun Zhao , Xiaoyun Hu , Hua Zhang . Synthesis of organoboron compounds via heterogeneous C–H and C–X borylation. Chinese Chemical Letters, 2025, 36(5): 110503-. doi: 10.1016/j.cclet.2024.110503
Wen-Jing Li , Jun-Bo Wang , Yu-Heng Liu , Mo Zhang , Zhan-Hui Zhang . Molybdenum-doped carbon nitride as an efficient heterogeneous catalyst for direct amination of nitroarenes with arylboronic acids. Chinese Chemical Letters, 2025, 36(3): 110001-. doi: 10.1016/j.cclet.2024.110001
Jing Guo , Jianzhong Ma , Junli Liu , Guanjie Huang , Xiaoting Zhou , Francesco Parrino , Riccardo Ceccato , Leonardo Palmisano , Boon-Junn Ng , Lutfi Kurnianditia Putri , Huaxing Li , Rongjie Li , Gang Liu , Yang Wang , Nikolay Kornienko , Shan-Shan Zhu , Zhenwei Zhang , Xiaoming Liu , Nur Atika Nikma Dahlan , Siang-Piao Chai , Jianmin Ma . Two-dimensional nanomaterials for environmental catalysis roadmap towards 2030. Chinese Chemical Letters, 2025, 36(9): 110988-. doi: 10.1016/j.cclet.2025.110988
Shuai Chen , Anzai Shi , Guoqing Yang , Pengfei Xie , Feng Liu , Youai Qiu . Electrochemical demethoxyl-cyanation of methoxyarenes via SNAr. Chinese Chemical Letters, 2025, 36(9): 110810-. doi: 10.1016/j.cclet.2024.110810
Bowen Li , Ting Wang , Ming Xu , Yuqi Wang , Zhaoxing Li , Mei Liu , Wenjing Zhang , Ming Feng . Structuring MoO3-polyoxometalate hybrid superstructures to boost electrocatalytic hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(2): 110467-. doi: 10.1016/j.cclet.2024.110467
Xinyu Ren , Hong Liu , Jingang Wang , Jiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282
Anni Wu , Chengyi Hong , Hu Zheng , Wei Teng . Multi-site synergistic relay electrocatalysis with high-entropy nanoalloys for effective nitrate reduction to ammonia. Chinese Chemical Letters, 2025, 36(12): 111066-. doi: 10.1016/j.cclet.2025.111066